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Abstract: In the course of the past few years, diffusion models (DMs) have reached an unprecedented level of visual
quality. However, relatively little attention has been paid to the detection of DM-generated images, which
is critical to prevent adverse impacts on our society. In contrast, generative adversarial networks (GANs),
have been extensively studied from a forensic perspective. In this work, we therefore take the natural next
step to evaluate whether previous methods can be used to detect images generated by DMs. Our experiments
yield two key findings: (1) state-of-the-art GAN detectors are unable to reliably distinguish real from DM-
generated images, but (2) re-training them on DM-generated images allows for almost perfect detection, which
remarkably even generalizes to GANs. Together with a feature space analysis, our results lead to the hypothesis
that DMs produce fewer detectable artifacts and are thus more difficult to detect compared to GANs. One
possible reason for this is the absence of grid-like frequency artifacts in DM-generated images, which are
a known weakness of GANs. However, we make the interesting observation that diffusion models tend to
underestimate high frequencies, which we attribute to the learning objective.

1 INTRODUCTION

In the recent past, diffusion models (DMs) have
shown a lot of promise as a method for synthesizing
images. Such models provide better (or at least sim-
ilar) performance compared to generative adversarial
networks (GANs) and enable powerful text-to-image
models such as DALL·E 2 (Ramesh et al., 2022), Ima-
gen (Saharia et al., 2022), and Stable Diffusion (Rom-
bach et al., 2022). Advances in image synthesis have
resulted in very high-quality images being generated,
and humans can hardly tell if a given picture is an
actual or artificially generated image (so-called deep-
fake) (Nightingale and Farid, 2022). This progress
has many implications in practice and poses a danger
to our digital society: Deepfakes can be used for dis-
information campaigns, as such images appear par-
ticularly credible due to their sensory comprehensi-
bility. Disinformation aims to discredit opponents in
public perception, to create sentiment for or against
certain social groups, and thus influence public opin-
ion. In effect, deepfakes lead to an erosion of trust
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in institutions or individuals, support conspiracy the-
ories, and promote a fundamental political camp for-
mation. DM-based text-to-image models entail par-
ticular risks, since an adversary can specifically cre-
ate images supporting their narrative, with very little
technical knowledge required. A recent example of
public deception featuring DM-generated images—
although without malicious intent—is the depiction of
Pope Francis in a puffer jacket (Huang, 2023). De-
spite the growing concern about deepfakes and the
continuous improvement of DMs, there is only a lim-
ited amount of research on their detection.

In this paper, we conduct an extensive experimen-
tal study on the detectability of images generated by
DMs. Since previous work on the detection of GAN-
generated images (e.g., (Wang et al., 2020; Grag-
naniello et al., 2021; Mandelli et al., 2022)) resulted
in effective detection methods, we raise the question
whether these can be applied to DM-generated im-
ages. Our analysis on five state-of-the-art GANs and
five DMs demonstrates that existing detection meth-
ods suffer from severe performance degradation when
applied to DM-generated images, with the AUROC
dropping by 15.2 % on average compared to GANs.
However, we show that by re-training, the detection
accuracy can be drastically improved, proving that
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images generated by DMs can be detected. Remark-
ably, a detector trained on DM-generated images is
capable of detecting images from GANs, while the
opposite direction does not hold. Our analysis in
feature space suggests that DM-generated images are
harder to detect because they contain fewer genera-
tion artifacts, particularly in the frequency domain.
However, we observe a previously overlooked mis-
match towards higher frequencies. Further analysis
suggests that this is caused by the training objective
of DMs, which favors perceptual image quality in-
stead of accurate reproduction of high-frequency de-
tails. We believe that our results provide the founda-
tion for further research on the effective detection of
deepfakes generated by DMs. Our code, data, and the
extended version of this paper (with additional experi-
ments) are available at https://github.com/jonasricker/
diffusion-model-deepfake-detection.

2 RELATED WORK

Fake Image Detection. In the wake of the
emergence of powerful image synthesis methods, the
forensic analysis of deepfake images received in-
creased attention, leading to a variety of detection
methods (Verdoliva, 2020). Existing approaches can
be broadly categorized into two groups. Methods in
the first group exploit either semantic inconsisten-
cies like irregular eye reflections (Hu et al., 2021)
or known generation artifacts in the spatial (Nataraj
et al., 2019; McCloskey and Albright, 2019) or
frequency domain (Frank et al., 2020). The sec-
ond group uses neural networks to learn a feature
representation in which real images can be distin-
guished from generated ones. Wang et al. demon-
strate that training a standard convolutional neural
network (CNN) on real and fake images from a sin-
gle GAN yields a classifier capable of detecting im-
ages generated by a variety of unknown GANs (Wang
et al., 2020). Given the rapid evolution of generative
models, developing detectors which generalize to new
generators is crucial and therefore a major field of re-
search (Xuan et al., 2019; Chai et al., 2020; Wang
et al., 2020; Cozzolino et al., 2021; Gragnaniello
et al., 2021; Girish et al., 2021; Mandelli et al., 2022;
Jeong et al., 2022).

