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Abstract: Medical imaging plays a crucial role in healthcare, with Magnetic Resonance Imaging (MRI) and Computed 
tomography (CT) as key modalities, each having unique strengths and weaknesses. MRI offers exceptional 
soft tissue contrast, but it is slow and costly, while CT is faster but involves ionizing radiation. To address 
this paradox, we leverage deep learning, employing CycleGAN to translate CT scans into MRI-like images. 
This approach eliminates the need for additional radiation exposure or costs. Our results, which show the 
effectiveness of our image translation method with an MAE of 0.5309, MSE of 0.37901, and PSNR of 52.344, 
demonstrate the promise of this invention in lowering healthcare costs, expanding diagnostic capabilities, and 
improving patient outcomes. The model was trained for 500 epochs with a batch size of 500 on an Nvidia 
GPU, RTX A6OOO. 

1 INTRODUCTION 

A key component of contemporary healthcare is 
medical imaging, which gives medical personnel a 
visual representation and comprehension of the 
human body's interior architecture. Computed 
tomography (CT) and magnetic resonance imaging 
(MRI) are two of the most widely utilized medical 
imaging techniques. These technological 
advancements offer unique yet complementary 
perspectives on the human anatomy. 

MRI is a non-invasive medical imaging method 
that creates finely detailed images of the body's 
internal structures by utilizing radio waves, strong 
magnets, and a computer. A well-known feature of 
MRI is its remarkable soft tissue contrast. It is a vital 
tool for many medical applications, such as 
neuroimaging, cancer, and musculoskeletal imaging, 
due to its exceptional ability to visualize organs, 
muscles, nerves, and other soft tissues. 

Contrarily, CT is an alternative imaging technique 
that makes use of X-ray technology. It produces 
"slices," or cross-sectional, images of the body that 
can be assembled into three-dimensional 
representations. CT scans are renowned for their 
effectiveness and speed, which enables quick picture 
capture. They are very helpful for seeing blood 

arteries, identifying fractures, and imaging bone 
structures. 

There are many CT scanners, but a few MRI ones. 
Therefore, the idea of image translation from a CT 
scan to an MRI image is extremely important in the 
realm of medical imaging. The goals of this study 
project are to realize this image translation and to 
greatly improve diagnostic capacities. The image 
translation enables medical practitioners to take 
advantages of both methods, using MRI's soft tissue 
contrast and CT scans' comprehensive information. 
Thus, this development is promising for more 
thorough and precise diagnoses, which eventually 
enhance patient care and treatment results. Both 
patients and healthcare providers stand to gain from 
this substantial reduction in medical expenses and 
waiting times.  

To provide context and insight into the 
significance of our work, we begin by taking up 
methodologies of prior research studies that have 
paved the way for our contributions. We have not 
found any previous work on translating a CT scan to 
an MRI image, but previous work in other medical 
image translation has introduced the concept of using 
Generative Adversarial Networks (GANs)  for image-
to-image translation (Denck et al.,2021). Pix2pix (Li 
et al.,2021), UNIT (Welander et al.,2018), 
CycleGAN (Zhu et al.,2017) and UNET 
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(Ronneberger et al.,2015) models have been used in 
previous research. Training images used in our work 
are not paired. CycleGAN can seamlessly handle 
such unpaired data (Wolterink et al.,2017). Therefore, 
our method to translate a CT scan into an MRI image 
leverages CycleGAN’s capacity. By embracing cycle 
consistency, the CycleGAN model learns to map CT 
and MRI images in both directions. It generates 
synthetic MRI images from CT and can revert these 
generated MRI images to their original CT-like 
representations. The effectiveness of our model is 
examined through experiments. 

2 DATASET 

The dataset used in this research was obtained from 
an open-source repository on Kaggle. The dataset was 
meticulously aggregated to serve as the foundation 
for training the CycleGAN model, specifically 
designed for image-to-image translation.  

This dataset is essential to our work because it 
allows us to develop and assess our methodology for 
translating CT to MRI images. It supplies the basis 
for the CycleGAN model's training and testing, 
ultimately leading to improvements in cross-modality 
medical imaging.  

