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Abstract: In the last years, deep learning has gained growing popularity in image restoration, becoming the efficient
mainstream for the subsequent higher level computer vision processing tasks. In particular, image restoration
is a challenging task due to the high variations of degradations faced in the real-world scenarios. In this study,
we introduce an efficient multi-task generative adversarial learning based framework as a practical solution
suitable for various types of image degradations. We apply recent advancements in deep learning to design,
build and train such a framework that can deal with several image restoration tasks treated simultaneously.
More precisely, the main specificities of the proposed architecture are: (1) the introduction of a novel genera-
tor based on an encoder with separate decoders, (2) the utilization of low-level multi-scale features within the
encoder component of our architecture, (3) the incorporation of the multi-scale transformer technique in each
decoder in order to learn and share the low-level features representations among different tasks. Our experi-
mental study demonstrates the efficiency and the robustness of the proposed framework for two specific image
restoration tasks including image deblurring and image denoising. Moreover, it achieves high performance
results that exceed those of state-of-the-art methods when evaluated on the same datasets.

1 INTRODUCTION

Nowadays, the popularity of computer vision appli-
cations reveals a pressing need for high quality im-
ages to guarantee efficient based systems. Neverthe-
less, on the ascendant massive use of mobile internet
and the ubiquitous presence of cameras on various de-
vices, image quality could inevitably be corrupted by
several degradations during the acquisition and trans-
mission processes. The presence of these undesirable
artifacts including blur, noise, low resolution could
adversely affect the overall performance. An ade-
quate solution to this problem is image restoration;
a process that aims to recover an image from its de-
graded version. For simplicity, we limit this study to
two main image restoration tasks including denoising
and deblurring. Indeed, the principal challenge in im-
age denoising is to recover a clean signal A from the
noisy observation B corrupted by an additive noise
N, namely: B = A + N. Sophisticated filters have
been proposed in the literature, most of them could
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be classified into six categories: wavelet-based, lin-
ear, non-linear, adaptive, total variation, and partial
differential equation based filters. Classical denois-
ing methods are mainly based on modifying transform
coefficients (Guo et al., 2019) or averaging neigh-
borhood pixels (Walha et al., 2014). Major difficul-
ties in noise removal consist in feature/edge/texture
preservation while smoothing away noise in flat re-
gions without additional processing artefacts (Drira
et al., 2012; Walha et al., 2015; Walha et al., 2018).
These difficulties concern also the image deblurring.
The latter is the process of removing blurs. It could be
blind or non-blind according to the usage of blur ker-
nel information. Non-Blind process refers to handle
an image by a given known blur kernel, while blind
process aims to restore sharpness in an image without
prior knowledge about the blur kernel (Guemri et al.,
2017). In general, a blurred image Y can be modeled
as: Y = K ∗X +N, where K is the blur kernel, X is the
sharp image and N is the additive noise.

Earlier studies formulated the image restoration as
an inverse problem, emphasizing the definition of a
model for corrupted images while taking into account
priors of clean images. This model is then exploited to
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minimize an objective function, aiming to reconstruct
a clear image from its degraded version (Walha et al.,
2013). Due to the success of deep learning to achieve
good outstanding performance in various computer
vision applications (Harizi et al., 2022a; Harizi et al.,
2022b), recent image restoration studies have focused
on proposing solutions based on these architectures.
The main advantage here is that no explicit model-
ing of image prior is required. Well-known state-of-
the-art deep learning based solutions could be clas-
sified into two groups: Single Task Learning (STL)
and Multi-Task Learning (MTL) based solutions. On
one hand, the first group treats each degradation inde-
pendently therefore various networks are conceived
for different degradation types. On the other hand,
the second group focuses on the proposition of single
networks that can deal with a combined set of degra-
dations. It aims to optimize the performance across
multiple task predictors through some transfer knowl-
edge between them (Caruana, 1997).

In this work, our main concern is the proposition
of a new deep auto-encoder based multi-task genera-
tive adversarial learning framework for image restora-
tion. The latter is inspired by the recent success
of deep architectures including Convolution Auto-
Encoder (CAE), Transformers and Generative Adver-
sarial Networks (GAN). More specifically, we pro-
pose a multi-task end-to-end framework based on a
single encoder which learns multi-scale features rep-
resentations to be shared between different tasks. The
framework encompasses separate decoders contain-
ing multi-scale transformer blocks useful for further
analyzing local image structure and fine details across
multi-scales in order to achieve an effective restora-
tion. Each decoder focuses on its specific restoration
task. The proposed framework could be obviously ex-
tended to cope with other restoration tasks.

