Influence of Pixel Perturbation on eXplainable Artificial Intelligence

Juliana da Costa Feitosa®?, Mateus Roder®®, Jodo Paulo Papa®° and José Remo Ferreira Brega

Keywords:

Abstract:

1 INTRODUCTION

Methods

d

Departmant of Computing, School of Science, Sao Paulo State University (UNESP), Brazil

eXplainable Artificial Intelligence, Pixel Pertubation, Artificial Intelligence.

The current scenario around Artificial Intelligence (AI) has demanded more and more transparent explanations
about the existing models. The use of eXplicable Artificial Intelligence (XAI) has been considered as a solution
in the search for explainability. As such, XAI methods can be used to verify the influence of adverse scenarios,
such as pixel disturbance on Al models for segmentation. This paper presents the experiments performed
with fish images of the Pacu species to determine the influence of pixel perturbation through the following
explainable methods: Grad-CAM, Saliency Map, Layer Grad-CAM and CNN Filters. The perturbed pixels
were considered the most important for the model during the segmentation process of the input image regions.
From the existing pixel perturbation techniques, the images were subjected to three main techniques: white
noise, color black noise and random noise. From the results obtained, it was observed that the Grad-CAM
method had different behaviors for each perturbation technique tested, while the CNN Filters method showed
more stability in the variation of the image averaging. The Saliency Map was the least sensitive to the three
types of perturbation, as it required fewer iterations. Furthermore, of the perturbation techniques tested, Black
noise showed the least ability to impact segmentation. Thus, it is concluded that the perturbation methods
influence the outcome of the explainable models tested and interfere with these models in different ways. It
is suggested that the experiments presented here be replicated on other Al models, on other explainability
methods, and with other existing perturbation techniques to gather more evidence about this influence and
from that, quantify which combination of XAI method and pixel perturbation is best for a given problem.

From this context, Deep Learning (DL) was cre-
ated with the aim of configuring the parameters of

Artificial Intelligence (AI) is commonly used today
to describe the newest experiences of interaction be-
tween computer systems and their users (Kaufman,
2019). Through this interaction that Al systems and
concepts can be found in countless areas of knowl-
edge, such as law, medicine, engineering and mathe-
matics (Russell and Norvig, 2004).

The aim of Al is to make machines partially sim-
ulate the workings of the human mind (Kistan et al.,
2018). Therefore, there is still no Al system that com-
pletely simulates our brains and solves every type of
problem solved by a human being. However, there
is still no knowledge of all the problems that are ca-
pable of being solved by Al systems or of their total
capacity (Teixeira, 2019).
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the input data so that the machine learns on its own,
through pattern recognition, in several layers of arti-
ficial neurons (Goodfellow et al., 2016). In this way,
DL is currently used for image recognition, speech,
object detection and content description (Deng and
Yu, 2014).

According to (Fellous et al., 2019), there are two
possible classifications for existing ML models. The
first is black-box models, whose decisions made by
the machine are difficult for a human being to ex-
plain (e.g. DL). Black boxes are considered to be
more complex and perform better. In contrast, there
are white-box models whose decisions can be ex-
plained and are therefore more transparent (e.g. de-
cision trees) (Camacho et al., 2018).

The advance of Al has also led to concerns about
the transparency of decisions. As an example of this,
it has recently been possible to observe the emergence
of the legal requirement prescribed by art. 22 of
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the General Data Protection Regulation (GDPR) de-
scribed by the European Union jurisdiction (Wolf and
Ringland, 2020) (Arnout et al., 2019), which ensures
the transparency of an Al system’s decisions. It was
also possible to observe the emergence of the General
Personal Data Protection Act (LGPD), which simi-
larly demonstrates concern about advances in Al and
data protection at the national level (Pinheiro, 2020).
As a result, the search for secure and transparent al-
ternatives has become a priority for researchers in the
field.