2.1 Dataset Content 

The dataset comprises a collection of CT and MRI 
scans, focusing on brain cross sections. These images 
were sourced from various listed repositories and 
were subsequently organized into separate directories 
for both training and testing purposes. The dataset is 
divided into two primary domains: Domain A, which 
contains CT scans, and Domain B, which comprises 
MRI scans. This clear separation enables the effective 
utilization of the dataset for CycleGAN-based image 
translation, ensuring that the model can learn and map 
the distinct features and characteristics of CT scans to 
their MRI counterparts. 

The dataset is available under the Creative 
Commons Attribution-Non-Commercial-Share Alike 
4.0 International License (CC BY-NC-SA 4.0). This 
licensing arrangement governs the usage, 
redistribution, and modification of the dataset, 
emphasizing the importance of proper attribution, 
non-commercial usage, and the continuity of the 
open-source spirit. 
 

3 METHODLOGY 

Deep learning has become a viable approach to bridge 
the image gap. Specifically, image-to-image 
translation challenges have demonstrated the 
potential of GANs.   

GANs could be a great option in the field of 
medical imaging, as CT and MRI scans offer many 
forms of information. The contrast, texture, and 
anatomical characteristics of these modalities differ, 
hence a model that can capture complex data 
distributions is required. GANs are highly effective in 
simulating intricate transformations. 

3.1 GAN Model Selection 

One significant obstacle in the field of medical 
imaging is the dearth of paired data, or sets of 
comparable CT and MRI pictures of the same 
individuals. CycleGAN is a great option for the CT to 
MRI translation challenge because of its ability to 
handle unpaired data. In order to guarantee the 
model's efficacy even when the amount of paired data 
is restricted, it incorporates a cycle consistency loss 
that compels translated images to return to their 
original domains. 

3.2 CycleGAN  

The core of this research's image-to-image translation 
lies in the innovative architecture of CycleGAN. 
CycleGAN is a type of GAN that is particularly well-
suited for unpaired image translation tasks, making it 
a powerful choice for transforming CT scans into 
MRI-like images. CycleGAN comprises two key 
components: the generator and the discriminator. The 
generator is responsible for creating the translated 
images, in this case, generating synthetic MRI scans 
from CT scans. The discriminator, on the other hand, 
is tasked with distinguishing between real MRI 
images and those generated by the generator. 

3.2.1 Generator Architecture 

Figure 1 shows the architecture of CycleGAN 
generator where s is the stride. The CycleGAN 
generator has 3 sections:  Encoder, Transformer and 
Decoder (Zhu et al.,2017). 

The encoder receives the input CT image. The 
encoder uses convolutions to extract features from the 
input image and compresses the image representation 
while increasing the number of channels. Three 
convolutions make up the encoder, which shrinks the 
representation to one-fourth the size of the original 
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image. When we feed an image into the encoder with 
dimensions of (256, 256, 3), the result is (64, 64, 256). 

Following the application of the activation 
function, the encoder's output is then fed into the 
transformer. General transformers contain six or nine 
residuals blocks, depending on the magnitude of the 
input. We adopt six residual blocks for medical image 
translation.  The transformer's output is then fed into 
the decoder, which increases the representation's size 
to its initial size by using a 2-deconvolution block of 
fractional strides. 

 

 
Figure 1: CycleGAN Generator. 

3.2.2 Discriminator Architecture 

The CycleGAN discriminator uses PatchGAN [12]. 
The Patch GAN differs from a regular GAN 
discriminator in that the regular GAN maps a 
256x256 image to a single scalar output that indicates 
whether the image is real or fake. In contrast the Patch 
  

 
Figure 2: CycleGAN Discriminator. 

GAN maps a 256x256 image to an NxN array of 
outputs X, where each element Xij indicates whether 
the patch ij in the image is real or fake. Figure 2 shows 
the architecture of the discriminator. 

3.2.3 CycleGAN Architecture 

The strength of CycleGAN lies in its cycle 
consistency constraint, a defining feature of ensuring 
the model translates an input image from one domain 
to the other and back to the original input image. In 
the context of this study, this means that if we 
translate a CT scan into an MRI-like image and then 
revert it to the original domain, it should closely 
resemble the original CT scan. This cycle consistency 
is integral to achieving high-quality and anatomically 
accurate translations. Figure 3 shows the architecture 
of CycleGAN. In this study, image A is a CT scan, 
and image B is an MRI-like image. 
 

 
Figure 3: CycleGAN. 

