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Abstract: In this article, we introduce a novel variant of the single Depot multiple Set Orienteering Problem (sDmSOP),
which we refer to as the multi-Depot multiple Set Orienteering Problem (mDmSOP). We suggest the integer
linear program (ILP) of the mDmSOP also, and analyze the impact of the Sub-tour Elimination Constraints
(SECs) based on the Miller–Tucker–Zemlin (MTZ) and the Gavish-Graves (GG) model on it. The mDmSOP
is most frequently encountered in distribution logistics. In mDmSOP, a fleet of travelers is utilized to serve a
set of customers from a number of depots, with each traveler associated with a specific depot. The challenge
is to choose the routes for each traveler to maximize the profit within a specific budget, while the profit can
be earned from a set of customers only once by visiting exactly one customer. We show the simulation results
conducted on the General Algebraic Modeling System (GAMS) 39.0.2, which is used to model and analyze
linear, non-linear, mixed-integer, and other complex optimization problems. The Generalized Traveling Sales-
man Problem (GTSP) instances of up to 200 vertices are taken as the input data set for the simulations. The
results show that the MTZ-based formulation takes less time than the GG-based formulation to converge to
the optimal solution for the mDmSOP.

1 INTRODUCTION

In recent years, the NP-hard routing problems with
profits have received more attention due to their var-
ious real-world applications. These problems have
mainly been classified as arc routing problems ex-
plored by (Archetti and Speranza, 2015) and node
routing problems studied by (Archetti et al., 2014)
and (Gunawan et al., 2016) recently. The Orienteer-
ing Problem (OP) suggested by (Golden et al., 1987)
is one of the most explored profit-oriented variants of
the Traveling Salesman Problem (TSP) in the litera-
ture and it belongs to the NP-hard complexity class.
The Set Orienteering Problem (SOP) is a variant of
the OP proposed by (Archetti et al., 2018). Recently
the single Depot multiple Set Orienteering Problem
(sDmSOP), a variant of the SOP has been proposed
by (Kant et al., 2023), which has a single depot with
multiple travelers associated with it and the objective
is to find a path for each traveler to maximize the
profit. These variants are mainly helpful for solving
mass distribution supply-chain problems, and sensory
network information retrieval.

Solving any NP-hard complexity class problem in

an efficient time is one of the most desirable issues
in recent years because the solution can be applied to
all problems of that class to solve those problems ef-
ficiently, irrespective of the application domain of its
researchers. So, choosing the correct Sub-tour Elim-
ination Constraints (SECs) is a problem encountered
in all NP-hard routing problems. From the Vehicle
Routing Problem (VRP) to the OP, a lot of research
is done on the relative comparisons of the formula-
tions based on the SECs proposed by (Dantzig et al.,
1954), (Miller et al., 1960) (MTZ) and (Gavish and
Graves, 1978) (GG). (Lalla-Ruiz et al., 2016) show
that the improved MTZ SECs work better than the
SECs given by (Desrochers and Laporte, 1991) and
(Kara et al., 2004) for the multi-depot open vehicle
routing problem. (Vansteenwegen et al., 2011) pro-
posed an integer programming (IP) formulation for
the Orienteering Problem, which used the MTZ-based
SECs, while the Set Orienteering Problem proposed
by (Archetti et al., 2018) implemented SECs using
the GG-based formulation. Here, the SECs chosen for
the formulation are based on the comparative analysis
done by (Öncan et al., 2009); the study shows that the
GG-based SECs yield better results than the MTZ-
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based SECs for 24 Asymmetric Traveling Salesman
Problem formulations. (Bazrafshan et al., 2021) con-
cluded in their comparative study of sub-tour elimi-
nation methods that it is not specified which SECs are
better suited for a problem until we check the perfor-
mance of different SECs. Hence, a comparative study
must be performed to choose the correct SECs for the
specific formulation.

In this paper, we formally define and propose the
integer linear program (ILP) for the multi-Depot mul-
tiple Set Orienteering Problem (mDmSOP) and com-
pare the computational time of the mDmSOP formu-
lation using sub-tour elimination constraints (SECs)
proposed by (Miller et al., 1960) and (Gavish and
Graves, 1978). As we already know, the SECs are
the most computationally expensive part of the ILP
formulation. The reason for choosing these SECs is
the same number of variables and constraints of the
order O(n2) for TSP, but here, we simulate both SECs
for the mDmSOP formulation and identify which one
works best for our problem. The mDmSOP is impor-
tant to study as many supply-chain problems can not
be modeled using a single depot and multiple travel-
ers like the sDmSOP. In the mDmSOP, we are given
M′ depots, having one traveler each. The vertices are
divided into mutually exclusive clusters, and there is
an associated profit with each cluster. The traveler
has to reach exactly one vertex in the cluster to earn
the profit of that cluster. There is a budget constraint
B, that bounds the maximum distance traversed by all
the travelers.

