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Abstract: This work presents a variation of Naor’s strategic observable model (Naor, 1969) for a loss system M/G/2/2,
with a heterogeneous service valuations induced by the location of customers in relation to two servers, A,
located at the origin, and B, located at M. Customers incur a “travel cost” which depends linearly on the
distance of the customer from the server. Arrival of customers is assumed to be Poisson with a rate that is the
integral of a nonnegative intensity function. We find the Nash equilibrium threshold strategy of the customers,
and formulate the conditions that determine the optimal social welfare strategy. For the symmetric case (i.e.,
both servers have the same parameters and the intensity function is symmetric), we find the socially optimal
strategies; Interestingly, we find that when only one server is idle, then under social optimality, the server also
serves far away consumers, consumers whom he would not serve if he was a single server (i.e., in M/M/1/1).

1 INTRODUCTION

Customers of a service system often have heteroge-
neous service valuations, and this heterogeneity may
be caused by various reasons. In this paper, we study
a model with two servers, each located at a differ-
ent site, therefore a consumer (in general) incures
different “travel costs” when arriving at each service
site. In such circumstances, customers need to decide
whether to arrive for service, and if so, to what service
point to arrive. A realistic example may be that of a
network of public schools, hospitals, etc., from which
an individual needs to choose. Of course “location”
may refer to a geographic location or it may serve as
a metaphoric way expressing different preferences on
the ideal type of service.

The performance of service systems with strate-
gic customers has attracted much attention in recent
years (see, for example, Hassin & Haviv, 2003; Has-
sin, 2016). Naor (1969), was the first to introduce a
queueing model that describes customer rational de-
cisions. The model considers an FCFS M/M/1 sys-
tem with homogeneous customers, a fixed reward as-
sociated with service completion, and linear waiting
costs. The Nash equilibrium solution in Naor’s model
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is simple since there exists a dominant pure threshold
strategy ne, such that an arriving customer joins the
queue if and only if the observed queue upon arrival
is shorter than ne. This strategy maximizes the indi-
vidual’s expected welfare regardless of the strategies
adopted by the others. The socially-optimal behavior
is also characterized by a pure threshold strategy n∗,
such that n∗ ≤ ne.

Naor assumes that customers are homogeneous
with respect to service valuation, and much of the
literature on observable queues (i.e., assuming cus-
tomers know the queue length before joining it) fol-
low this assumption. Some exceptions are described
in Section 2.5 of Hassin & Haviv (2003). For ex-
ample, Larsen (1998) assumes that the service value
is a continuous random variable and proves that the
profits and social welfare are unimodal functions of
the price. For the case of a loss system (where cus-
tomers join iff the server is idle), Larsen proves that
the profit-maximizing fee exceeds the socially opti-
mal fee. Miller and Buckman (1987) consider an
M/M/s/s loss system with heterogeneous service val-
ues and characterize the socially optimal fee.

Some authors investigated the price of anarchy
(PoA) in various service systems (see, for example,
Koutsoupias & Papadimitriou, 1999; Mavronicolas
& Spirakis, 2001; Hassin, 2016). The price of an-
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archy measures the inefficiency of selfish behavior.
It is defined as the ratio of the social welfare un-
der optimum to the Social welfare in equilibrium.
In Gilboa-Freedman, Hassin and Kerner (2014), the
PoA in Naor’s model is shown to have an odd behav-
ior. It increases sharply (from 1.5 to 2) as the arrival
rate comes close to the service rate and becomes un-
bounded exactly when the arrival rate is greater than
the service rate, which is odd since the system is al-
ways stable.

Most relevant to our work is the work of Hassin,
Nowik and Shaki (2018), in which heterogeneity in
service valuation is introduced through a Hotelling-
type model where customers reside in a “linear city”
and incur “transportation costs” from their locations
to the location of the server. Similar models have
been investigated (e.g. D’aspremont & Jaskold,
1979; Dobson & Stavrulaki, 2007; Economides,
1986; Gallay, Olivier and Max-Olivier Hongler, 2008;
Hotelling, 1929; Kwasnica & Euthemia, 2008; Pang-
burn & Stavrulaki, 2008; Ray & Jewkes, 2004; §6.7
and §7.5 in Hassin, 2016) but they all assume a con-
stant density (possibly restricted to an interval). In
contrast, Hassin, Nowik and Shaki allow non-uniform
distributions of customer locations, and the potential
arrival of customers with distances less than x from
the service facility is assumed to be distributed ac-
cording to Poisson with rate λ(x) =