CycleGAN architecture also incorporates 
adversarial losses, which compel the generator to 
produce images that are indistinguishable from real 
MRI scans, as judged by the discriminator. This 
adversarial training encourages the generator to 
create highly realistic images.  

The architecture's ability to work with unpaired 
datasets is a significant advantage. In traditional 
supervised learning, paired data (where each input 
has a corresponding output) is required 
(Armanious,2019), which can be challenging to 
obtain in medical imaging. CycleGAN's ability to 
handle unpaired data makes it a valuable tool for this 
CT-to-MRI image translation task. 

3.3 CycleGAN Losses 

The effectiveness of CycleGAN in image-to-image 
translation tasks is attributed to a collection of 
carefully designed loss functions (Armanious et 
al.,,2019), each serving a specific purpose to guide 
the training process and ensure the desired results. 
The key losses employed in CycleGAN architecture 
are explained in this subsection. 
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3.3.1 Adversarial Loss 

Adversarial loss is fundamental in GAN-based 
models and aims to make the generated images 
indistinguishable from real images. The discriminator 
and generator networks are trained to compete against 
one another using the adversarial loss. The 
discriminator network seeks to discern between real 
and generated images, while the generator network 
attempts to produce realistic images enough to trick 
it. The adversarial loss is given by: 𝐿𝑜𝑠𝑠௔ௗ௩௘௥௦௔௥௜௔௟ =  ෍(1 − 𝐷஻(𝐺(𝐴)))ଶ (1)
 𝐿𝑜𝑠𝑠௔ௗ௩௘௥௦௔௥௜௔௟  =  ෍ (1 − 𝐷஺(𝐹(𝐵)))ଶ (2)

where  𝐺: Generator transforming input image A to B. 𝐹: Generator transforming image B to A. 𝐷஻: Discriminator for B. 𝐷஺: Discriminator for A. 
In the context of CT to MRI translation, the 

generator is pitted against the discriminator, which 
learns to differentiate between genuine MRI scans 
and translated MRI-like images. The generator's 
objective is to minimize this loss by creating 
convincing images enough to fool the discriminator. 

3.3.2 Cycle Consistency Loss 

Cycle consistency loss is the defining characteristic 
of CycleGAN. It enforces the model to maintain 
consistency when translating images in both 
directions. 

To make the generator network learn the proper 
mapping between the two domains, the cycle 
consistency loss is employed. An image is translated 
from one domain to the other, and then back to the 
original domain to calculate cycle consistency loss. 
When the translated image is as similar to the original 
image as possible, the cycle consistency loss is light. 
The cycle consistency is given by  𝐿𝑜𝑠𝑠௖௬௖௟௘ = (F(G(A) − A + (G൫F(B)൯ − B) . (3)

In the case of this research, it ensures that when a 
CT scan is transformed into an MRI-like image and 
then reverted to the CT domain, the resulting image 
closely resembles the original CT scan. This loss 
plays a critical role in ensuring anatomical accuracy 
and image fidelity. 

The overall CycleGAN loss function is a weighted 
sum of the adversarial loss and the cycle consistency 
loss. 

4 EXPERIMENTS 

This section provides a detailed description of the 
experimental setup that was used to evaluate the 
suggested approach.  

4.1 Experimental Setup 

Python 3.8.10 was used throughout the development 
of the complete framework, with TensorFlow 2.6.5 
serving as the neural network computing backend and 
Keras serving as the deep learning framework. The 
integrated programming environment Visual Studio 
Code was used for both the framework's development 
and implementation. 

To facilitate efficient model training and 
accelerate the image translation process, we 
leveraged the computational power of a dedicated 
GPU. Specifically, the experiment was conducted on 
an Nvidia GPU, RTX A6OOO, equipped with CUDA 
Version 11.3. This GPU configuration allowed for the 
expedited execution of deep learning operations, 
significantly reducing the training time. The choice of 
such hardware specifications was instrumental in 
achieving the low time complexity of the proposed 
method, making it more time-efficient compared to 
other complex deep learning models. The utilization 
of this GPU configuration, combined with the 
streamlined deep learning framework, enables a 
seamless and efficient image translation process from 
CT to MRI scans. 