Since DMs have been proposed only recently, few
works analyze their forensic properties. Farid per-
forms an initial exploration of lighting (Farid, 2022a)
and perspective (Farid, 2022b) inconsistencies in im-
ages generated by DALL·E 2 (Ramesh et al., 2022),
showing that DMs often generate physically implau-
sible scenes. A novel approach specifically targeted at

DMs is proposed in (Wang et al., 2023), who observe
that DM-generated images can be more accurately re-
constructed by a pre-trained DM than real images.
The difference between the original and reconstructed
image then serves as the input for a binary classifier.
Another work (Sha et al., 2023) focuses on text-to-
image models like Stable Diffusion (Rombach et al.,
2022). They find that incorporating the prompt with
which an image was generated (or a generated cap-
tion if the real prompt is not available) into the detec-
tor improves classification. In a work related to ours
(Corvi et al., 2023b), it is shown that GAN detectors
perform poorly on DM-generated images. Therefore,
a pressing challenge is to develop universal detection
methods that are effective against different kinds of
generative models, mainly GANs and DMs. Ojha
et al. make a first step in this direction (Ojha et al.,
2023). Instead of training a classifier directly on real
and fake images, which according to their hypothesis
leads to poor generalization since the detector focuses
on e.g., GAN-specific artifacts, they propose to use
a pre-trained vision transformer (CLIP-ViT (Dosovit-
skiy et al., 2021; Radford et al., 2021)), extended with
a final classification layer.

Frequency Artifacts in Generated Images. Zhang
et al. were the first to demonstrate that the spectrum
of GAN-generated images contains visible artifacts in
the form of a periodic, grid-like pattern due to trans-
posed convolution operations (Zhang et al., 2019).
These findings were later reproduced (Wang et al.,
2020) and extended to the discrete cosine transform
(DCT) (Frank et al., 2020). Another characteristic
was discovered in (Durall et al., 2020), who showed
that GANs are unable to correctly reproduce the spec-
tral distribution of the training data. In particular, gen-
erated images contain increased magnitudes at high
frequencies. While several works attribute these spec-
tral discrepancies to transposed convolutions (Zhang
et al., 2019; Durall et al., 2020) or, more general,
up-sampling operations (Frank et al., 2020; Chan-
drasegaran et al., 2021), no consensus on their ori-
gin has yet been reached. Some works explain them
by the spectral bias of convolution layers due to lin-
ear dependencies (Dzanic et al., 2020; Khayatkhoei
and Elgammal, 2022), while others suggest the dis-
criminator is not able to provide an accurate training
signal (Chen et al., 2021; Schwarz et al., 2021).

In contrast, whether images generated by DMs ex-
hibit grid-like frequency patterns appears to strongly
depend on the specific model (Sha et al., 2023; Corvi
et al., 2023a; Ojha et al., 2023). Another interest-
ing observation is made by Rissanen et al. who an-
alyze the generative process of diffusion models in
the frequency domain (Rissanen et al., 2023). They
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state that diffusion models have an inductive bias ac-
cording to which, during the reverse process, higher
frequencies are added to existing lower frequencies.
Other works (Kingma et al., 2021; Song et al., 2022b)
experiment with adding Fourier features to improve
learning of high-frequency content, the former report-
ing it leads to much better likelihoods.

3 BACKGROUND ON DMs

DMs are a class of probabilistic generative models,
originally inspired by nonequilibrium thermodynam-
ics (Sohl-Dickstein et al., 2015). The most common
formulations build either on DDPM (Ho et al., 2020)
or the score-based modeling perspective (Song and
Ermon, 2019; Song and Ermon, 2020; Song et al.,
2022b). Numerous modifications and improvements
have been proposed, leading to higher perceptual
quality (Nichol and Dhariwal, 2021; Dhariwal and
Nichol, 2021; Choi et al., 2022; Rombach et al., 2022)
and increased sampling speed (Song et al., 2022a;
Liu et al., 2022; Salimans and Ho, 2022; Xiao et al.,
2022). In short, DMs model a data distribution by
gradually disturbing a sample from this distribution
and then learning to reverse this diffusion process.
To be more precise, we briefly review the forward
and backward process for the seminal work in (Ho
et al., 2020). In the diffusion (or forward) process for
DDPMs, a sample x0 (an image in most applications)
is repeatedly corrupted by Gaussian noise in sequen-
tial steps t = 1, . . . ,T in dependence of a monotoni-
cally increasing noise schedule {βt}T

t=1:

q(xt |xt−1) = N (
√

1−βtxt−1,βtI) . (1)

