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Abstract: This position paper proposes the hypothesis that physiological noise artefacts can be classified based on the
type of movements performed by participants in Virtual Reality contexts. To assess this hypothesis, a detailed
research plan is proposed to study the influence of movement on the quality of the captured physiological
signals. This paper argues that the proposed plan can produce a valid model for classifying noisy physiolog-
ical signal features, providing insights into the influence of movement on artefacts, while contributing to the
development of movement-based filters and the implementation of best practices for using various associated
technologies.

1 INTRODUCTION

The use of physiological monitoring has become an
essential tool for multidisciplinary studies leverag-
ing interactive virtual reality (VR) devices and digi-
tal games for the purpose of studying human-based
behaviours. Some examples include neuroscience
(Bohil et al., 2011), the study of emotions (Mon-
tana et al., 2020), human-computer interaction (Li-
apis et al., 2015), affective computing (Lopes et al.,
2017), learning (Bavelier et al., 2012), and healthcare
(e.g., rehabilitation (Howard, 2017), therapy (Nor-
rholm et al., 2016; Bohil et al., 2011) and pain man-
agement (Hoffman et al., 2011)). VR in particular
provides high-fidelity immersive experiences, allow-
ing individuals to physically interact with virtual en-
vironments, which can be advantageous for rehabil-
itation (Howard, 2017) and exposure-type therapies
(Bohil et al., 2011). The main constraint, however,
is that physiological devices are not prepared for this
type of intensive interaction, a pattern that has been
observed in several studies using these tools (Kritikos
et al., 2019; Solbiati et al., 2021; Dey et al., 2022;
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Higuera-Trujillo et al., 2017; Petrescu et al., 2020).
Literature suggests several methodologies on how
to mitigate this problem (Lopes and Boulic, 2020;
Järvelä et al., 2014), but such methods often rely on
minimising movement as much as possible, which is
counterproductive to the core advantages of using VR
in the first place.

Given the integral nature of movement and inter-
action required from VR experiences, this position
paper argues that the influence of movement on the
signal quality of recorded physiological data should
be adequately explored, thus proposing a step-by-step
research plan towards that goal. In particular, this pa-
per asks the question: “Given a set of pre-defined
movements, can we associate each movement type
with a classifiable artefact pattern?”. Thus, the hy-
pothesis is that the noise artefacts themselves, which
are specifically obtained within this context, could be
classified based on the type of movement that was
conducted by the participant.

For the resolution of this problem, the develop-
ment of a VR application is needed to enable the
collection of both physiological and participant body
movement data. This VR application serves as a stim-
ulus, offering the participant objectives and incen-
tives to move repetitively over the course of a game
playing session. Physiology can be collected through
high-quality physiological sensors, while body move-
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ment can be captured through high-definition video
cameras and motion capture (mocap) systems, paired
with internal information from the VR system head-
set and controllers movement information. The dif-
ferent granularities offered by these technologies pro-
vide sufficient detail on how a participant moves their
body in relation to the appearance of a noise artefact.
By analysing the captured signals and the different
levels of noise over time, the hypothesis considers that
patterns will emerge based on how participants move
their bodies during the game playing session, which in
turn can be modelled accordingly. Furthermore, such
patterns may be user-dependent, providing additional
solutions for user-centric filtering techniques.

The expected outcome of such a research plan
would be a model capable of classifying noisy physi-
ological signal features while accounting for different
granularities of participant movement. Furthermore,
an extensive study and compilation of the influence
of movement on the appearance of artefacts in physi-
ological data could be constructed based on all obser-
vations collected from this type of experimentation.
We argue that such study could provide (i) models for
noise detection identifying noise source, (ii) a founda-
tion for the construction of specific movement-based
filters through pattern recognition, and, (iii) method-
ologies and best practice design patterns for systems
employing such technology.