The following is the summary of our contribution
to this paper; we propose a mathematical formulation
in section 2. The comparative results of the mDmSOP
formulation based on the MTZ-based SECs (ILP 1)
and the GG-based SECs (ILP 2) are shown in section
3, and the conclusion and future scope of research is
given in section 4.

2 PROBLEM DEFINITION AND
FORMULATION

In this section, a formal definition and mathemati-
cal formulation of the mDmSOP are presented as fol-
lows:

We have an undirected complete weighted graph
G(V,E), where the vertex set and edge set is repre-
sented by V = {v1,v2, · · · ,vn}∪{vn+1, · · · ,vn+m} and
E = {epq : ∀(p,q) ∈ V}, respectively. The last m
vertices in the vertex set represent the depots from
where the m travelers start. Let the index set for
travelers be represented by M = {1,2, · · · ,m} and the
last m vertices by the set M′, while Cpq represents

the cost to travel from vertex p to q of edge epq.
Its cost matrix satisfies the triangle inequality, i.e.,
Cpr ≤ Cpq +Cqr ∀(p,q,r) ∈ V . For vertices p and
q, Cpq is chosen as the minimum cost of all pos-
sible paths between vertices p and q; from shortest
path problems, the triangle inequality is guaranteed
by minimum cost criterion. For each traveler, the cost
incurred is the sum of the costs of all edges traversed
by that traveler. Combining the sum of costs for all m
salesmen, we get the overall cost. An upper bound of
B is placed on the total cost that is permitted in the fi-
nal solution of our problem. Every traveler is required
to reach its starting position at the end of the tour,
and every traveler must visit at least one vertex other
than the depot. The vertex set V is partitioned into
clusters represented by a set S = {Si : i = 1, · · · ,r},
such that Si ∩S j = /0, ∀i ̸= j and

⋃i=r
i=1 Si =V , where r

represents the total number of clusters. We also have
Sµ ⊆ S where the set Sµ represents the last m clusters
in S. For each Si ∈ S, we have an associated profit
Pi that is obtained once a traveler visits any vertex in
Si. The cost of any cluster in Sµ is defined to be 0 as
they are the starting point for their traveler. For each
cluster Si ∈ S, we have the restriction that only one
traveler visits that cluster and only one vertex in that
cluster, visiting two or more vertices in the same set
does not give any additional profit but increases our
overall cost. However, this restriction is not there for
the last m clusters, as travelers are required to reach
their starting depot after the completion of their tour.
We define the following decision variables for our for-
mulation:
1. x jpq: Binary decision variable which takes value

1 iff edge (p,q) is visited by traveler j, otherwise
0.

2. y jp: Binary decision variable which takes value 1
iff vertex p is visited by traveler j, otherwise 0.

3. z ji: Binary decision variable which takes value 1
iff cluster i is visited by traveler j, otherwise 0.

The goal of the problem is to maximize the profit that
can be achieved by all travelers without violating the
constraints of the problem.

The mathematical formulation of the mDmSOP
can be formalized as follows:

maximize ∑
j∈M

∑
i∈S

Piz ji, (1)

subject to:

x jpq,y jp,z ji ∈ {0,1}, ∀ j ∈ M, ∀(p,q) ∈V, (2)

∑
j∈M

∑
p∈V

∑
q∈V

x jpqCpq ≤ B, (3)
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y j( j+n) = 1, ∀ j ∈ M, (4)

∑
p∈V−{q}

x jpq = y jq, ∀ j ∈ M, ∀q ∈V, (5)

∑
p∈V−{q}

x jqp = y jq, ∀ j ∈ M, ∀q ∈V, (6)

∑
p∈Si

y jp = z ji, ∀ j ∈ M, ∀i ∈ S, (7)

∑
j∈M

z ji ≤ 1, ∀i ∈ S, (8)

0 ≤ upq ≤ (n−m+1)
m

∑
j=1

x jpq, ∀(p,q) ∈ (V −M′)2,

(9)