With αt := 1−βt and ᾱt := ∏
t
s=1 αt , we can directly

sample from the forward process at arbitrary times:

q(xt |x0) = N (
√

ᾱtx0,(1− ᾱt)I) . (2)

The noise schedule is typically designed to satisfy
q(xT |x0)≈N (0,I). During the denoising (or reverse)
process, we aim to iteratively sample from q(xt−1|xt)
to ultimately obtain a clean image from xT ∼ N (0,I).
However, since q(xt−1|xt) is intractable as it depends
on the entire underlying data distribution, it is ap-
proximated by a deep neural network. More formally,
q(xt−1|xt) is approximated by

pθ(xt−1|xt) = N (µθ(xt , t),Σθ(xt , t)) , (3)

where mean µθ and covariance Σθ are given by the
output of the model (or the latter is set to a constant as
proposed in (Ho et al., 2020)). Predicting the mean of
the denoised sample µθ(xt , t) is conceptually equiva-
lent to predicting the noise that should be removed,

denoted by εθ(xt , t). Predominantly, the latter ap-
proach is implemented (e.g., (Ho et al., 2020; Dhari-
wal and Nichol, 2021)) such that training a DM boils
down to minimizing a (weighted) mean squared er-
ror (MSE) ∥ε− εθ(xt , t)∥2 between the true and pre-
dicted noise. Note that this objective can be inter-
preted as a weighted ELBO with data augmentation
(Kingma and Gao, 2023). For a recent overview on
DMs see (Yang et al., 2023).

4 DATASET

To ensure technical correctness, we decide to ana-
lyze a set of generative models for which pre-trained
checkpoints and/or samples of the same dataset,
namely LSUN Bedroom (Yu et al., 2016) (256×256),
are available. Otherwise, both the detectability of
generated samples and their spectral properties might
suffer from biases, making them difficult to compare.
An overview of the dataset is given in Table 1, and we
provide details and example images in the appendix.

All samples are either directly downloaded or
generated using code and pre-trained models pro-
vided by the original publications. We consider data
from ten models in total, five GANs and five DMs.
This includes the seminal models ProGAN (Karras
et al., 2018) and StyleGAN (Karras et al., 2019),
as well as the more recent ProjectedGAN (Sauer
et al., 2021). Note that Diff(usion)-StyleGAN2 and
Diff(usion)-ProjectedGAN (Wang et al., 2022a) (the
current state of the art on LSUN Bedroom) use a
forward diffusion process to optimize GAN train-
ing, but this does not change the GAN model archi-
tecture. From the class of DMs, we consider the

Table 1: Models evaluated in this work. Fréchet incep-
tion distances (FIDs) on LSUN Bedroom are taken from
the original publications and from (Dhariwal and Nichol,
2021) in the case of IDDPM. The lower the FID, the higher
the image quality.

Model Class Method FID

GAN

ProGAN 8.34
StyleGAN 2.65
ProjectedGAN 1.52
Diff-StyleGAN2 3.65
Diff-ProjectedGAN 1.43

DM

DDPM 6.36
IDDPM 4.24
ADM 1.90
PNDM 5.68
LDM 2.95
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original DDPM (Ho et al., 2020), its successor ID-
DPM (Nichol and Dhariwal, 2021), and ADM (Dhari-
wal and Nichol, 2021), the latter outperforming sev-
eral GANs with an FID (Heusel et al., 2017) of
1.90 on LSUN Bedroom. PNDM (Liu et al., 2022)
speeds up the sampling process by a factor of 20 us-
ing pseudo numerical methods, which can be applied
to existing pre-trained DMs. Lastly, LDM (Rombach
et al., 2022) uses an adversarially trained autoencoder
that transforms an image from the pixel space to a la-
tent space (and back). Training the DM in this more
suitable latent space reduces the computational com-
plexity and therefore enables training on higher reso-
lutions. The success of this approach is underpinned
by the groundbreaking results of Stable Diffusion, a
powerful and publicly available text-to-image model
based on LDM.

5 DETECTION ANALYSIS

In this section we analyze how well state-of-the-art
fake image detectors can distinguish DM-generated
from real images. At first, we apply pre-trained de-
tectors known to be effective against GANs, followed
by a study on the generalization abilities of re-trained
detectors. Based on our findings, we conduct an in-
depth feature space analysis to gain a better under-
standing on how fake images are detected.