The rest of this paper is organized as follows: Sec-
tion 2 outlines related works on MTL and STL in deep
networks-based image restoration. Section 3 details
the proposed multi-task learning framework. Section
4 presents our experimental study. The study is closed
with conclusions and emerging aspects for future re-
search in Section 5.

2 RELATED WORK

To address image restoration, deep neural networks
employ STL methods, emphasizing specialized ar-
chitectures for individual degradation types. Numer-
ous recent publications explore this area; (Koh et al.,
2021; Wang et al., 2022; Zamir et al., 2022; Li et al.,
2018) to name a few. These methods enable a net-

work to restore various types of degradation using the
same architecture. In (Wang et al., 2022), UFormer,
a transformer-based architecture, was introduced for
image restoration. It relies on a learnable multi-
scale restoration modulator incorporated into the de-
coder. Despite its effectiveness, single-stage meth-
ods like UFormer often exhibit high network com-
plexity. Later, Cheng et al. overcome the recourse
to complicated architecture for image denoising via
subspace learning (Cheng et al., 2021). A simple
baseline that adopts the single-stage UNet as archi-
tecture was suggested in (Chen et al., 2022). A set
of different networks could collaborate to tackle com-
plex image restoration tasks. Such process evolves
multi-stage methods that decompose the overall task
into smaller easier sub-tasks, each stage is based on
a lightweight sub-network. In (Zamir et al., 2021),
the authors propose MPRNet as a multi-stage pro-
gressive image restoration architecture, composed of
two encoder-decoder sub-networks and one original
resolution sub-network. Another multi-stage restora-
tion method proposed in (Chen et al., 2021), is called
HiNet. Feature fusion and attention-guided map are
introduced across stages. Also, a multi-axis MLP
based architecture called MAXIM was proposed in
(Tu et al., 2022).

Other recent studies proceed via MTL methods in
deep neural networks to deal with combined degrada-
tions. In fact, MTL is a subfield of machine learning
useful in domain-related tasks (Crawshaw, 2020). It
is a mechanism of learning multiple tasks simultane-
ously using a shared model compared to STL. Gener-
ally, MTL improves the generalization capability and
accuracy performance mainly for correlated or related
tasks. Giving this context, the network could benefit
from domain-specific knowledge encapsulated in the
training samples of the different tasks. Good repre-
sentations could be thus learned with less amount of
data and reduced overfitting. For instance, Liu et al.
proposed a two-step training based framework to re-
store images with unknown degradation factors (Liu
et al., 2019). These steps include MTL and fine tun-
ing. Martyniuk (Martyniuk, 2019) presented an end-
to-end pipeline that contains a generic encoder and
separate decoders. The author introduced a new archi-
tecture for the generator inspired by the feature pyra-
mid networks to deal with deblurring, dehazing and
rain-drops removal tasks.

In conclusion, even though we noticed a limited
number of propositions dealing with MTL, the lat-
ter is an active research area with promising issues.
It could be very useful mainly for real-time applica-
tions. Indeed, the combinaison of mutiple tasks into
the same learning model reduces the computational
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Figure 1: Overview of the proposed multi-task generative adversarial network for image restoration.

complexity. This justifies the motivation of our study.

3 PROPOSED MULTI-TASK
GENERATIVE ADVERSARIAL
LEARNING NETWORK FOR
IMAGE RESTORATION

In this section, we describe the proposed image
restoration framework that relies on a multi-task
GAN. An overview of the proposed framework is de-
picted in Fig. 1. As illustrated in this figure, our gen-
erator comprises a single multi-scale features based
encoder and separate decoders. Separate discrimina-
tors are used to distinguish fake images from real im-
ages. More details about each part of our proposition
are given in the following subsections.

3.1 Preliminaries

In this section, we explain the preliminary works
on which is based our framework. Indeed, Genera-
tive Adversarial Network is the core of our proposed
framework. It represents a deep neural network archi-
tecture designed by Goodfellow et al. (Goodfellow
et al., 2014). Figure 2 illustrates its basic framework.
It is comprised of two neural networks – a genera-
tive model and a discriminative model – trained with
an adversarial loss function to generate data that re-
sembles a distribution. The first neural network, the
generator is used to generate new samples as close
as possible to given samples. The second neural net-
work, the discriminator, is to discriminate between
two different classes of data from the generator and
to determine the real or the fake.

Despite their promising results, the main limi-
tation of GANs is their unstable learning generally
caused by the gradient vanishing and the mode col-
lapse. To improve the learning stability of GAN-
based models, several variant have been proposed.

