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Abstract: Federated learning is a technique in classical machine learning in which a global model is collectively trained
by a number of independent clients, each with their own datasets. Using this learning method, clients are
not required to reveal their dataset as it remains local; clients may only exchange parameters with each other.
As the interest in quantum computing and especially quantum machine learning is steadily increasing, more
concepts and approaches based on classical machine learning principles are being applied to the respective
counterparts in the quantum domain. Thus, the idea behind federated learning has been transferred to the
quantum realm in recent years. In this paper, we evaluate a straightforward approach to quantum federated
learning using the widely used MNIST dataset. In this approach, we replace a classical neural network with
a variational quantum circuit, i.e., the global model as well as the clients are trainable quantum circuits. We
run three different experiments which differ in number of clients and data-subsets used. Our results demon-
strate that basic principles of federated learning can be applied to the quantum domain while still achieving
acceptable results. However, they also illustrate that further research is required for scenarios with increasing
number of clients.

1 INTRODUCTION

Privacy in the context of machine learning models has
become a greater concern in recent years and one ap-
proach to enhance the privacy of user data is federated
learning (McMahan et al., 2017). Using this tech-
nique, a global model (e.g., a neural network) is col-
lectively trained by a number of client models. Clients
do not reveal their data; instead they synchronize and
train the global model by other means (for example by
aggregating parameters or weights) while their indi-
vidual dataset is kept local, i.e., private. The concept
of federated learning is not new in classical machine
learning, the basic concept has been thoroughly dis-
cussed (Konečnỳ et al., 2016; McMahan et al., 2017;
Zhao et al., 2018; Yang et al., 2019) as well as a range
of problems, challenges and potential solutions iden-
tified and proposed (Geyer et al., 2017; Li et al., 2020;
Mammen, 2021; Lyu et al., 2020). While the field is
still advancing in the classical domain, interest in ex-
tending these ideas into the quantum realm has been
steadily growing in recent years (Chen and Yoo, 2021;
Li et al., 2021; Chehimi and Saad, 2022; Kumar et al.,
2023). This allows for the rise of several possible ar-
chitectures and approaches, each with their own set of
challenges, problems and potential advantages. For
instance, clients could still communicate via classi-

cal networks, however, it would also be feasible to
incorporate the methodology into a quantum commu-
nication network (Chehimi et al., 2023), which could
provide certain benefits such as secure quantum com-
munication channels. However, the specifics require
further investigation as both quantum federated learn-
ing and quantum communication networks are still in
their infancy.

Whether quantum federated learning is able to
provide advantages besides privacy or security is an-
other open question demanding more research. For
instance, how does the approach effect the trainabil-
ity of a quantum circuit, or how do both approaches
compare in terms of their ability to generalize to un-
seen data? These questions are already relevant and
subject to research for traditional training and learn-
ing approaches, so investigating these questions in a
federated learning setting will most likely also be im-
portant.

In this paper, we evaluate a simple quantum fed-
erated learning approach on an image classification
problem, namely the task of recognizing images of
digits from the MNIST dataset. We divide the dataset
such that each subset contains images for two classes.
A global model is trained in a federated manner where
each client is a variational quantum circuit used for
binary classification. We compare this approach to a
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regular variational quantum circuit trained in a tradi-
tional, i.e., non federated or distributed manner.

This paper is structured as follows. In Section
2 we discuss the background of quantum machine
learning and (quantum) federated learning. Related
work is discussed in Section 3 while we present our
experimental setup in Section 4. Results are presented
in Section 5. We conclude and give an outlook for fu-
ture work in Section 6.

2 BACKGROUND

In this section, we briefly recap the fundamentals of
quantum machine learning (QML) and discuss feder-
ated learning (FL) as well as quantum federated learn-
ing (QFL).

2.1 Quantum Machine Learning

Over the years several QML algorithms have been
proposed by the research community, however, the
so-called variational quantum algorithm (VQA) ap-
proach based on variational quantum circuits (VQCs)
(Mitarai et al., 2018; Schuld and Killoran, 2019) ap-
pears to be the most popular and relevant one in the
current NISQ-era of quantum computing (QC), and
this approach is the one we employ as part of this
work. Thus, when we use the term QML we refer
to this approach.