Detection Methods. We evaluate three state-of-the-
art CNN-based detectors: Wang2020 (Wang et al.,
2020), Gragnaniello2021 (Gragnaniello et al., 2021),
and Mandelli2022 (Mandelli et al., 2022). They are
supposed to perform well on images from unseen gen-
erative models, but it is unclear whether this holds for
DM-generated images as well.

Performance Metrics. The performance of the an-
alyzed classifiers is estimated in terms of the widely
used area under the receiver operating characteristic
curve (AUROC). However, the AUROC is overly op-
timistic as it captures merely the potential of a clas-
sifier, but the optimal threshold is usually unknown
(Cozzolino et al., 2021). Thus, we adopt the use of
the probability of detection at a fixed false alarm rate
(Pd@FAR) as an additional metric, which is given as
the true positive rate at a fixed false alarm rate. Intu-
itively, this corresponds to picking the y-coordinate of
the ROC curve given an x-coordinate. This metric is a
valid choice for realistic scenarios such as large-scale
content filtering on social media, where only a small
amount of false positives is tolerable. We consider a
fixed false alarm rate of 1 %.

Evaluating Pre-Trained Detectors. At first, we test
the performance of the pre-trained detectors based on
20000 samples, equally divided into real and gener-
ated images. While Wang2020 and Gragnaniello2021
are trained on images from a single GAN (ProGAN or
StyleGAN2), Mandelli2022 is trained on images from
a diverse set of generative models. The results in the
upper half of Table 2 show that all GAN-generated
images can be effectively distinguished from real im-
ages, with Gragnaniello2021 yielding the best results.
For DM-generated, however, the performance of all
detectors significantly drops, on average by 15.2 %
AUROC compared to GANs. Although the average
AUROC of 91.4 % achieved by the best-performing
model Gragnaniello2021 (ProGAN variant) appears
promising, we argue that in a realistic setting with 1 %
tolerable false positives, detecting only 25.7 % of all
fake images is unacceptable.

To verify that our findings are not limited to our
dataset, we extend our evaluation to images from
DMs trained on other datasets, variations of ADM,
and popular text-to-image models. We provide de-
tails on these additional datasets in the appendix. The
results, given in the lower half of Table 2, support
the finding that detectors perform significantly worse
on DM-generated images. Images from PNDM and
LDM trained on LSUN Church are detected better,
which we attribute to a dataset-specific bias.

Generalization of Re-Trained Detectors. Given the
findings presented above, the question arises whether
DMs evade detection in principle, or whether the de-
tection performance can be increased by re-training a
detector. We select the architecture from Wang2020
since the original training code is available and train-
ing is relatively efficient. Furthermore, we choose
the configuration Blur+JPEG (0.5) as it yields slightly
better scores on average. For each of the ten gener-
ators, we train a detector according to the authors’
instructions, using 78000 samples for training and
2000 samples for validation (equally divided into real
(LSUN Bedroom) and fake). We also consider three
aggregated settings in which we train on all images
generated by GANs, DMs, and both, respectively.

We report AUROC and Pd@1%FAR for each de-
tector evaluated on all datasets in Figure 1, based on
20000 held-out test samples (10000 real and 10000
fake per generator). All detectors achieve near-
perfect scores when evaluated on the dataset they
were trained on (represented by the values in the diag-
onal). While this is unsurprising for GANs, it shows
that DMs do exhibit detectable features that a detector
can learn. Regarding generalization, it appears that
detectors trained on images from a single DM per-
form better on images from unseen DMs compared to
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Table 2: Detection performance of pre-trained universal detectors. For Wang2020 and Gragnaniello2021, we consider two
different variants, respectively. In the upper half, we report the performance of models trained on LSUN Bedroom, while
results on additional datasets are given in the second half. The best score (determined by the highest Pd@1%) for each
generator is highlighted in bold. We report average scores in gray.

AUROC / Pd@1%
Wang2020 Gragnaniello2021 Mandelli2022

Blur+JPEG (0.5) Blur+JPEG (0.1) ProGAN StyleGAN2

ProGAN 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 91.2 / 27.5
StyleGAN 98.7 / 81.4 99.0 / 84.4 100.0 / 100.0 100.0 / 100.0 89.6 / 14.7
ProjectedGAN 94.8 / 49.1 90.9 / 34.5 100.0 / 99.3 99.9 / 97.8 59.4 / 2.4
Diff-StyleGAN2 99.9 / 97.9 100.0 / 99.3 100.0 / 100.0 100.0 / 100.0 100.0 / 99.9
Diff-ProjectedGAN 93.8 / 43.3 88.8 / 27.2 99.9 / 99.2 99.8 / 96.6 62.1 / 2.8
Average 97.4 / 74.3 95.7 / 69.1 100.0 / 99.7 99.9 / 98.9 80.4 / 29.5