Coupling GAN with Auto-encoders (AE) as a sec-
ondary network is one among interesting proposed
solutions. Indeed, each network has its own learn-
ing process. Furthermore, AE could represent data
samples with lower dimensionality. The AE model
encompasses three components: the encoder, the de-
coder, and the loss function to compare the output to
the target image. Our investigation concerns GAN
and AE based models with a context of MTL.

Figure 2: Generative adversarial network basic framework.

3.2 Encoder Proposed Structure

In order to capture relevant features that describes fine
details of an image, we propose a multi-scale features
based encoder as illustrated in Fig. 3. More precisely,
in order to deal with degradations at different scales,
the proposed encoder starts with extracting features
from the input degraded image x by using the Fea-
ture Pyramid Network (FPN) (Lin et al., 2017) with
Mobilnet-V2 backbone (Sandler et al., 2018). This
network outputs k multi-scale feature maps, each of
them is a 2D-dimensional vector corresponding to
the features extracted at different scales of the image.
These maps are referred to as annotation vectors:

FPN(x) = {M0,M1, ...,Mk} (1)

These multi-scale feature maps (except M0) are fur-
ther analyzed, as shown in Fig. 3, and are passed
through Convolution Maxpooling Blocks (CMB) to
extract low-level features. Each block comprises a
stack of eight units, each of them is formed by a 2D-
convolution layer followed by a 2D-maxpooling layer
and a ReLu activation layer. Especially, the number
of filters used in the convolution layers ranges from
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Figure 3: Illustration of the encoder-decoder structure within the proposed multi-decoder based generator.

32 to 2048. The maxpooling is performed on the fea-
ture maps obtained from the convolution layer to pro-
gressively reduce the spatial size of the representation
that minimizes the number of parameters and compu-
tations in the proposed network. The output of each
CMB unit is transmitted to the next unit and the final
output multi-scale low-level features are up-sampled
and concatenated into one tensor which contains rele-
vant information on different scale levels.

3.3 Decoders Proposed Structure

The proposed multi-task GAN-based image restora-
tion framework involves multi-decoder based gener-
ator. More precisely, separate decoders are used to
deal with different image restoration tasks. The same
architecture is used for each decoder. The separate
decoders share the low-level multi-scale features gen-
erated by the proposed encoder. As illustrated in
Fig. 3, these features are further analyzed in the de-
coder part using a 2D-convolution layer followed by
batch normalization and softmax layers, then upsam-
pled and concatenated with the M0 feature map. This
extra skip-connection with M0 is applied for preserv-
ing the features representation between the encoder
and the decoder parts, which helps the decoder to re-
cover information that might have been lost during
feed-forward convolutions. This leads to achieve bet-
ter sharpness and structural similarity in the generated

image.
Motivated by the outstanding success of trans-

formers in recent computer vision works, we pro-
pose to integrate in the decoders part the multi-
scale transformer blocks. This enhances our frame-
work’s ability to handle various degradations simulta-
neously, yielding promising results. As shown in Fig.
3, extra skip connections between the transformer
blocks are used. Especially, inspired from (Zamir
et al., 2022), each transformer block consists of multi-
deconvolution head transposed attention (MDTA) and
gated-deconvolution feed-forward network (GDFN).
The transformer block is designed as a multi-scale
block to adjust features in multiple layers of the de-
coder part. In fact, the MDTA is composed by depth-
wise convolutions to emphasize the local context in
order to produce the global attention map with layer
normalized tensor. We apply 1×1 convolutions to ag-
gregate pixel-wise cross-channel context followed by
3×3 depth-wise convolutions to encode channel-wise
spatial context. GDFN consists of depth-wise con-
volutions, which helps to encode information from
the neighboring pixel positions and it is useful for
learning local image structure for effective restora-
tion. GDFN contains also the non-linearity GELU
and the layer normalization. It controls the infor-
mation flow through the respective hierarchical scale,
thereby allowing each scale to focus on the fine details
complimentary to the other scale. GDFN focuses on
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enriching features with contextual information.