2 BACKGROUND

The use of VR for the study of human-based phe-
nomena is a comprehensively explored subject (Lopes
and Boulic, 2020; Jawed et al., 2021; Hoffman et al.,
2011; Norrholm et al., 2016). This is unsurprising
when considering the potential of such technology
due to its immersive capabilities, which allow indi-
viduals to physically interact and walk within virtual
environments. Furthermore, these environments are
highly malleable and offer an extensive degree of con-
trol, which in turn allows therapists, psychologists
and other professionals to safely tailor these treat-
ments to each individual patient (Ćosić et al., 2010).

The use of physiological sensors is often a crucial
aspect when studying the influence of certain stimuli
on humans. VR is attractive for these studies due to
the immersion offered to its participants and the close
relationship individuals can have with their virtual
avatars. This psychological phenomenon is known as
embodiment (Kilteni et al., 2012), where the partici-
pant associates their own body with that of the virtual
avatar, which can increase the effectiveness of stimuli
presented in the virtual environment (Slater, 2017).

Thus, the effectiveness of using such a technology to
study specific human behaviours, while maintaining
patient safety and controlling all possible outcomes of
the virtual environment, is clear. Examples of VR ap-
plications being used as a stimulus include the study
of human emotion (Montana et al., 2020), learning
effectiveness (Bavelier et al., 2012), brain activity for
neuroscientific phenomena (Bohil et al., 2011), psy-
chological therapies (Norrholm et al., 2016) and re-
habilitation (Hoffman et al., 2011; Howard, 2017).

The advantage of using VR is also a core rea-
son why it can be so difficult to collect physiologi-
cal data. Participant movement can lead to several
problems when it comes to collecting this data, as mi-
cro to macro movements can induce noise and arte-
facts, requiring thorough methods for filtering the sig-
nal (Bian et al., 2019), and in the worst case having to
discard them (Lécuyer et al., 2008). Through our ex-
tensive analysis of the literature, we observed a con-
stant trend in dealing with this exact recurring prob-
lem, where signals often had to be discarded, despite
the use of state-of-the-art physiological recording de-
vices (Kritikos et al., 2019; Solbiati et al., 2021; Dey
et al., 2022; Higuera-Trujillo et al., 2017; Petrescu
et al., 2020). Given that head tracking and 3D in-
teraction are fulcral components of the embodiment
experience, it is not possible to remove them with-
out compromising the use of VR in the first place.
It is also worth noting that, even for interactive sys-
tems that present a lower degree of movement than
VR applications—such as traditional desktop gaming
applications—the problem persists, albeit to a lesser
extent (Lopes and Boulic, 2020; Järvelä et al., 2014).

The most common solutions in the literature of-
ten focus on filtering these artefacts with traditional
methodologies such as low- and high-pass filtering
techniques (Bian et al., 2019; Kritikos et al., 2019;
Solbiati et al., 2021; Dey et al., 2022; Higuera-
Trujillo et al., 2017; Petrescu et al., 2020), thresh-
old filtering, and signal decomposition (Yuan et al.,
2019). Despite these methods being used extensively,
they are still sensitive to specific muscle contractions
and movements, forcing experimenters to exclude
these signals completely (Kritikos et al., 2019; Sol-
biati et al., 2021; Dey et al., 2022; Higuera-Trujillo
et al., 2017). Alternative electrode placement, and
even sensor types such as bracelets, have also been
explored (Borrego et al., 2019; Sra et al., 2019), as
certain parts of the body can experience less stress and
muscle contractions than parts subject to traditional
electrode placement (Lopes and Boulic, 2020). The
downside of placing electrodes on unconventional lo-
cations is that the signals collected present a lower
signal to noise ratio than when collected in common
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locations. Such locations are also not devoid of po-
tential noise, and given a lower amplitude signal, can
still result in discarded data points (Borrego et al.,
2019). To address this problem, some have suggested
to completely avoid or minimise the presence of noise
through meticulous protocol and task design where
certain movements and conditions are avoided (Lopes
and Boulic, 2020; Järvelä et al., 2014). However, this
is quite limiting, as movement and interaction are a
crucial aspect of VR applications (Jawed et al., 2021;
Hoffman et al., 2011; Kilteni et al., 2012; Slater,
2017; Howard, 2017), and limiting these features will
severely hinder the experience and put into question
its use in the first place.