A VQC is a parameterized quantum circuit con-
sisting of the following parts: (i) feature map, (ii) en-
tanglement, and rotation and (iii) measurement. In
(i) the classical data, i.e., features, are encoded into a
quantum state through the use of rotation gates where
a feature corresponds to the angle of rotation. This
is followed by a series of repeating layers consist-
ing of parameterized rotations and entangling gates
(e.g., CNOT gates), where the parameters of the rota-
tion gates are the weights to be optimized by a classi-
cal optimization algorithm. In the last step a number
of qubits are measured, resulting in classical values
which can in turn be used to derived the prediction for
a classification task. An example VQC with 1 layer is
depicted in Figure 3. The design of the architecture
of the circuit is its own research question and we con-
sider circuits of the basic architecture described above
in this paper.

The optimization algorithm runs on a classical
computer, making this an hybrid iterative approach.
The circuit is initialized with features and weights,
executes on a quantum computer and returns some
measurement results that are interpreted in order to
establish a prediction, which can then be fed into the

optimizer resulting in a set of new updated weights.
The process continues until the preset number of it-
erations have been reached or some other termination
criteria is met. For a more in depth discussion of this
topic we refer to (Mitarai et al., 2018) and (Schuld
et al., 2020).

2.2 (Quantum) Federated Learning

We will summarize the main idea behind FL in this
section and refer for a more in depth discussion to
(Yang et al., 2019). After establishing FL in the clas-
sical setting, we discuss how to transfer these con-
cepts to the QC domain.

In a FL setting, a global model is collectively
trained by a number of client-models that have some
means of communication, for example over a com-
munication network. The clients itself may be trained
on different data-subsets or even entirely different
datasets. The data, however, is kept private, i.e., lo-
cal; the clients only exchange parameters or gradients
with the global model. Note that the details of the
exchange depends on the implementation, there exist
various techniques and approaches in the literature.
One of the main advantages and motivation is the pos-
sibility of collaboratively training a shared model by
multiple, potentially unknown clients while still keep-
ing sensitive data private.

The main approach is as follows. The global
model distributes its parameters (i.e., weights) to each
client. Then a client trains its model on its local
dataset for a number of epochs. After a defined num-
ber of epochs, clients send their weights to the global
model which then aggregates all weights and updates
its own weights. The global model then distributes
the updated weights among the clients and the process
repeats until the maximal number of epochs has been
reached. The overall architecture of FL is illustrated
in Figure 1.

A straightforward approach to transfer these ideas
to the quantum realm would be to use a VQC as the
global model and a number of VQCs as client mod-
els. This is similar to the approach in (Chen and
Yoo, 2021), however, they use a hybrid model. These
VQCs may or may not have the same architecture.
The models weights can be exchanged over classical
communication channels. However, quantum com-
munication networks allow the transfer of quantum
states and could also be incorporated into the ap-
proach, yielding further possible advantages such as
secure quantum communication channels. Further ex-
tension to include blind quantum computing is a an-
other possible pathway to ensure privacy, as discussed
by (Li et al., 2021).
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Figure 1: Overview of an example FL architecture. In this
example, 5 clients train their model on their local dataset
and send their updated weights to the global model. The
global model aggregates all weights collected and updates
the global model which is then distributed among the clients
for the next iteration of training.

3 RELATED WORK

A federated QML approach based on a hybrid quan-
tum models is discussed in (Chen and Yoo, 2021).
The authors evaluate their approach on binary clas-
sification tasks and show that their approach yields
similar results than regular training. Incorporating
blind quantum computing is discussed in (Li et al.,
2021). They show, among other things, the training of
a VQC using blind quantum computing in the context
of FL. Privacy in QFL is discussed in (Kumar et al.,
2023) and (Rofougaran et al., 2023) while (Chehimi
and Saad, 2022) propose a quantum federated learn-
ing framework. In (Wang et al., 2023) the authors
discuss quantum federated learning over quantum net-
works, where the weights are communicated via tele-
portation. They evaluate their approach on a binary
classification task. An overview of challenges and op-
portunities is given in (Chehimi et al., 2023).