∫ x
0 h(y)dy < ∞,

where h(y) is a nonnegative “intensity” function of
the distance y. The definition of λ(x) by an integral is
natural since the customers accumulate from location
0, to location x. The intensity function and (linear)
travel costs jointly generate the distribution of cus-
tomer service valuations. A simple example is a two-
dimensional city, in which the arrival of customers is
uniform. In this case the intensity function can be de-
fined as h(x) = 2πx, and so the arrival of customers
with distances less than x is assumed to be a Poisson
process with rate λ(x) =

∫ x
0 2πydy = πx2. In a loss

system M/G/1/1, Hassin, Nowik and Shaki (2018) de-
fine the threshold Nash equilibrium strategy xe and the
socially-optimal threshold strategy x∗. They investi-
gate the dependence of the PoA on the parameter xe
and the intensity function h. They develop an explicit
formula to calculate lim

xe→∞
PoA(h,xe) when it exists.

As in Gilboa-Freedman, Hassin and Kerner
(2014), the number 2 arrises repeatadely in several
results of Hassin, Nowik and Shaki (2018), relating
to the limit of PoA when xe, goes to infinity. For
instance, if h converges to a positive constant then
PoA converges to 2; if h increases (decreases) then
the limit of PoA is at least (at most) 2. In a system
with a queue they prove that PoA may be unbounded
already in the simplest case of uniform arrival.

The goal of this work is to extend Hassin, Nowik
and Shaki’s model to the case of two servers (instead
of a single server), where server A is located at the
origin and server B is located at a point denoted as
M. If the servers’ points are distsnce from each other
then the system is just a combination of two single-
server systems. It becomes more interesting when the
servers are closer, creating a dilemma for some con-
sumers regarding what service point to arrive at.

The value of information sharing between service
providers lies in its capacity to enhance coordination,
optimize resource allocation, and improve overall sys-
tem efficiency. When service providers have common
knowledge about each other’s status, they can collab-
orate more effectively, leading to a better distribution
of workloads and resources. This coordination of-
ten results in increased efficiency, reduced response
times, and improved service quality. The ability to
access real-time information about the status of other
providers allows for more informed decision-making,
enabling adaptive strategies that respond dynamically
to changing conditions. Ultimately, the value of such
information is reflected in its power to streamline op-
erations, enhance service delivery, and contribute to
a more resilient and responsive system. Think for
example of Air Traffic Control Towers; In a situa-
tion where two air traffic control towers manage ad-
jacent airspaces and are aware of each other’s work-
load, they can coordinate and optimize the allocation
of incoming flights. If one tower is busy, the other
can efficiently handle additional aircraft to maintain
smoother air traffic operations. Another example is
of a hospital with two emergency rooms, if each ER
is aware of the patient load and occupancy status of
the other, medical staff can coordinate patient assign-
ments. Deo and Gurvich (2011) consider a routing
problem motivated by the diversion of ambulances to
neighboring hospitals. These examples illustrate situ-
ations where the level of information sharing between
service providers can significantly impact their abil-
ity to optimize resource allocation and overall system
efficiency.

2 THE M/G/1/1 MODEL:
NOTATIONS AND
FUNDEMENTAL RESULTS

In the model of one server, for all x ≥ 0, customers
with distances less than x, arrive to the system accord-

ing to a Poisson process with rate λ(x) =
x∫

0
h(y)dy,

where h(y) is an intensity function. The service dis-
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tribution is general with average rate µ and the benefit
from a service is R. There is a waiting cost cw per
unit time while in the system and a traveling cost of
ct per unit distance. The optimal (individual) strategy
of a customer located at a distance x from the origin,
is to enter service if the server is idle and the utility
is positive, namely: R ≥ cw

µ + ctx. This implies that
under individual optimization, a consumer located at
a distance x from the origin, is to enter service iff the
server is idle and

x ≤ R− cw/µ
ct

.