Classifying noise is not a novel approach, with
research often focusing on determining if noisy pat-
terns consistently emerge from signals (Park and Lee,
2020; Sweeney et al., 2010; Chowdhury et al., 2013).
If such patterns are proven to be consistent and allow
for a means of classifying them with a high degree
of accuracy, methods for filtering this noise become
possible through the use of pattern recognition tech-
niques.

Previous studies have attempted to find patterns in
movement-based noise classification through the use
of accelerometers (Chavarriaga et al., 2013; Kunze
and Lukowicz, 2008) and electromyography (Yang
et al., 2017), with various degrees of success. This
position paper proposes an alternative solution for
studying movement-based noise patterns. This alter-
native consists of a VR experiment where participants
are asked to perform a series of repetitive minor tasks
specifically targeting body locomotion and muscle ac-
tivity, forcing them to move in very precise ways. Ex-
tracted data, consisting of common physiological sig-
nals (ECG, EDA, EMG and Respiration), mocap mea-
surements, and depth camera recordings, can then be
analysed to determine the relationship between spe-
cific movements and the observed noise artefacts.

3 RESEARCH PLAN AND
METHODS

The objective of the proposed research plan is to
model noise artefacts of physiological data recordings
generated by participant body movement. The opti-
mal final result would be the construction of a model
capable of classifying these noise artefacts based on
the type and intensity of movement that generated
them. Furthermore, considering the objective of clas-
sifying movement specifically, an additional ques-
tion can be made relative to “how movement data
granularity can influence the accuracy of such mod-

els”. Therefore, the proposed study requires collect-
ing movement data from a wide range of sources,
such as real-time mocap data, depth cameras, and VR
tracker technologies. By leveraging these different
types of movement-based data, various types of clas-
sifiers can be constructed. Lastly, by exploring the
relationship between physiological noise and move-
ment, a compilation of all the phenomena, difficul-
ties, and best-practices can be made available to the
research community. This type of document can have
extensive benefits for future experimental design so-
lutions using these technologies, ideally reducing the
amount of data that has to be discarded.

Although the proposed plan is focused on VR ex-
perimentation, its output can have implications be-
yond this scope, namely in biomedicine and health-
care. More specifically:

• Noise artefact detection.

• Immediate filtering in real-time applications.

• Associating movements to noise patterns, offering
contextual information to experimenters.

• Personalised signal filters to each individual, us-
able for post-processing analysis rather than more
general methods (e.g., low- and high-pass filter).

• Measure and monitor physiological sensor sensi-
tivity according to body type, movement and limb
articulation, for development of more robust sen-
sor technology.

This paper proposes five milestones to achieve this
research plan:

M1 Experimental design and activity definition.

M2 VR experiment implementation.

M3 Motion capture integration.

M4 Data collection.

M5 Pre-Processing, feature decomposition, data
analysis and modelling.

The following subsections describe each mile-
stone in detail in addition to its sub-objective mile-
stones, demonstrating possible temporal overlap be-
tween these and the core milestones.

M1. Experimental Design and Activity
Definition

The goal of this milestone is to survey the require-
ments needed for accomplishing the proposed re-
search goals. These requirements include: defining
the first phases of the experimental protocol; an effec-
tive development and deployment strategy of all soft-
ware developed and hardware integration; and safe-
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guarding the privacy and confidentiality of participant
data.

The experimental protocol and methodology will
need to be submitted to the relevant ethics board to
ensure compliance with General Data Protection Reg-
ulations (GDPR) .

M1 is divided into three sub-milestones:

M1.1. Requirements Survey. For a successful ex-
periment it is first necessary to evaluate what and how
data will be collected. We will start by defining a se-
ries of movement types and classify them based on
their intensity (“is it a low-key or an assertive move-
ment?”, for example), degrees of freedom (e.g., up-
per or lower body movement, articulations) and mus-
cle activation. In-game triggers (or flags) will also
need to be defined to distinguish between the differ-
ent activities and effectively parse the data in post-
processing. Lastly, development considerations—
such as surveying the relevant libraries, software and
hardware integration methods needed for the develop-
ment of the applications—are also a requirement.