Based on this context, eXplainable Artificial Intel-
ligence (XAI) emerged, defined as a set of techniques
that combine Al methods, ML and DL, with effective
transparent approaches to generate explainable out-
puts (Fellous et al., 2019). In other words, the term
XALI refers to techniques that make AI models un-
derstandable to humans (Wolf and Ringland, 2020).
Despite gaining due attention recently, according to
(Xu et al., 2019), concepts related to XAI date back
40 years, where rules were used to explain the func-
tioning of expert systems. However, in 2017, the De-
fense Advanced Research Projects Agency (DARPA)
of the United States of America (USA) created a pro-
gram aimed at XAI, whose goal was to create Al sys-
tems capable of explaining their logic to humans, in
order to characterize their strengths and weaknesses,
and transmit future behavioral information (Gunning
and Aha, 2019).

According to (Wolf and Ringland, 2020), expla-
nations can be classified as global, whose purpose
is to describe the representations of the model used,
and local, whose purpose is to explain the input data.
Moreover, explainability is based on the human be-
ing’s need to understand the system (Wolf, 2019).
Therefore, based on the user, who may or may not
be an expert, the explanations provided by Al can be
spoken or created to be visualized, as required (We-
ber et al., 2018). According to DARPA’s definitions,
explanations can be classified into four modes: ana-
Iytical statements, visualizations, cases and rejections
of alternative choices (Gunning, 2017). In both cases,
explainability is achieved based on the prediction pro-
cess of the Al model analyzed.

The classification of XAI methods can also be de-
fined according to the methodology used to gener-
ate the explanations. According to (Ivanovs et al.,
2021a), pixel perturbation techniques, e.g., make it
possible to analyze the model’s input in relation to
its output. With this in mind, there are XAI methods
based on pixel perturbation, such as LIME and Occlu-
sion, the aim of which is to better understand the func-
tioning of Al models (Ivanovs et al., 2021a). There-
fore, the input image is repeatedly modified through

blurring or random colors in specific regions of the
image (Hendrycks and Dietterich, 2019). Further-
more, the results obtained are compared with the re-
sults of the original (undisturbed) input image. There-
fore, the image region is considered significant if its
removal results in a noticeable change in the result
(Gupta et al., 2023).

Much has been said about the search for confi-
dence in AI models. However, the need to align
the explanations of XAI methods with the explana-
tions of human beings demonstrates the concern to
also increase confidence in explainable Al methods
(Diaz-Rodriguez et al., 2022). Therefore, although
XAI is presented as one of the solutions to the lack
of transparency in Al models, it is also necessary to
challenge the explanations generated by these meth-
ods, since these explanations can produce different
results when subjected to the global and local pro-
cesses of the models, for example (Ghassemi et al.,
2021). According to (Doshi-Velez and Kim, 2017) we
must be careful with interpretable methods, avoiding
vague statements and considering factors relevant to
the tasks performed and the method used. According
to (Ghassemi et al., 2021), despite being attractive due
to their explainability, XAl methods can have their ex-
planations hindered by the presence of unrecognized
confounding factors. It is also necessary to check that
the results obtained by these methods are not altered
when the AI model is subjected to external factors,
such as changes in the input image.

Given this scenario, it is worth stating the im-
portance of using explainable methods that provide
reliable explanations to the user, based on concepts
and studies related to the transparency of Al mod-
els. As well as the importance of examining the re-
lationship between the input and output of a model
based on pixel perturbation, identifying which part
of the input the model attributes greater relevance to
(Ivanovs et al., 2021a). This work aims to evaluate
XAI methods by analyzing the influence of pixel per-
turbation. The experiments were applied to a model
for segmenting regions of interest in Pacu fish. To
train the model, a dataset containing the segmentation
of 2000 different animals was required. MaskRCNN
(He et al., 2017) from a feature extractor trained on
ImageNet (Deng et al., 2009) based on the 18-layer
variant of ResNet (He et al., 2015), (He et al., 2016)
was the architecture applied to the original problem.

For the experiments, 100 fish images were used
for three different disturbance techniques. In addi-
tion, four different explainable methods were used:
Grad-CAM (Selvaraju et al., 2017), Saliency Map (Si-
monyan et al., 2013), Layer Grad-CAM (whose gra-
dients resulting from Grad-CAM are calculated in re-
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lation to the final convolution layer) (Chatterjee et al.,
2022) and CNN Filters (Erhan et al., 2009). The re-
sults show which explainable model was the least sen-
sitive to pixel perturbation techniques. In addition, it
is possible to see which of the types of perturbation
had the greatest influence on the model’s predictive
capacity, and whether these techniques affect each of
the explainable methods differently.