4 EXPERIMENTAL SETUP

We discuss our approach to QFL and experimental
setup in this section. In our experiments, the global
model as well as all clients are VQCs, each with the
same circuit design. However, the specific qubits
measured vary, as discussed in detail in the follow-
ing sections. Each VQC is its own model with its own
optimizer and set of parameters. Each client is trained
on its own data sub-set, we will discuss this point in
more detail in Section 5.

4.1 Approach

Our approach revolves around the Clients training
their model on their own dataset and update their lo-
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Figure 2: Example QFL architecture.

cal parameters independently of each other. Every
n epochs, the parameters of every client are aggre-
gated and used update the global model. The updated
parameters are determined by calculating the mean
over all clients. The parameters of the updated global
model are then used to also update the clients param-
eters, i.e., all clients are synchronized with the global
model. The overall process for the experiment with 5
clients and subsets is depicted in Figure 2 while the
VQC architecture employed is shown in Figure 3 and
is discussed below.

Note that we only exchange models parameters
and a classical communication channel is sufficient
for this. More specifically, a network is not necessary
either; the approach can be executed entirely local,
as is done in our experiments. Incorporating the ap-
proach into a quantum network is out of scope and is
a potential avenue for future work.

We evaluate our approach for a classification task
using the MNIST dataset, which contains images of
hand-written digits. Each client is given a subset of
this dataset containing the images for two digits and
each client is given a distinct dataset. In our experi-
ments, we train several clients where the first one uses
digits 0 and 1, the second one 2 and 3 and so forth.

Figure 3: Example circuit architecture employed in our ex-
periments with depth 1. Note that in our experiments we
used circuits with a higher depth, however, the same overall
architecture pattern.
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Note that each VQC is used for binary classification
while the global model is evaluated on all classes after
training has completed.

4.2 Variational Quantum Circuit

All models in our experiments are VQCs with the
same architecture. All features are encoded using am-
plitude embedding, this is followed by a simple ansatz
consisting of repeating layers of CNOT and parame-
terized rotation gates. We measure two qubits in the
binary classification case. In each VQC, the digits
it classifies also correspond to the index of the qubit
that is measured. That is, the VQC trained on the sub-
set consisting of images of digits 0 and 1 measures
qubits 0 and 1 while the VQC trained on digits 2 and
3 measures qubits 2 and 3. The measurement results
are interpreted as class probabilities and used for la-
bel prediction. The number of layers is determined
by the depth parameter, the parameters used in our
experiments are discussed in the next section.

4.3 Data and Experiments

We briefly review the configuration used in our exper-
iments while an overview of the parameters is given
in Table 1. We used the MNIST dataset in our train-
ing, which contains images of size 28x28, resulting in
784 features for each image. With amplitude embed-
ding, a circuit with 10 qubits is sufficient to embed all
features. Note that we do not use all training data in
our experiments, instead roughly 1000 samples were
used per epoch for each model. Pytorch and Penny-
Lane (Bergholm et al., 2018) were used to implement
our experiments. Using a circuit with 10 qubits and a
depth of 15 results in 150 trainable parameters in our
approach, as we use a single Ry rotation per qubit in
each layer. We evaluate our approach in three differ-
ent experiments. In the first, a global model is trained
by two clients with their own respective data subset
for binary classification. For instance, one client is
trained on a data subset consisting of images depict-
ing the digits 0 and 1 while the other clients sub-
set contains digits 2 and 3, thus the global model is
trained on four classes in total. In the second experi-
ment we use three clients, the additional client is then
trained on digits 4 and 5 while in the third experiment
we use all 10 digits and train 5 clients.

5 RESULTS

In this section, we discuss the results of experiments
conducted as part of this work. We first present the re-

Table 1: Experiment configuration.

Parameter
Qubits 10
Depth 15
Parameters 150
Epochs 30
Batch size 40
Models synchronized every n generations 3
Seeds 4
Clients 2, 3 or 5

sults from the baseline model and then continue with
the QFL approach and conclude with a comparison of
both.

5.1 Baseline

As baseline we use VQCs for binary classification,
each trained on a subset of the data. More specifically,
one baseline model is trained to classify the digits 0
and 1, another to the digits 2 and 3 and so forth. Note
that each model is trained individually, i.e., not in a
federated or distributed manner, and uses the same
hyper-parameters as in the QFL experiments. The
mean training accuracy for each of this models is de-
picted in Figure 4 and the loss is shown in Figure
5, both aggregated over all seeds. Test results of the
VQC trained on all classes are also discussed below.