DDPM 85.2 / 14.2 80.8 / 9.3 96.5 / 39.1 95.1 / 30.7 57.4 / 0.6
IDDPM 81.6 / 10.6 79.9 / 7.8 94.3 / 25.7 92.8 / 21.2 62.9 / 1.3
ADM 68.3 / 3.4 68.8 / 4.0 77.8 / 5.2 70.6 / 2.5 60.5 / 1.8
PNDM 79.0 / 9.2 75.5 / 6.3 91.6 / 16.6 91.5 / 22.2 71.6 / 4.0
LDM 78.7 / 7.4 77.7 / 6.9 96.7 / 42.1 97.0 / 48.9 54.8 / 2.1
Average 78.6 / 9.0 76.6 / 6.8 91.4 / 25.7 89.4 / 25.1 61.4 / 2.0

ADM (LSUN Cat) 58.4 / 2.5 58.1 / 3.3 60.2 / 4.2 51.7 / 1.8 55.6 / 1.3
ADM (LSUN Horse) 55.5 / 1.5 53.4 / 2.2 56.1 / 2.7 50.2 / 1.4 44.2 / 0.5
ADM (ImageNet) 69.1 / 4.1 71.7 / 4.5 72.1 / 3.5 83.9 / 16.6 60.1 / 0.9
ADM-G-U (ImageNet) 67.2 / 3.7 62.3 / 1.2 66.8 / 1.6 78.9 / 10.2 60.0 / 1.0
PNDM (LSUN Church) 76.9 / 10.2 77.6 / 12.0 90.9 / 24.5 99.3 / 85.8 56.4 / 1.9
LDM (LSUN Church) 86.3 / 19.8 82.2 / 14.2 98.8 / 75.5 99.5 / 90.2 58.9 / 1.3
LDM (FFHQ) 69.4 / 3.6 71.0 / 3.6 91.1 / 25.4 67.2 / 2.1 63.0 / 0.6
ADM’ (FFHQ) 77.7 / 8.7 81.4 / 8.8 87.7 / 17.8 89.0 / 17.2 69.8 / 2.0
P2 (FFHQ) 79.5 / 8.9 83.2 / 9.2 89.2 / 11.5 91.1 / 18.9 72.5 / 2.7

Stable Diffusion v1-1 42.4 / 1.5 51.4 / 2.0 73.2 / 4.0 75.2 / 13.6 76.1 / 4.2
Stable Diffusion v1-5 43.7 / 1.4 52.6 / 2.1 72.9 / 2.8 79.8 / 18.3 75.3 / 4.1
Stable Diffusion v2-1 46.1 / 1.4 47.3 / 1.1 62.8 / 1.1 55.1 / 1.1 37.0 / 0.5
Midjourney v5 52.7 / 3.0 57.1 / 3.0 69.9 / 3.3 67.1 / 3.3 18.3 / 0.3
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Figure 1: Detection performance for re-trained detectors. The columns GAN, DM, and All correspond to models trained on
samples from all GANs, all DMs, and both, respectively.
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Figure 2: Feature space visualization for the detector Wang2020 via t-SNE of real and generated images in two dimensions.
The features correspond to the representation prior to the last fully-connected layer of the given detector.

detectors trained on images from a single GAN. For
instance, the detector trained solely on images from
ADM achieves a Pd@1%FAR greater than 90 % for
all other DMs. These findings suggest that images
generated by DMs not only contain detectable fea-
tures, but that these are similar across different archi-
tectures and training procedures.

Surprisingly, detectors trained on images from
DMs are significantly more successful in detecting
GAN-generated images than vice versa. This be-
comes most apparent when analyzing the detectors
that are trained on all GANs and DMs, respectively.
While the detector trained on images from all GANs
achieves an average Pd@1%FAR of 26.34 % on DM-
generated images, the detector trained on images from
all DMs on average detects 94.26 % of all GAN-
generated samples.

Analysis of the Learned Feature Spaces. We con-
duct a more in-depth analysis of the learned feature
spaces to better understand this behavior. We utilize
t-SNE (van der Maaten and Hinton, 2008) to visualize
the extracted features prior to the last fully-connected
layer in Figure 2. For the pre-trained Wang2020 we
observe a relatively clear separation between real and
GAN-generated images, while there exists a greater
overlap between real and DM-generated images (Fig-
ure 2a). These results match the classification results
from Table 2. Looking at the detector which is trained
on DM-generated images only (Figure 2d), the feature
representations for GAN- and DM-generated images
appear to be similar. In contrast, the detectors trained
using GAN-generated images or both (Figures 2c and
2b) seem to learn distinct feature representations for
GAN- and DM-generated images.