2 RELATED WORKS

Disturbances make it possible to examine the rela-
tionship between the input and output of a model, al-
lowing us to see which part of the input a model at-
tributes greater importance to (Ivanovs et al., 2021b).
Thereby, pixel perturbation can be used to assess both
the accuracy of Al models (Kadir et al., 2023) and
the explainability of explainable methods (Mohamed
et al., 2022). In both cases, when there is influence
from the changes made to the input, the good perfor-
mance of the tool is proven. In the case of explainable
methods, when this influence is not proven, it can be
said that the explanations generated do not match the
reality of the model’s inference process. For example,
to evaluate an explanation in terms of describing the
model’s behavior, there is a method that replaces pix-
els or regions of pixels based on the MoRF process,
which is done in descending order based on their av-
erage relevance (Gumpfer et al., 2023).

The use of the perturbation technique extends to
scenarios other than classification (Lin et al., 2021)
or image segmentation (Gipiskis et al., 2023). In the
works carried out by (Schlegel et al., 2019), (Veer-
appa et al., 2022) and (Abanda et al., 2022), for ex-
ample, the technique is considered for input to time
series models, and is even used as a way of assess-
ing the explainability of XAI methods applied to this
type of model. Therefore, it can be seen that input per-
turbation is a commonly used technique and helps to
detect flaws in explainability, or even in the AI model
itself.

For models that use images as input, the perturba-
tion technique makes it possible to check for different
types of noise in different types of images, such as
(Shi et al., 2023). In real scenarios, such as medi-
cal images, these noises can be generated in different
ways during image capture.

Disturbance techniques can help detect whether
the prediction process will be carried out correctly
in the face of these changes. Furthermore, when ex-
plainability methods are applied, the result presented
should be in line with the disturbance of the most
relevant pixels, as can be seen in the figure shown.
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When these are modified, explainability should be in-
fluenced. Therefore, it can be said that an explainable
method with good performance should be influenced
by the disturbance made to the Al model input, even
for images and visual explanations.

3 METHODOLOGY

The experiments were performed based on the steps
shown in Figure 1. The codes developed and used in
the process were created with the Pytorch library in
Python, and executed in Google Collaboratory.

The segmentation model used was created from a
Convolutional Neural Network (CNN), more specifi-
cally the MaskRCNN using as feature extractor a vari-
ant of ResNet with 18 layers. The goal of the model is
to segment regions of interest in the fish such as head
and body dimensions, and fin area for the purpose of
phenotyping and subsequent genetic selection. For
each fish image used as input, the model generates
as output the classes, the masks of each fish region,
a bounding box, and the confidence score in the class
prediction.

In total, there were 100 fish images of the Pacu
species provided by Laboratory of Genetics in Aqua-
culture and Conservation (LaGeAC) at Unesp Jabot-
ical. Each image was manually segmented using a
specific segmentation tool called LabelBox and then
submitted to the AI model for inference. From this
step, a black and white mask was created whose white
areas represent the fish.

XAI methods were applied to explain the most im-
portant regions for the MaskRCNN prediction model.
Therefore, four methods were applied: Grad-CAM,
Saliency Map, CNN Filters and Layer Grad-CAM.
Both highlight the image regions of greatest relevance
for the model to identify the fish regions. Thus, it
is possible to verify whether the result presented by
CNN matches the important regions highlighted by
the explainable methods.

The efficiency of the prediction process was tested
from the implementation of pixel perturbation tech-
niques, whose objective was to perturb the regions
highlighted as important for the model from the XAI
methods. As such, the perturbation was applied from
the scores obtained for each pixel in the explainabil-
ity methods. Each method considers a different scale
to highlight the most relevant regions, as presented in
Table 1. To identify borderline values for each of the
methods, visual inspection was used on some of the
dataset images.

From the determined values, three different pixel
perturbation techniques were implemented. These
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Figure 1: Diagram of the methodology used during the experiments.