3.4 Loss Function

Likewise with other multi-scale restoration networks
(Martyniuk, 2019), we use a mixing loss L that com-
bines a content loss Lcont with an adversarial loss Ladv.
Hence, the overall loss function L can be formulated
as follows:

L = Lcont +β ·Ladv (2)

where β is a weight constant. The adversarial loss cor-
responds to the discriminators loss function, whereas
the content loss corresponds to the generator loss
function. In this work, we use the Wasserstein dis-
tance GAN Gradient Penalty, WGAN-GP (Gulrajani
et al., 2017), as the discriminators loss function. In
fact, WGAN-GP is shown to be efficient for improv-
ing the stability of training and also to be robust to the
choice of the generator structure. The game between
the generator G and the discriminator Dt∈{1..n}, called
as a critic, relies on the WGAN objective function
LWGAN which is constructed using the Kantorovich-
Rubinstein duality and defined as follows:

LWGAN = Ex∼Pr [Dt(x)]−Ex̂∼Pg [Dt(x̂)] (3)

where Pr presents the data distribution over real sam-
ple x and Pg constitutes the generator’s distribution,
defined by x̂ = G(z); the input z corresponds to a sam-
ple from a noise distribution. The discriminator tries
to maximize the LWGAN function during the training
phase by maximizing the difference between its re-
sults on real samples and its results on fake samples.

In the new form of Wasserstein metric, Dt is de-
manded to be K-Lipschitz continuous. The idea is
that there exists a real constant K ≥ 0, called a Lip-
schitz constant, and the critic value approximates
K ·W (Pr,Pυ), where W (Pr,Pυ) is the Wasserstein dis-
tance that measures the distance between the distribu-
tions Pr and Pυ. Here, each discriminator Dt approxi-
mates the distance between real and fake samples.

The WGAN concept requires that the discrimina-
tor relies within the space of 1-Lipschitz functions. In
order to enforce the Lipschitz constraint and to main-
tain a stable learning process with gradient descents,
Gulrajani et al. (Gulrajani et al., 2017) suggest to add
to LWGAN a gradient penalty term which is defined as:

ηEx̂∼Px̂

[
(∥▽x̂Dt(x̂)∥2 −1)2

]
(4)

Thereby, the adversarial loss function consists of two
parts which are the WGAN loss function LWGAN and
the gradient penalty. This can be formulated by:

Ladv = LWGAN +ηEx̂∼Px̂

[
(∥▽x̂Dt(x̂)∥2 −1)2

]
(5)

For the content loss Lcont , the classical choice can
be the Mean Absolute Error (MAE) loss or the Mean
Squared Error (MSE) loss on raw pixels. Using those
functions leads to blurry artifacts on generated im-
ages. In this work, the content loss has two loss com-
ponents: the L1 loss for preserving colors and the per-
ceptual loss function LX as follows:

Lcont = LX +0.5 ·L1 (6)

The perceptual loss function LX (Eq.7) presents an
L2-loss (Johnson et al., 2016), but relies on the dif-
ference between the generated and target images ac-
cording to the feature maps within the generator part.

LX =
1

Wi, jHi, j

Wi, j

∑
x=1

Hi, j

∑
y=1

(
Φi, j

(
IS)

x,y −Φi, j(G(IB))x,y

)2

(7)
where IB and IS are respectively a degraded image and
a ground-truth image, Hi, j and Wi, j denotes the dimen-
sions of the feature maps, and Φi, j represents the fea-
ture map generated by the j-th convolution layer.

4 EXPERIMENTAL EVALUATION

4.1 Datasets and Settings

In order to evaluate the proposed image restoration
framework, two well-known datasets are used, includ-
ing the GoPro dataset (Nah et al., 2017) and the SSID
dataset (Abdelhamed et al., 2018). Especially, the
SIDD, a Smartphone Image Denoising dataset, con-
tains 30000 noisy images taken from ten real-world
scenes under various lighting conditions and using
five smartphone cameras. This dataset aims to ad-
dress the problems of smartphones images denoising,
where the small sensor and aperture size cause no-
ticeable noise even in pictures taken at base ISO. Fur-
ther processing is applied to provide ground-truth im-
ages along with the noisy images. The GoPro dataset,
widely used for image deblurring, consists of 3214
pairs of blurry and sharp images captured in the wild
at 1280×720 resolution. It is divided into 2103 train-
ing pairs and 1111 test pairs. The images are derived
from high-speed camera videos at 240 frames per sec-
ond, with blurry images obtained by averaging suc-
cessive frames.

In this work, we used PyTorch for our imple-
mentation. The proposed multi-task framework was
trained on randomly cropped image patches of size
256×256 for 100 iterations per task. Horizontal and
vertical flips and rotations are adopted for data aug-
mentation. The training was performed on “Google
Collaboratory Pro” using a GPU. The parameter β in
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Eq.(4), that controls the relative importance of the loss
terms, is set to 0.01. The FPN within the encoder gen-
erated 5 feature maps (k ∈ 0..4).