Based on these results, we argue that the hypothe-
sis, according to which a detector trained on one fam-
ily of generative models cannot generalize to a differ-
ent family (Ojha et al., 2023), only holds true “in one
direction”. Given the feature space visualizations, de-

tectors trained on GAN-generated images appear to
focus mostly on GAN-specific artifacts, which may
be more prominent and easier to learn. In contrast,
a detector trained exclusively on DM-generated im-
ages learns a feature representation in which images
generated by GANs and DMs are mapped to simi-
lar embeddings. As a consequence, this detector can
generalize to GAN-generated images, since it is not
“distracted” by family-specific patterns, but learns to
detect artifacts which are present in both GAN- and
DM-generated images.

This also implies that DM-generated images con-
tain fewer family-specific artifacts. This becomes ap-
parent when analyzing them in the frequency domain,
which we demonstrate in the following section.

6 FREQUENCY ANALYSIS

For detecting GAN-generated images, exploiting ar-
tifacts in the frequency domain has proven to be
highly effective (Frank et al., 2020). Since DMs con-
tain related building blocks as GANs (especially up-
sampling operations in the underlying U-Net (Ron-
neberger et al., 2015)), it seems reasonable to sus-
pect that DM-generated exhibit similar artifacts. In
this section, we analyze the spectral properties of
DM-generated images and compare them to those of
GAN-generated images. We investigate potential rea-
sons for the identified frequency characteristics by an-
alyzing the denoising process.

Transforms. We use two frequency transforms
that have been applied successfully in both traditional
image forensics (Lyu, 2008) and deepfake detection:
discrete Fourier transform (DFT) and the reduced
spectrum (Durall et al., 2020; Dzanic et al., 2020;
Schwarz et al., 2021), which is as a 1D representa-
tion of the DFT. While DFT visualizes frequency ar-
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Figure 3: Mean DFT spectrum of real and generated images. To increase visibility, the color bar is limited to [10−5,10−1],
with values lying outside this interval being clipped.

tifacts, the reduced spectrum can be used to identify
spectrum discrepancies.

Analysis of Frequency Artifacts. Figure 3
depicts the absolute DFT spectrum averaged over
10000 images from each GAN and DM trained on
LSUN Bedroom. Before applying the DFT, images
are transformed to grayscale and, following previous
works (Marra et al., 2019; Wang et al., 2020), high-
pass filtered by subtracting a median-filtered version
of the image. For all GANs we observe signifi-
cant artifacts, predominantly in the form of a regular
grid, corresponding to previous findings (Zhang et al.,
2019; Frank et al., 2020). In contrast, the DFT spec-
tra of images generated by DMs (see Figure 3b), are
significantly more similar to the real spectrum with al-
most no visible artifacts. LDM is an exception: while
being less pronounced than for GANs, generated im-
ages exhibit a clearly visible grid across their spec-
trum. As mentioned in Section 4, the architecture of
LDM differs from the remaining DMs as the final im-
age is generated using an adversarially trained autoen-
coder, which could explain the discrepancies. This
observation supports previous findings which suggest
that the discriminator is responsible for spectrum de-
viations (Chen et al., 2021; Schwarz et al., 2021).

We conclude that “traditional” DMs, which gen-
erate images by gradual denoising, do not produce
the frequency artifacts known from GANs. Regard-
ing our results in Section 5, this could explain why
detectors trained on GAN images do not generalize to
DMs, while training on DM-generated images leads
to better generalization.

Analysis of Spectrum Discrepancies. In a second
experiment we analyze how well GANs and DMs are

able to reproduce the spectral distribution of real im-
ages. We visualize the reduced spectra for all gen-
erators in Figure 4, again averaged over 10000 im-
ages. Except for Diff-StyleGAN2, all GANs con-
tain the previously reported elevated high frequen-
cies. Among the DMs, these can only be observed for
LDM. This strengthens the hypothesis that it this the
autoencoder which causes GAN-like frequency char-
acteristics. However, we observe that all DMs have
a tendency to underestimate the spectral density to-
wards the higher end of the frequency spectrum. This
is particularly noticeable for DDPM, IDDPM, and
ADM.

Source of Spectrum Underestimation. Based on
these findings, we conduct an additional experiment
to identify the source of this spectrum underestima-
tion. Since DMs generate images via gradual denois-
ing, we analyze how the spectrum evolves during this
denoising process. For this experiment, we use code
and model from ADM (Dhariwal and Nichol, 2021)
trained on LSUN Bedroom. We generate samples at
different time steps t and compare the reduced spec-
trum (averaged over 512 images) to that of 50000 real
images. The results are shown in Figure 5.