Table 1: Table of most important pixel values for each XAI
method.

XAI Methods Values
Grad-CAM Greater than 0,01
Saliency Map Greater than 0,045
Layer Grad-CAM | Greater than -0,5
CNN Filters Less than 0

1ousas 1046625 1046625

White Noise

Random Black

Figure 2: Pixel perturbation techniques applied on the same
fish by the Grad-CAM method.

are: white noise, black color noise and random noise.
Each was applied to the input image from the most
relevant regions identified by the previously presented
XAI methods. Figure 2 illustrates the different per-
turbations applied to an image from regions extracted
using the Grad-CAM method.

Next, it was necessary to perform a comparison
of the original mask, generated during manual seg-
mentation, with the mask generated during the model
prediction after successive perturbations in the pixels.
The latter was also created in black and white, whose
white regions are equivalent to the important regions
highlighted in the previous step, as illustrated in Fig-
ure 3.

Figure 3: Mask generated during prediction from the Grad-
CAM method.

The comparison was performed based on two in-
dices: Intersection under Union (IoU) and Sorensen
Dice (SD). Both aim to verify how similar the images
to be compared are. In this case, how similar the orig-
inal mask is to the mask generated during prediction
after pixel perturbation. The results obtained were
tabulated according to the perturbation technique and
explainability method used.

All steps were performed in a maximum of five
iterations per image. In some cases, the model itself
stopped the process even before reaching the maxi-
mum. In these situations, the segmentation model was
not able to perform the prediction after the pixel per-
turbation, thus interrupting the process.

For each iteration, the image used as input was
the image generated as output by the previous itera-
tion, except in the first iteration whose input was the
original image of the fish. In this way, with each pass,
the most relevant pixels were increasingly perturbed
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with the intention of making the prediction even more
difficult and consequently impairing the model’s pre-
dictive ability. In Figure 4, the red arrows indicate
the regions that were disturbed in the second itera-
tion, increasing the disturbed region compared to the
first iteration.

(a) ‘ (b)

1046625 \ 10‘(&&-?‘3/ /

Figure 4: (a) is the image of the fish in the first iteration
of the Grad-CAM method with random pixel disturbance,
and (b) is the image of the fish in the second iteration of the
Grad-CAM method with random pixel pertubation.

4 RESULTS

From the presented experiments, it was possible to de-
termine the influence of the perturbation techniques
on the XAI methods. Therefore, by observing the
IoU and SD indices, it was possible to verify the dif-
ferent behavior of the methods. The indices vary ap-
proximately from O to 0.6, as presented 5. For the
Grad-CAM method, in both indexes, the variation
was considerable in relation to the other methods. It
is worth mentioning the behavior of the Layer Grad-
CAM method that presented a discrete variation in the
IoU index and for the SD index it presented an op-
posite behavior, being the method with the greatest
variation for this index. These variations show that
the masks (original and prediction) suffered signifi-
cant changes with the disturbance of pixels, making
them increasingly different. This process happened in
a single iteration or along the five iterations depending
on the combination of the perturbation method with
the XAI technique used.

To determine the results, besides the IoU and SD
indexes, the number of iterations and number of im-
ages generated for each method were observed. It
should be noted that the number of iterations deter-
mined the number of images generated throughout
the experiments. Thus, for each input image, a maxi-
mum of five output images were generated, depending
on the explainable method and perturbation technique
applied.

Regarding the methods that interrupted the predic-
tion process even before reaching the maximum of
five iterations, it means that the combination of the
XAI method with the pixel perturbation technique af-
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Figure 5: Boxplots of (a) IoU and (b) SD indices from XAI
methods.

fected the model, and therefore impeded the predic-
tion process. Therefore, the Saliency Map obtained
the lowest average number of iterations while demon-
strating a lower sensitivity to different types of pixel
disturbance, making it the best method among the
four.

For the methods that reached the maximum num-
ber of iterations, this means that the model contin-
ued to be able to perform the segmentation even after
the most relevant pixels were disturbed according to
the method. That is, the perturbation did not affect
the model to the extent that it continued to perform
the prediction process. For example, the Layer Grad-
CAM method that presented the maximum average
number of iterations, becoming the worst among the
four methods tested. These results can be observed
through the graph in Figure 6, which shows the aver-
age number of iterations for each XAl method.