4.2 Comparison with State-of-the-Art
Methods

The proposed network is evaluated on natural scene
images and compared with state-of-the-art deblur-
ring networks and denoising networks. Performance
Evaluation can be broadly categorized into quantita-
tive and qualitative evaluations. For the quantitative
evaluation, we use the Peak Signal-to-Noise Ratio
(PSNR) and the Structural SIMilarity index (SSIM).

Table 1 (respectively Table 2) illustrates the val-
ues of PSNR and SSIM generated by different meth-
ods performed on the GoPro dataset (respectively
the SIDD dataset) for the deblurring task (respec-
tively the denoising task). The proposed multi-task
GAN-based framework achieves a new state-of-the-
art PSNR value of 36.17 dB on the GoPro dataset,
as shown in Table 1. Results, illustrated in Figure
4, demonstrate superior deblurring performance with
sharper images and improved preservation of edges
and local details compared to state-of-the-art deblur-
ring networks.

Our framework, capable of handling various
degradations, is tested on the SIDD dataset for de-
noising. Results in Table 2 show its superior per-
formance compared to other state-of-the-art denois-
ing networks, as measured by PSNR. The proposed
framework demonstrates the second-best SSIM in-
dex performance and effectively removes real noise
while preserving fine details in denoised images, as
shown in Figure 5 with magnified regions from the
SIDD dataset. Our effective deblurring and denois-
ing results stem from utilizing low-level multi-scale
features in our encoder, enabling detailed analysis of
corrupted images. Moreover, the proposed decoder
structure relies on multiple instances of transformer
block which boost the GAN overall performance in
image restoration.

5 CONCLUSION AND OPEN
ISSUES

In this paper, we proposed an effective multi-task
GAN-based image restoration framework that ad-
dresses various degradations. Key features include:
(1) a unique generator with separate decoders, (2) uti-
lization of low-level multi-scale features in the en-
coder, and (3) integration of multi-scale Transformer

Table 1: PSNR and SSIM values from various methods on
the GoPro dataset for image deblurring, with the top two
results emphasized in bold and underlined.

Restoration method PSNR SSIM
MIMO-UNet (Cho et al., 2021) 32.68 0.959
HiNet (Chen et al., 2021) 32.71 0.959
MAXIM (Tu et al., 2022) 32.86 0.961
Restormer (Zamir et al., 2022) 32.92 0.961
MSCNN (Nah et al., 2017) 29.20 0.916
MPRNet (Zamir et al., 2021) 32.66 0.959
SRNet (Tao et al., 2018) 30.10 0.932
NAFNet (Chen et al., 2022) 32.88 0.961
MTLGAN (Martyniuk, 2019) 27.30 0.810
DeblurGAN-v2 (Kupyn et al., 2019) 29.55 0.934
MFC-Net (Xia et al., 2022) 31.04 0.916
SVRNN (Ren et al., 2022) 30.46 0.936
UFormer (Wang et al., 2022) 32.97 0.967
Our proposition 36.17 0.961

Table 2: PSNR and SSIM values from various methods on
the SIDD dataset for image denoising. Best first and second
results are highlighted in bold and underlined, respectively.

Restoration method PSNR SSIM
MPRNet (Zamir et al., 2021) 39.71 0.958
MIRNet (Zamir et al., 2020) 39.72 0.959
NBNet (Cheng et al., 2021) 39.75 0.959
UFormer (Wang et al., 2022) 39.89 0.960
MAXIM (Tu et al., 2022) 39.96 0.960
HiNet (Chen et al., 2021) 39.99 0.958
Restormer (Zamir et al., 2022) 40.02 0.960
NAFNet (Chen et al., 2022) 40.30 0.962
Our proposition 42.41 0.961

technique in each decoder to learn and share low-
level feature representations across tasks. Extensive
experimental results on two datasets demonstrate the
framework’s superior quantitative results compared
to state-of-the-art methods for various degradations.
Additionally, qualitative evaluations on degraded im-
ages confirm the framework’s ability to visually re-
construct plausible deblurred and denoised images ef-
ficiently. As a perspective of this work, we plan to
explore our multi-task framework for various appli-
cations, with a focus on evaluating its effectiveness in
tasks like image super-resolution, underwater image
restoration, and image dehazing.
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(a)

(b)

(c)

(d)

Figure 4: Examples of deblurring results on GoPro dataset. Left to right: input blurry images, output images obtained by the
proposed framework, ground truth images.

(a)

(b)

(c)

Figure 5: Examples of denoising results on SIDD dataset. Left to right: input noisy images, images reconstructed by the
proposed framework, ground truth images.
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