We adopt the figure type from (Schwarz et al.,
2021) and depict the relative spectral density error
S̃err = S̃fake/S̃real − 1, with the colorbar clipped at -1
and 1. At t = T = 1000, the image is pure Gaussian
noise, which naturally causes strong spectrum devi-
ations. Around t = 300, the error starts to decrease,
but interestingly it appears that the optimum is not
reached at t = 0, but at t ≈ 10. It should be noted that
while at this step the frequency spectrum is closest
to that of real images, they still contain visible noise.
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Figure 4: Mean reduced spectrum of real and generated images. The part of the spectrum where GAN-characteristic discrep-
ancies occur is magnified.

During the final denoising steps, S̃err becomes nega-
tive, predominantly for higher frequencies, which cor-
responds to our observations in Figure 4b.

We hypothesize that this underestimation towards
higher frequencies stems from the learning objective
used to train DMs. Recalling Section 3, DMs are
trained to minimize the MSE between the true and
predicted noise at different time steps. The weighting
of the MSE therefore controls the relative importance
of each step. While the semantic content of an image
is generated early during the denoising process, high-
frequency details are synthesized near t = 0 (Kingma
et al., 2021). Theoretically, using the variational
lower bound Lvlb as the training objective would yield
the highest log-likelihood. However, training DMs
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1.0

(a) 0 ≤ t ≤ 1000
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0.5

1.0

(b) 0 ≤ t ≤ 100
Figure 5: Spectral density error S̃err throughout the denois-
ing process. The error is computed relative to the spectrum
of real images. We display the error for (a) all sampling
steps and (b) a close-up of the last 100 steps. The colorbar
is clipped at -1 and 1.

with Lvlb is difficult (Ho et al., 2020; Nichol and
Dhariwal, 2021), which is why in practice modified
objectives are used. The loss proposed in (Ho et al.,
2020), Lsimple = Et,x0,ε[∥ε− εθ(xt , t)∥2], for example,
considers each denoising step as equally important.
Compared to Lvlb, the steps near t = 0 are signifi-
cantly down-weighted, trading off a higher perceptual
image quality for higher log-likelihood values. The
MSE of ADM over t shown in Figure 6 demonstrates
that the final denoising steps are the most difficult
(which is already plain to see as the signal-to-noise ra-
tio increases for t → 0, i.e., the to-be-predicted noise
makes up ever smaller fractions of xt ). The hybrid
training objective Lhybrid = Lsimple+λLvlb (Nichol and
Dhariwal, 2021), used in IDDPM and ADM, incorpo-
rates Lvlb (with λ= 0.001) and already improves upon
DDPM in modeling the high-frequency details of an
image, but still does not match it accurately.

In summary, we conclude that the denoising steps
near t = 0, which govern the high-frequency con-
tent of generated images, are the most difficult to
model. By down-weighting the importance of these
steps (relatively to the Lvlb), DMs achieve remarkable
perceptual image quality (or benchmark metrics such
as FID), but seem to fall short of accurately matching
the high-frequency distribution of real data.

0 200 400 600 800 1000
t

10−4
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100

M
SE

Figure 6: Mean and standard deviation of the MSE for
ADM on LSUN Bedroom after training. The denoising
steps towards t = 0, accounting for high frequencies, have a
higher error.
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Figure 7: Spectral density error S̃err for different numbers
of denoising steps. The error is computed relatively to the
spectrum of real images. The colorbar is clipped at -1 and
1. Note that the y-axis is not scaled linearly.

Effect of the Number of Sampling Steps. Lastly,
we analyze how the number of sampling steps during
the denoising process affects the frequency spectrum.
Previous work reported that increasing the number
of steps leads to an improved log-likelihood, corre-
sponding to better reproduction of higher frequencies
(Nichol and Dhariwal, 2021). Our results in Figure 7
confirm these findings, increasing the number of de-
noising steps reduces the underestimation.

7 CONCLUSION

Deepfakes pose a severe risk for society, and diffu-
sion models have the potential to raise disinformation
campaigns to a new level. Despite the urgency of the
problem, research about detecting DM-generated im-
ages is still in its infancy. In this work, we provide a
much-needed step towards the detection of DM deep-
fakes. Instead of starting from the ground up, we build
on previous achievements in the forensic analysis of
GANs. We show that, after re-training, current state-
of-the-art detection methods can successfully distin-
guish real from DM-generated images. Further anal-
ysis suggests that DMs produce fewer detectable ar-
tifacts than GANs, explaining why detectors trained
on DM-generated images generalize to GANs, but
not vice versa. While artifacts in the frequency do-
main have been shown to be a characteristic feature
of GAN-generated images, we find that DMs pre-
dominantly do not have this weakness. However, we
observe a systematic underestimation of the spectral
density, which we attribute to the loss function of
DMs. Whether this mismatch can be exploited for
novel detection methods should be part of future re-
search. We hope that our work can foster the forensic
analysis of images generated by DMs and spark fur-
ther research towards the effective detection of deep-
fakes.
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APPENDIX

Details on LSUN Bedroom Dataset

LSUN Bedroom (Yu et al., 2016). We download
and extract the lmbd database files using the offi-
cial repository1. The images are center-cropped to
256×256 pixels.