5.2 Quantum Federated Learning

We discuss the results from our QFL experiments
next. However, first a note on how the results are
aggregated. Recall that client models are trained on
their subset of the training data, weights are aggre-
gated to form the global model which is subsequently
distributed to synchronize the clients. The training
results of the QFL approach depicted below are the

Figure 4: Comparison of training accuracy of binary classi-
fication from the baseline-model.
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Figure 5: Comparison of training loss of binary classifica-
tion from the baseline-model.

mean of all client models, aggregated over all seeds.
However, we also depict and discuss the test results
from the global model.

Figure 6 shows the mean training accuracy
achieved with the QFL approach while the loss is
depicted in Figure 7. In both figures (i.e., accuracy
and loss plots) it can be seen that the accuracy and
loss ”jump” every few epochs. This might be due
to fact that every n generations (parameter value is
shown in Table 1), the global model is updated and
distributed. Adjusting this parameter may improve
the models performance.

The mean training accuracy of the baseline and
global model for 4 digits is shown in Figure 8 and
for 6 digits is shown in Figure 9. Also not that here
the results of binary classification for each subset are
aggregated for both models.

In Figure 11 the test accuracy aggregated from the
performance on each subset from the global model is
shown. That is, the figure depicts the mean test accu-
racy for each binary classification task (i.e., 0 vs 1, 2
vs 3 and so forth) from the global model. In Figure
12 the test results of the global model on all classes is

Figure 6: Mean train accuracy (QFL).

Figure 7: Mean train loss (QFL).

Figure 8: Comparison of aggregated mean training accu-
racy between baseline and QFL for 4 digits.

depicted.

5.3 Discussion

From these results one can see that while the baseline
achieves the best performance, the QFL approach also
seems to achieve acceptable results, especially in the

Figure 9: Comparison of aggregated mean training accu-
racy between baseline and QFL for 6 digits.
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Figure 10: Comparison of aggregated mean training accu-
racy between baseline and QFL for 10 digits.

Figure 11: Mean test accuracy over all subsets (Global
model.)

experiment with 2 clients and data-subsets. However,
the more clients and data-subsets are added, the dis-
crepancy increases, compare Figures 8 and 10. This
is also illustrated in Figures 12 and 13. Increasing the
number of epochs or adjusting other hyper-parameters
may improve the performance though. Also recall
that in all experiments we limited the number of train-
ing samples per epoch to roughly 1000, allowing
more samples per epoch may also yield better results.
The main aim of this study was to evaluate the poten-
tial of QFL on a simple example with a straightfor-
ward approach by adopting methods from classical
FL. Incorporating more advanced methods from FL
or investigating new techniques suitable for the quan-
tum domain may be required to achieve superior per-
formance and results.

Figure 12: Test accuracy of global model on all classes.

6 CONCLUSION

In this paper, we discussed and evaluated a basic ap-
proach that transfers concepts from classical FL into
the domain of quantum computing. We applied an
approach in which the global model as well as the
clients are VQCs that transfer their parameters (i.e.,
weights) in a classical manner. We ran three exper-
iments in the domain of image classification on the
MNIST dataset. The nature of the experiments varied
in terms of number of clients and data-subsets, that is,
we used 2, 3, and 5 clients in different experiments
to train a global model. Overall these experiments
yield acceptable results, however, as the number of
clients increase (and thus the number of data-subsets),
the performance drops steadily. There could be nu-
merous reasons and countermeasures for this. For in-
stance, increasing the number of training epochs as
well as the training samples may increase the perfor-
mance. Using different circuits with more parameters
may also help. Though more research is required in

Figure 13: Test accuracy of the baseline on all classes.
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this direction.
Incorporating QFML approaches that use quan-

tum communication or quantum networks is a further
important research direction. This is for instance dis-
cussed in (Chehimi et al., 2023) and (Wang et al.,
2023). As the aim in this paper was to evaluate a
straightforward approach, in future more elaborate
schemes as well as different domains and use-cases in
future communication networks should be explored.
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