M1.2. Experiment Design. Given an initial set of
movements, a series of VR playful activities will be
designed and developed (see M4). These consist of
visual and active metaphors that will be used to help
the participants establish the intended movement, to
common menial tasks repurposed for VR interaction.
Examples include the movement of pushing or pulling
a door; pressing a button at different heights; walking
through a sidewalk; moving away from an incoming
object; and using a laser pointer to emphasise certain
words in a presentation. To further aid participants, it
is necessary to define how hints and visual aids will
be displayed and animated, where the objective is to
reduce ambiguity. Such activities can be disguised as
a playful game experience for the most part, offering
participants the opportunity to engage with the task
for more natural movement. Furthermore, given that
interaction using a mocap environment is slightly dif-
ferent than that of a traditional VR experience, it is
important to consider both approaches in the design
process. More specifically, to guarantee experimental
consistency, it is necessary to determine how move-
ments in one approach translates to the other, possi-
bly giving preference to movements that are easier to
translate between approaches.

Expected Outputs

1. A document with ethical procedures, data treat-
ment and hosting solutions compliant with GDPR.

2. Core movements survey effectively tagged based
on articulations, intensity and muscle activation.

3. Survey of initial VR design, including interface
and movement mockups detailing consistency of
the experimental design between the traditional
and mocap versions of the VR application.

4. Prototyping and refinement of the application de-
sign.

M2. VR Experiment Implementation

The core objective of this milestone is the develop-
ment and integration of external devices into the main
experimental application (or game). This milestone
also includes the testing of mocap integration and
the piloting/deployment strategy, in parallel with M3
and M4, respectively. It is divided into three sub-
milestones:

M2.1. Design. This milestone addresses the de-
sign aspect of the application, defining how partici-
pants and experimenters interact with it and how in-
formation is communicated to them. If certain design
choices end up not working within the testing and pi-
loting stage (milestone M2.3), these will return to this
design phase to be refined using the knowledge ob-
tained from user testing.

M2.2. Core Implementation. This milestone fo-
cuses mainly on the process of integrating the features
designed in M1 and implemented in M2.1, where a
continuous debugging process is essential to guaran-
tee a robust application. This particular milestone
will be developed in proximity with the next mile-
stone (M2.3), which will continuously report bugs
and problems to be fixed.

M2.3. Testing and Piloting. This milestone con-
sists of two different phases of quality assurance of
the application: testing and piloting. The goal of
testing is to discover potential software breaking in-
stances. Piloting will consist of assessing the appli-
cation with the purpose of determining (a) the usabil-
ity of the application from an experimenter and par-
ticipant point of view, and, (b) how the application
performs on-site once deployed. This will provide an
overall view of the application’s reliability and collect
data from participants to improve its usability and po-
tentially optimise the experiment protocol.

Expected Outputs

Several increasingly stable versions of the applica-
tion, followed through an internal Git repository and
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weekly feature and bug reports, are expected during
this milestone. Simple prototypes are initially ex-
pected for observing and validating if the core move-
ments defined in M1 are being effectively achieved.
Alpha versions of the system for iteratively imple-
menting and testing features then follow. A subse-
quent beta version of the feature complete system
will be extensively tested for debugging and usabil-
ity. Lastly, a stable build of the application is the final
expected output of this milestone.

Potential Pitfalls

Unexpected issues need to be considered, especially
considering that the project uses several technologies
that work in tandem for its effectiveness (i.e., game
engine, VR devices, and physiological recorder).
Thus, it is important to be aware of hardware lim-
itations, especially once deployed. The interactions
must also have a degree of recording effectiveness to
maintain a coherent noise to signal ratio and avoid
flat signals (e.g., knocking off sensors during inter-
action, or impossible movements due to cable man-
agement limitations). Thus, an insistence on an initial
prototyping phase with rudimentary 3D assets, such
as testing the reliability of the chosen movements, is
crucial. If some movements are found to be unrealis-
tic to perform, others will then be chosen from the list
compiled in M1.