When analyzing each perturbation technique indi-
vidually, it was possible to observe that each of them
influences the same XAl method in different ways. As
presented in Table 2, the Grad-CAM method, for ex-
ample, obtained a significant variation in the number
of images from one perturbation technique to another.
It is also possible to observe this same variation in
the average amount of iterations, as shown in Table 3.
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Figure 6: Bar graph of the average number of iterations per
XAI method.

The other methods (Saliency Map, CNN Filters, and
Grad-CAM), for example, did not vary much between
perturbation techniques. Consequently, it is possible
to understand that the methods are influenced in dif-
ferent ways according to the pixel perturbation tech-
nique applied.

Table 2: Average amount of images generated in each XAI
method according to the pixel disturbance technique ap-
plied.

XAI Methods Pertubation | Images
Random 224
Grad-CAM Black 374
White noise 120
Random 123
Saliency Map Black 144
White noise 118
Random 493
Layer Grad-CAM Black 499
White noise 464
Random 188
CNN Filters Black 182
White noise 184

From the implemented pixel perturbation meth-
ods, it is possible to observe that three of the four
XAI methods suffered more influence from the black
coloration technique, if compared to the other white
noise and random techniques, as illustrated in Fig-
ure 7. It is possible that this phenomenon is related
to the use of padding, which is usually implemented
with pixels of value 0, thus making the model more
resilient to perturbations of this nature. Therefore, for
these methods, the number of iterations and images
generated was higher for this perturbation technique
than for the others. However, the CNN Layers method

Table 3: Average number of iterations by each XAI method
according to the applied pixel perturbation technique.

XAI Methods

Pertubation | Iterations

\S]

Random
Black
White noise

Grad-CAM

Random
Black

White noise

Saliency Map

Random
Black
White noise

Layer Grad-CAM

Random
Black
White noise

CNN Filters

N N DN L N = = == N

Average number of images per technique
300

200

Average

White Noise

Random Black

Technique

Figure 7: Bar graph of the average number of images per
pixel disturbance technique.

was the only one to show less sensitivity to this pertur-
bation technique, becoming the method with the least
variation among the techniques, when considering the
average number of images.

S CONCLUSIONS

XAl methods are seen as solutions to the lack of trans-
parency in Al models. The objective of these methods
is to highlight which are the most relevant regions of
an image during model prediction. Based on this and
the experiments carried out in this work, the influence
on the MaskRCNN prediction from pixel perturbation
techniques and on the outputs obtained by explain-
ability methods applied to the segmentation of im-
ages of fish of the Pacu species was verified. Thereby,
through the results presented, it is possible to iden-
tify that the perturbation methods influence the results

629



VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

of the tested explainability models, and also that the
perturbation techniques interfere with the XAI meth-
ods in different ways, such as the Grad-CAM method,
which had different behaviors. for each technique
tested.

The black color perturbation technique generated
more iterations, and consequently more images, in
three of the four XAI methods presented. Therefore,
it can be concluded that this technique has the least ca-
pacity to generate impact on the segmentation model
among the techniques tested in this work. Still ac-
cording to the average number of iterations and the
average number of images generated, it is possible to
conclude that the Saliency Map method was the least
sensitive to the different perturbation methods and,
therefore, the best among the XAI methods tested on
the problem in question. The CNN Filters method
was the least sensitive to the types of disturbance, pre-
senting less variation in the average number of im-
ages, while the Grad-CAM method was the most sen-
sitive among the four.

For future work, it is suggested that the experi-
ments presented here be replicated in other AI mod-
els and other explainability methods, as well as in
other scenarios beyond image segmentation. Further-
more, it is interesting to test other existing perturba-
tion techniques and their combinations with explain-
ability methods to identify their influence on the pre-
dictive capacity of the models. Finally, more evidence
about this influence can be gathered and from this,
it can be quantified which combination of the XAI
method and pixel perturbation is best for a given prob-
lem.
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