∑
q∈V,p̸=q

upq − ∑
q∈V−M,p̸=q

uqp =
m

∑
j=1

y jp, ∀p ∈V −M′,

(10)

1 ≤ u jp ≤ n, ∀ j ∈ M, ∀p ∈V, (11)

u jp −u jq +1 ≤ n(1− x jpq), ∀ j ∈ M,

∀(p,q) ∈ {V −M′|p ̸= q}.
(12)

The objective function (1) maximizes collected
profit from the clusters visited, equation (2) defines
the nature of the variables, equation (3) ensures that
the overall travel cost should not exceed the budget
B. Equation (4) ensures that the traveler associated
with a depot should finish their journey at the same
depot. Equations (5) and (6) ensure that the in-degree
is equal to the out-degree of a vertex. Equation (7)
implies that for any cluster i and traveler j, j visits
the cluster i at most once, while equation (8) ensures
that no cluster can be visited more than once by any
traveler. Equations (9) and (10) are based on (Gav-
ish and Graves, 1978). They used the arcs of network
flow to get the SECs for the mDmSOP while (11) and
(12) are based on (Miller et al., 1960), where node po-
tential u jp specifies the order in which the vertices are
visited by traveler j, u jp ≤ u jq implies that traveler j
visits vertex p before vertex q.

3 COMPARATIVE RESULTS

In this section, we present the computational results of
the tests we made to evaluate the performance of the
mDmSOP. The simulation is done on Intel® Xeon(R)
Silver 4316 CPU @ 2.30GHz × 80 with 256 GB of
RAM using all 40 threads. The mathematical formu-
lations were solved using the GAMS 39.0.2.

In section 3.1, we describe how the instances are
generated for the mDmSOP, and the computational
results are shown in section 3.2.

3.1 Test Instances

To analyze the comparative results of the above for-
mulations, the Generalized Traveling Salesman Prob-
lem (GTSP) instances suggested by (Noon, 1988) are
used. We modified the GTSP instances for our formu-
lation as follows:

1. Move the depot vertices from non-depot clusters
to depot clusters.

2. Sort the non-depot clusters in ascending order of
the number of vertices in the clusters.

3. Iterate over the list, and if there is an empty clus-
ter, find the first vertex from a non-empty clus-
ter with a size greater than one and put it into the
empty cluster found.

This algorithm generates clusters that satisfy the con-
straints of our problem.

The profit is assigned to the clusters using g1 and
g2 schemes used by (Pěnička et al., 2019). In the g1
scheme, the profit of a cluster is equal to the number
of vertices in that cluster. Whereas in the g2 scheme
for each vertex numbered k, the profit assigned is
(1+ 7141× k)mod 100, and the profit assigned to a
cluster is the sum of profits of the vertices in the clus-
ter. In each case, the clusters containing the depot are
assigned a profit of 0.

3.2 Computational Results

The results of the simulation are shown in Table 1 and
Table 2 with the following criteria:

1. Table 1: threads = 0.

2. Table 2: threads = 0 - Set 1 has a 5% relative gap,
and Set 2 has a 20% relative gap.

Here threads = 0 means the system is using all the
available threads. All the instances of Table 1 are
solved till we find the optimal solution, but for Ta-
ble 2, the GAMS stops if the solution is found in a
relative gap of 5% for Set 1 and 20% for Set 2, re-
spectively. Set 1 contains the instances which can be

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

352



Table 1: ILP comparison with optimal solutions on small instances with w < 1.

Instance n m Pg w Opt. ILP 1 ILP 2
Sol. Time Gap Sol. Time Gap

11berlin52 52 2 g1 0.4 27 27 8.69 0.00 27 7.57 0.00
11berlin52 52 2 g1 0.6 34 34 1392.51 0.00 34 325.71 0.00
11berlin52 52 2 g1 0.8 45 45 15457.76 0.00 45 2644.50 0.00
11berlin52 52 2 g2 0.4 1276 1276 6.99 0.00 1276 8.48 0.00
11berlin52 52 2 g2 0.6 1571 1571 2360.78 0.00 1571 384.84 0.00
11berlin52 52 3 g1 0.4 36 36 6.39 0.00 36 5.78 0.00
11berlin52 52 3 g1 0.6 43 43 42.67 0.00 43 114.42 0.00
11berlin52 52 3 g1 0.8 47 47 36.34 0.00 47 20.79 0.00
11berlin52 52 3 g2 0.4 1788 1788 8.29 0.00 1788 7.47 0.00
11berlin52 52 3 g2 0.6 2083 2083 388.39 0.00 2083 142.51 0.00
11berlin52 52 3 g2 0.8 2265 2265 54.48 0.00 2265 445.27 0.00