M3. Motion Capture Integration

This core milestone deals with the integration of
the selected mocap system within the Lab Streaming
Layer middleware suite1. Furthermore, to leverage
the granularity of movement capture by such a device,
additional data visualisation software needs to be de-
veloped, allowing the overlap of an ambiguous rep-
resentation of a participant’s avatar with the captured
physiological signals. This would allow the observa-
tion of the small variations of body movement over
time and how it influences noise on physiological sig-
nals. M3 is split into two additional milestones:

M3.1. Middleware Integration. This milestone
exclusively addresses the integration of a mocap data
stream, with the purpose of outputting the captured
data into a centralised synchronisation middleware
system. This will simplify data processing and analy-
sis in M5, as all time-series (i.e., physiology, mocap,
and game metrics and triggers) will be effectively syn-
chronised. It also offers a way of increasing the accu-
racy of automated triggers sent by the game, allowing

1https://labstreaminglayer.org/

automated parsing scripts to cut the data according
to each activity or other requirements (e.g., collecting
baseline).

M3.2. Body Motion Visualisation System. This
milestone focuses on developing a simple body ren-
dering system capable of extrapolating the mocap
data by generating a 3D visualisation of the partici-
pant’s body movement. Avatars will consist of face-
less representations of participants and will accom-
pany the physiological signals. This allows experi-
menters to visualise a side-by-side comparison of spe-
cific events with the different collected physiological
channels (e.g., ECG, EDA, EMG and Respiration).
Such a system can be built using a game engine and
various assets that use mocap data to create 3D ani-
mations. Considering this has no dependencies with
the experimental application itself, it can be built in
parallel with M2.

Expected Outputs

1. Update of the internal data collection middleware
integrating the selected mocap system.

2. Mocap data visualisation software.

3. Independent validation of the fidelity of data col-
lected through the data collection middleware.

M4. Data Collection

This core milestone consists primarily of the deploy-
ment phase, where the experimenter will collect the
necessary data for statistical analysis. This consists of
conducting several trials of the different movements
defined in M1. This milestone is dependent on both
M2 and M3, as for this process to take place the ap-
plication must be fully integrated and functioning.

During this milestone experimenters need to fol-
low a strict experimental protocol, programmed
within the application, which will present all the
movements the participants are required to make. Ide-
ally the application will be sufficiently autonomous to
(a) minimise experimenter mistakes, (b) start collect-
ing data as soon as the experiment begins, and, (c)
guide participants effectively over the course of the
experiment. The experimenter will have their own in-
terface to visualise (a) the physiological data in real-
time (in case any adjustments are necessary during the
experiment), and, (b) what the participant is doing in-
game.
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Expected Outputs

1. An experimental dataset, including all expected
data types: physiology, mocap vectors, camera
skeletal features, in-game markers, participant
questionnaires, and demographics.

2. Dataset manual, including instructions for parsing
and description of all data types in the dataset.

3. Automatic parser script providing an initial treat-
ment of the data, which will be included with the
dataset.

Potential Pitfalls

The most relevant risk with this milestone is signal
degradation due to sensors being knocked off by par-
ticipants or hardware failures. The extensive testing
in M2 attempts to mitigate this problem by offering
the experimenter a set of monitoring features that will
help assess the quality of the signal during experimen-
tation. This means experimenters will have real-time
information about the signals being recorded and after
each trial may pause the experiment and re-adjust the
electrodes on participants for more efficient capture.
Although the objective of the experiment is to cap-
ture signal noise, it has to be able to do so in the ideal
capturing conditions, or more precisely, some trace of
the original signal must still be present in the record-
ing for a model to be able to adjust and effectively
remove the noise.