ProGAN (Karras et al., 2018). We download the
first 10000 samples from the non-curated collection
provided by the authors.2

StyleGAN (Karras et al., 2019). We download the
first 10000 samples generated with ψ = 0.5 from the
non-curated collection provided by the authors.3

ProjectedGAN (Sauer et al., 2021). We sample
10000 images using code and pre-trained models pro-
vided by the authors using the default configuration
(--trunc=1.0).4

Diff-StyleGAN2 and Diff-ProjectedGAN (Wang
et al., 2022a). We sample 10000 images using code
and pre-trained models provided by the authors using
the default configuration.5

DDPM (Ho et al., 2020), IDDPM (Nichol and
Dhariwal, 2021), and ADM (Dhariwal and Nichol,
2021). We download the samples provided by the
authors of ADM6 and extract the first 10000 samples
for each generator. For ADM on LSUN, we select the
models trained with dropout.

1https://github.com/fyu/lsun
2https://github.com/tkarras/progressive growing of

gans
3https://github.com/NVlabs/stylegan
4https://github.com/autonomousvision/projected gan
5https://github.com/Zhendong-Wang/Diffusion-GAN
6https://github.com/openai/guided-diffusion
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Figure 8: Non-curated example images for real LSUN Bedroom, GAN-generated, and DM-generated images.

PNDM (Liu et al., 2022). We sample 10000
images using code and pre-trained model provided
by the authors.7 We specify --method F-PNDM
and --sample speed 20 for LSUN Bedroom and
--sample speed 10 for LSUN Church, as these are
the settings leading to the lowest FID according to Ta-
bles 5 and 6 in the original publication.

LDM (Rombach et al., 2022). We sample 10000
images using code and pre-trained models provided
by the authors using settings from the corresponding
table in the repository.8 For LSUN Church there is an
inconsistency between the repository and the paper,
we choose 200 DDIM steps (-c 200) as reported in
the paper.

Details on Additional Datasets

Here we provide details on the additional datasets
analyzed in Table 2. Note that ADM-G-U refers to
the two-stage up-sampling stack in which images are
generated at a resolution of 64×64 and subsequently
up-sampled to 256×256 pixels using a second model
(Dhariwal and Nichol, 2021). The generated images
are obtained according to the instructions given in the
previous section.

Due to the relevance of facial images in the con-
text of deepfakes, we also include two DMs not yet
considered, P2 and ADM’ (Choi et al., 2022), trained
on FFHQ (Karras et al., 2019). ADM’ is a smaller
version of ADM with 93 million instead of more
than 500 million parameters.9 P2 is similar to ADM’

7https://github.com/luping-liu/PNDM
8https://github.com/CompVis/latent-diffusion
9https://github.com/jychoi118/P2-weighting#

but features a modified weighting scheme which im-
proves performance by assigning higher weights to
diffusion steps where perceptually rich contents are
learned (Choi et al., 2022). We download checkpoints
for both models from the official repository and sam-
ple images according to the authors’ instructions.

Real images from LSUN (Yu et al., 2016), Ima-
geNet (Russakovsky et al., 2015), and FFHQ (Kar-
ras et al., 2019) are downloaded from their official
sources. Images from LSUN Cat/Horse, FFHQ, and
ImageNet are resized and cropped to 256×256 pixels
by applying the same pre-processing that was used
when preparing the training data for the model they
are compared against. For all datasets we collect
10000 real and 10000 generated images.

Images from Stable Diffusion10 are generated
using the diffusers library11 with default settings.
For each version, we generate 10000 images us-
ing prompts from DiffusionDB (Wang et al., 2022b).
Since Midjourney12 is proprietary, we collect 300 im-
ages created using the “–v 5” flag from the official
Discord server. As real images, we take a subset
of 10000 images from LAION-Aesthetics V213 with
aesthetics scores greater than 6.5. For the detection
experiments, we use the entire images, for comput-
ing frequency spectra we take center crops of size
256×256.

training-your-models
10https://stability.ai/blog/stable-diffusion-public-release
11https://huggingface.co/docs/diffusers/index
12https://www.midjourney.com
13https://laion.ai/blog/laion-aesthetics/
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