4.2 Dataset Pre-Processing 

The primary objective of data pre-processing is to 
load and standardize the dimensions of the CT and 
MRI images. Each image is loaded, and its 
dimensions are resized to a uniform scale of 256x256 
pixels. This resizing ensures consistency across all 
images, which is vital for neural network training. In 
order to expedite the training process, a subset of the 
data is selected. For the CT scans, 500 images out of 
1742 are chosen, and for the MRI images, a subset of 
500 out of 1744 images are selected. This 
subsampling facilitates a more efficient training 
process, especially for demonstration purposes. Note 
that CT and MRI scans are an unpaired dataset. 

To make the data compatible with the neural 
network architecture, an essential pre-processing step 
is applied. The pixel values of the images are scaled 
to fit within the range of [-1, 1]. This scaling is 
imperative because the generator in the CycleGAN 
model employs the tanh activation function in its 
output layer, producing values within this range.  
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Scaling the data accordingly, ensures that the 
generator can produce realistic and meaningful 
images. 

These meticulous pre-processing steps result in a 
well-structured and appropriately scaled dataset. The 
dimensions of the data, after pre-processing, are as 
follows: The dataset consists of 1000 images, each 
with dimensions of 256x256x3 (width, height, and 
channels). 

Data augmentation is done to compensate the 
limited dataset. Effective deep learning model 
training requires the diversification of datasets, which 
is facilitated by data augmentation. Our goal in using 
augmentations is to reduce the likelihood of 
overfitting by simulating variables found in the real 
world. 

4.3 Evaluation 

Several metrics are used to assess the suggested CT 
to MRI image translation model based on the 
CycleGAN architecture in order to determine the 
model's performance. When comparing the translated 
images to actual MRI scans, these metrics objectively 
evaluate the translated images' fidelity and accuracy. 
The main assessment metrics include the Mean 
Absolute Error (MAE),  Mean Squared Error (MSE), 
and Peak Signal-to-Noise Ratio (PSNR). 

4.3.1 MAE 

MAE quantifies the average absolute difference 
between the pixel values of the translated MRI-like 
images and the corresponding real MRI scans. It is a 
valuable indicator of the overall dissimilarity between 
the generated and ground truth images. A lower MAE 
suggests a closer resemblance between the translated 
and real MRI images. MAE is given by 𝑀𝐴𝐸 = 1𝑛 ෍ |𝑦௜ − 𝑦పෝ|௡௜ୀଵ  (4)

where 𝑛: no of samples or data, 𝑦௜: actual (observed) value for the ith sample, 𝑦పෝ : predicted value for the ith sample. 

4.3.2 MSE 

MSE computes the mean of the squared differences 
between the pixel values of the generated MRI-like 
images and the true MRI scans. This metric provides 
insights into the magnitude of errors of the generated 
MRI-like images, with smaller MSE values 

indicating reduced image dissimilarity. MSE is given 
by 𝑀𝑆𝐸 = 1𝑛 ෍ (௡௜ୀଵ 𝑦௜ − 𝑦పෝ )ଶ . (5)

4.3.3 PSNR 

PSNR is a standardized measure to evaluate the 
quality of the generated images. It calculates the ratio 
of the peak intensity of an image to the root mean 
square error. Higher PSNR values signify a closer 
match to the real MRI scans, with increased image 
fidelity and reduced noise. PSNR is given by 

𝑃𝑆𝑁𝑅 = 10. logଵ଴ ቆ𝑀𝐴𝑋ଶ𝑀𝑆𝐸 ቇ  (6)

where MAX is the maximum possible pixel value of 
the image. 

5 RESULTS 

5.1 Generated Images and Their 
Evaluation 

Figures 4 and 5 show the visual representation of the 
generated MRI-like images as the result of evaluating 
the effectiveness of the CycleGAN model for CT to 
MRI image translation.  

After more than 50,000 iterations of rigorous 
training, the model was able to generate artificial MRI 
scans from CT data, as seen in these images. The 
presented pictures demonstrate how well the model 
can create MRI-like images from CT scans. 
 

 
Figure 4: MRI images generated after training the 
CycleGAN model for 100 epochs. 
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(a)                                  (b) 

 
                                  

                        
  (c)                             (d) 
Figure 5: Output after using the CycleGAN model for test 
dataset: (a) ground truth of CT, (b) translated MRI ,(c) 
reconstructed CT scan ,(d) MRI image from unpaired test 
dataset for reference.  