As an additional contingency, a small visualisa-
tion software should be made available for the ex-
perimenter, so that they may parse and visualise all
captured signals from that session and access its qual-
ity and conduct a superficial analysis. If the signal
is deemed inadequate it is tagged as “damaged” and
placed in the dataset with this condition. A replace-
ment participant will then be recruited to replace these
trials and obtain the expected number of trials as de-
fined in M1.

M5. Pre-Processing, Feature
Decomposition, Data Analysis and
Modelling

This milestone will consolidate all activities related
to the treatment, cleaning, pruning, parsing, analy-
sis, and modelling of the data collected in M4. It
is divided into three sub-milestones, which will con-
sider the observed results and recent state-of-the-art
approaches that may benefit the study.

M5.1. Cleaning and Parsing Trials. The first sub-
milestone is dedicated to cleaning, analysing, and

parsing the raw signal values. This will include de-
veloping several data visualisation scripts. Despite
the core objective of this proposal, some form of data
pruning will be considered, such as “dead” signals
caused directly by the disconnection of sensors.

M5.2. Time-Series Analysis. Signals are analysed
with respect to their baseline value, and all move-
ments in each category will be compared to this base-
line through polynomial regression. This will allow
researchers to understand the delta fluctuations be-
tween baseline and movement trials. This will also
be done for trials within the same movement category
with the purpose of learning if a large distance ex-
ists between these trials. Furthermore, the correlation
between signals within the same movement category
will also be investigated; the goal is to determine if
a high correlation is still present within a signal de-
spite artefacts being present during this movement.
This will allow reseachers to observe if a natural ten-
dency exists between the actual body movement and
the artefacts that appear in the signal.

M5.3. Categorising and Machine Learning Meth-
ods. One of the main objectives of this experiment
is to learn if certain artefacts can be categorised based
on the movement type, i.e., if we can categorise noise
artefacts based on the movement of an individual. As
a first methodology, the intent is to use a technique
such as PCA or UMAP (Fachada et al., 2016; Du
et al., 2023) to reduce the dimensionality of the signal
and apply an unsupervised learning approach such as
k-means clustering. This will provide an initial ob-
servation of the data patterns to test the hypothesis
that certain noise artefacts correlated with a specific
movement create specific clusters. It is important to
consider that this proposal is not limited to this type
of methodology. Given its exploratory nature, tech-
niques such as supervised learning, forecasting, and
others can be also be explored.

Expected Outputs

1. Anonymized and clean dataset usable for dissem-
ination purposes (including the raw unprocessed
data).

2. Detailed report on the findings and observations
related to the questions asked in M1.

3. Detailed report on good and optimal practises of
physiological data-collection in VR applications
with a high-degree of movement.

4. Statistical models capable of categorising noise
based on movement types or common features it
presents.
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Potential Pitfalls

The knowledge obtained through this work will re-
sult in several studies and methods about the effects
of movement on physiological signals. Thus, even if
models prove difficult to train, many of the method-
ologies can be used to improve how this data can be
collected, in turn enhancing the overall quality of data
collection in studies involving VR.

4 CONCLUSIONS

This position paper proposed a step-by-step research
plan to study the influence of movement on the qual-
ity of physiological data captured during VR sessions,
putting forth the hypothesis that the noise artefacts
can be classified based on the type of movements per-
formed by participants. The main outcome of such
study would be a model capable of classifying noisy
physiological signal features, providing insights into
movement’s influence on artifacts and contributing to
the development of movement-based filters and best
practices for using the associated technologies.

Although the purpose of this research is to specif-
ically study VR movement, the application of all the
knowledge assembled throughout its implementation
could be applied towards a wide range of healthcare
based applications. As discussed, VR has been ex-
tensively used for psychological treatment, rehabilita-
tion, and even distracting patients from painful proce-
dures. Observing the relationship between gross mo-
tor activity and the noise captured from sensors could
foster the development of new methods for increasing
sensor robustness, while avoiding an increase in cost.
In conclusion, by offering a better understanding of
the movement-signal relationship—therefore allow-
ing higher-quality data collection in VR sessions—
this research proposal can potentially lead to cheaper
and more effective VR treatments for improving the
health and well-being of patients.
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