11eil51 51 2 g1 0.4 29 29 5.92 0.00 29 8.44 0.00
11eil51 51 2 g1 0.6 38 38 69.97 0.00 38 239.20 0.00
11eil51 51 2 g1 0.8 45 45 76.09 0.00 45 136.23 0.00
11eil51 51 2 g2 0.4 1552 1552 4.78 0.00 1552 5.69 0.00
11eil51 51 2 g2 0.6 1931 1931 121.88 0.00 1931 376.14 0.00
11eil51 51 2 g2 0.8 2226 2226 179.40 0.00 2226 350.85 0.00
11eil51 51 3 g1 0.4 27 27 6.15 0.00 27 12.53 0.00
11eil51 51 3 g1 0.6 37 37 39.53 0.00 37 80.06 0.00
11eil51 51 3 g1 0.8 42 42 418.33 0.00 42 310.25 0.00
11eil51 51 3 g2 0.4 1483 1483 6.43 0.00 1483 5.56 0.00
11eil51 51 3 g2 0.6 1862 1862 54.49 0.00 1862 158.43 0.00
11eil51 51 3 g2 0.8 2077 2077 282.39 0.00 2077 839.42 0.00
16eil76 76 2 g1 0.4 39 39 591.15 0.00 39 1575.45 0.00
16eil76 76 2 g1 0.6 54 54 9222.96 0.00 54 14121.98 0.00
16eil76 76 2 g2 0.4 1939 1939 433.91 0.00 1939 1487.15 0.00
16eil76 76 2 g2 0.6 2621 2621 13025.47 0.00 2621 33608.96 0.00
16eil76 76 3 g1 0.4 43 43 49.72 0.00 43 368.46 0.00
16eil76 76 3 g1 0.6 57 57 1949.76 0.00 57 8194.79 0.00
16eil76 76 3 g1 0.8 65 65 13809.58 0.00 65 32938.12 0.00
16eil76 76 3 g2 0.4 2042 2042 50.74 0.00 2042 366.64 0.00
16eil76 76 3 g2 0.6 2696 2696 3645.93 0.00 2696 21970.50 0.00
16eil76 76 3 g2 0.8 3070 3070 25086.16 0.00 3070 151192.61 0.00

Avg. 2693.76 8256.21

solved using GAMS optimally, and Set 2 contains the
instances which have less than 200 vertices and which
can not be solved using GAMS optimally. The results
are presented in Table 1 and Table 2. The organization
of Table 1 is as follows: The first five columns repre-
sent the GTSP instance name, the number of vertices
(n) in the GTSP instance, the number of travelers (m)
used, the rule to generate the profit (Pg), and the value
of w. Budget is calculated as B = w× Tmax, where
w is a multiplicative factor so that we can adjust the
budget according to our need and Tmax is the solution
of the GTSP instance, Opt. column shows the opti-
mal solution for the mDmSOP. The last six columns
represent the solution, time, and relative gap for the
mDmSOP formulation based on the MTZ and the GG
SECs respectively.

4 CONCLUSION

In this paper, we introduce a generalization of the sin-
gle Depot multiple Set Orienteering Problem (sDm-
SOP) which has multiple depots and each depot has
one traveler associated with it; the goal of this prob-
lem is to maximize profit from mutually exclusive
clusters using multiple travelers with the respective
starting and ending depot with a cumulative budget
shared by all the travelers. Each cluster is associ-
ated with a fixed profit that is determined by two rules
termed g1 and g2, and the profit can only be earned if
a traveler visits exactly one vertex from a cluster. The
proposed variant has applications mainly in the sup-
ply chain, where a distributor has more than one ser-
vice point from where the distributor can supply the
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Table 2: ILP comparison on small and medium instances with w = 1.