The result shown in Figure 5(b) is a T1-weighted 
MRI image of the brain generated from a CT scan 
using a CycleGAN model. The image shows a decent 
overall representation of the brain anatomy, with 
clear visualization of the gray matter, white matter, 
cerebrospinal fluid, and major blood vessels. 

However, it is important to note that this is a 
synthetic image and should not be used thoughtlessly 
for clinical diagnosis. Some subtle details may be lost 
in the generation process, and the image may not be 
as accurate as a real MRI scan. 

Table 1: The evaluation metrics with CNN and CycleGAN 
for CT to MRI translation. 

 CNN CycleGAN 
MAE 70.44 0.5309 
MSE 60.867 0.37901 
PSNR 9.457 52.344 

Table 1 shows the metrics when the test dataset of 
CT scan images is passed through the model and 
translated as the MRI images and the real MRI images 
as well as translated MRI are compared. The CNN in 
this table is adopted as a baseline method that cannont 
be learned using unpaired dataset. It  is trained using 
a dataset in which each CT scan is paired with an MRI 
scan randomly. The results of CNN were not 
satisfying enough as it is not capable of handling the 
unpaired dataset. In contrast, CycleGAN 
demonstrates high performance. 

5.2 Loss Plot 

The training progression is depicted through loss 
graphs shown in Figure 6, illustrating the evolution of 
these loss components over time. Notably, the graphs 
showcase a consistent and substantial decrease in the 
loss values for all six components throughout the 
training process. This trend signifies the model's 
remarkable capacity to learn and adapt. 
 

 
Figure 6: Loss of 100 epochs. 

6 CONCLUSIONS 

This work represents a significant advancement in the 
field of cross-modality medical imaging, especially 
with regard to the complex process of translating CT to 
MRI images. The fact that the CycleGAN model was 
able to be implemented successfully shows how well it 
can bridge the gap between these modalities and 
convert CT scans into high-fidelity MRI-like images 
pix2pix (Cao et al.,2021). This study has far-reaching 
implications, particularly in the field of healthcare, 
where the synthesis of radiation-free and economically 
viable MRI-like data has the potential to transform 
diagnostic capabilities, save costs associated with 
healthcare, and shorten patient wait times. 

The comprehensive evaluation of the model's 
performance, quantified by pivotal metrics such as 
Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Peak Signal-to-Noise Ratio (PSNR), 
solidifies the model's efficacy. Exhibiting low MAE 
and MSE alongside a notably high PSNR, the 
translated MRI-like images manifest an exceptional 
resemblance and fidelity to actual MRI scans. This 
not only underscores the model's adeptness in 
generating top-tier images but also bolsters its 
diagnostic prowess, paving the way for more accurate 
medical assessments. 

Furthermore, to fortify the significance of this 
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study, a comparative analysis was conducted between 
the CycleGAN and a fundamental CNN model, 
showcasing the former's superiority in image 
translation capabilities.  

7 FUTURE WORK 

With the CycleGAN model, this work has established 
a solid basis for practical CT-to-MRI image 
translation, which could lead to major breakthroughs 
in cross-modality medical imaging (Kazeminia et 
al.,,2020). Looking ahead, several interesting 
directions for more study and advancement become 
apparent.  

The next step in the research is incorporation of 
Super Resolution GAN(SRGAN) into the image 
enhancement process offers substantial benefits to 
this research (Ledig et al.,,2017). With the goal of 
creating high-resolution images from lower-
resolution inputs, SRGAN is an expert in super-
resolution tasks. SRGAN has the potential to improve 
the overall quality and fine details of the MRI images 
that are generated in the context of CT-to-MRI image 
translation. It enhances the current CycleGAN 
framework by improving the resolution and fidelity 
of the translated MRI-like images, which could lead 
to sharper, more realistic representations that closely 
resemble actual MRI scans. 

Moreover, an exciting prospect involves the 
creation of a hybrid model merging SRGAN with 
CycleGAN, aiming to capitalize on the strengths of 
both architectures. This hybrid approach intends to 
leverage the super-resolution capabilities of SRGAN 
to enhance fine details and resolution in the MRI-like 
images generated by CycleGAN. By integrating these 
models, the goal is to produce sharper, high-
resolution MRI-like images with enriched visual 
quality, closely resembling authentic MRI scans. 
Furthermore, the results will be compared with other 
models like UNET, CycleGAN etc. 
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