Instance n m Pg Opt. ILP 1 ILP 2
Sol. Time Gap Sol. Time Gap

Set 1 11berlin52 52 2 g1 50 48 1.81 4.00 48 16.22 4.00
11eil51 51 2 g1 49 47 4.84 4.08 47 5.91 4.08
14st70 70 2 g1 68 67 9.93 1.47 67 34.55 1.47
16eil76 76 2 g1 74 71 125.56 4.05 71 244.69 4.05

11berlin52 52 2 g2 2375 2264 5.36 4.67 2264 2.52 4.67
11eil51 51 2 g2 2365 2293 6.64 3.04 2293 7.96 3.04
14st70 70 2 g2 3266 3182 12.81 2.57 3182 16.50 2.57

Avg. 23.85 46.91

Set 2 20rat99 99 2 g1 97 85 102.28 12.37 83 281.75 14.43
20rd100 100 2 g1 98 84 9.91 14.29 89 18.45 9.18
21eil101 101 2 g1 99 85 10.00 14.14 87 63.88 12.12
21lin105 105 2 g1 103 89 11.98 13.59 92 45.68 10.68
25pr124 124 2 g1 122 103 289.63 15.57 102 543.62 16.39

26bier127 127 2 g1 125 106 31.69 15.20 110 21.64 12.00
26ch130 130 2 g1 128 109 37.36 14.84 119 410.47 7.03
28pr136 136 2 g1 134 114 64.90 14.93 119 482.91 11.19
29pr144 144 2 g1 142 123 382.59 13.38 126 285.10 11.27
30ch150 150 2 g1 148 130 376.93 12.16 126 946.24 14.86

30kroA150 150 2 g1 148 127 505.32 14.19 124 1360.52 16.22
30kroB150 150 2 g1 148 130 343.76 12.16 137 122.13 7.43

31pr152 152 2 g1 150 128 600.80 14.67 126 1004.65 16.00
32u159 159 2 g1 157 131 493.96 16.56 131 849.72 16.56

39rat195 195 2 g1 193 193 49.44 0.00 192 23.86 0.52
40d198 198 2 g1 196 183 42.91 6.63 191 35.96 2.55
20rat99 99 2 g2 4793 4228 114.81 11.79 4073 488.31 15.02
20rd100 100 2 g2 4871 4304 8.58 11.64 4151 12.79 14.78
21eil101 101 2 g2 4890 4200 10.99 14.11 4293 36.15 12.21
21lin105 105 2 g2 5076 4287 10.48 15.54 4294 15.35 15.41
25pr124 124 2 g2 6043 5172 230.56 14.41 5230 1106.06 13.45

26bier127 127 2 g2 6175 5888 15.67 4.65 5458 21.16 11.61
26ch130 130 2 g2 6276 5256 43.64 16.25 5318 213.55 15.26
28pr136 136 2 g2 6585 5692 386.29 13.56 5490 628.93 16.63
29pr144 144 2 g2 6993 6021 322.39 13.90 5951 222.97 14.90
30ch150 150 2 g2 7246 6052 494.60 16.48 6334 85.90 12.59

30kroA150 150 2 g2 7246 6089 708.48 15.97 6070 1322.84 16.23
30kroB150 150 2 g2 7246 6459 34.70 10.86 6455 826.44 10.92

31pr152 152 2 g2 7325 6237 646.70 14.85 6181 346.05 15.62
32u159 159 2 g2 7743 6519 446.09 15.81 6561 517.54 15.27

39rat195 195 2 g2 9541 9175 23.62 3.84 9519 23.20 0.23
40d198 198 2 g2 9706 8330 17.37 14.18 9476 35.15 2.37

Avg. 214.64 387.47

products to customers and gain the maximum profit
while providing the customer with a better price for
the product.

Out of 33 instances of Table 1, only 10 instances
take less time to find the optimal solution for the
mDmSOP formulation using GG-based SECs; the av-
erage time taken by GG-based SECs formulation is
3.06 times more than the average time taken by the
MTZ-based SECs formulation for the instances of Ta-

ble 1. Only in 1 instance of Set 1 of Table 2, the
GG-based SECs formulation is able to find a solu-
tion within a 5% relative gap in a lesser time than the
MTZ-based SECs formulation. For Set 2 of Table 2,
the GG-based SECs formulation finds a solution in
less time than the MTZ-based SECs formulation in
only 9 instances out of 32 instances. Moreover, the
average time taken in the MTZ-based SECs formu-
lation is lesser than the GG-based SECs formulation
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of the mDmSOP, so we can conclude that the MTZ-
based SECs work better in most of the instances for
the mDmSOP. Future research directions may include
comparing a new variant of the mDmSOP with an in-
dividual traveler budget, rather than a cumulative bud-
get shared by all the travelers, and developing an effi-
cient algorithm dedicated to solving both the individ-
ual and cumulative budget variation of the mDmSOP.
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