Denote v = R−cw/µ
ct

. (Note that the optimal individ-
ual threshold strategy is denoted in Hassin, Nowik
and Shaki (2018), as xe, and in this paper as v.).
Hence there is a unique individual optimal strategy
(i.e., Nash equilibrium): v = R−cw/µ

ct
. Under this strat-

egy, a customer located at a distance x, enters service
iff the server is idle and x ≤ v.

The utility of a customer entering service from lo-
cation x is: R− cw/µ− ctx = ct(v− x). The balance
equation for the probability π0(x), of an idle server
satisfies:

π0(x)λ(x) = (1−π0(x))µ.

This implies that:

π0(x) =
1

1+ρ(x)
=

1

1+ 1
µ

x∫
0

h(y)dy
,

where ρ(x) = λ(x)/µ.
The expected social benefit per unit of time asso-

ciated with threshold x satisfies

S1(x) = ct

∫ x

0
(v− y)h(y)π0(x)dy =

ct
∫ x

0 (v− y)h(y)dy

1+ 1
µ
∫ x

0 h(y)dy
.

(1)
Let x∗ be the threshold strategy that maximizes social
welfare. Under this strategy, only consumers with dis-
tances less than x∗, will enter the system. It is shown
in Hassin, Nowik and Shaki (2018), that;

x∗ < v,

and that given v, the optimal threshold strategy x∗ is
unique and satisfies,

v =
1
µ

∫ x∗

0
(x∗− y)h(y)dy+ x∗, (2)

(see Proposition 3.1 in Hassin, Nowik and Shaki
(2018)).

3 THE M/G/2/2 MODEL

3.1 Model Description

We consider two servers A and B on the interval
[0,M]. A is located at the origin, and B is located at
a point M. The model makes the following assump-
tions:

1. All customers reside on the interval [0,M].

2. The arrivals to the servers follow a Poisson
process with rates defined according to a given
‘intensity function’ h, defined over the inter-
val [0,M]. For any x, if consumers from in-
terval [0,x], turn to server A, then the arrival
rate from that interval is λA(x) =

∫ x
0 h(y)dy.

Similarily, for any x, if consumers from inter-
val [x,M], turn to server B, then the arrival rate
from that interval is λB(x) =

∫ M
x h(y)dy.

3. The intensity function h may be any nonnega-

tive function for which
1∫
0

h(y)dy is finite for all

x ≥ 0.

4. Customers know their distance from each of
the two servers.

5. The status of the servers is observable.

6. Customers are risk neutral, maximizing ex-
pected net benefit.

7. The service distribution of servers A and B,
is exponentially with rate µA, and µB, respec-
tively. The system is a loss system.

8. The benefit from a completed service is R.

9. The waiting cost is cw per unit time (while in
the system).

10. The traveling cost to servers A and B are cA
t and

cB
t , respectively, per unit distance, and travel-

ing is instantaneous.

11. All processes are mutually independent.

12. The decision of the customer is whether to en-
ter to service and if so then which of the servers
to turn to.

The states of the system are denoted with (i, j), i, j ∈
{0,1}, where i = 0 means that server A is free, and
i = 1 means that Server A is busy. The same for j and
server B.

For State (0,0), let xA00, and xB00, be the arrival
thresholds, for servers A and B respectively. Namely,
if both servers are idle, then consumers with loca-
tions closer to the origin than xA00, (i.e., with loca-
tions x, s.t., x ≤ xA00), turn to server A, and similar-
ily, consumers with locations closer to M than xB00,

Multi-Server Queue, with Heterogeneous Service Valuations Induced by Travel Costs

135



(i.e., with locations x, s.t., x ≥ xB00), turn to server
B. For State (0,1), let xA01 be the arrival threshold,
from which we allow consumers to arrive to Server A,
when Server B is busy, and similarly for state (1,0),
let xB10 be the arrival threshold, from which we al-
low consumers to arrive to Server B, when Server A
is busy.

Every strategy is described by 4-dimensional vec-
tor −→x = (xA00,xA01,xB00,xB10).

For the strategy to be well defined, it is necessary
that,

xA00 ≤ xB00, (3)

since if xB00 < xA00, then when both servers are idle,
consumers that are located between xB00 and xA00,
should turn to server A according to xA00, but accord-
ing to xB00 they should turn to server B.

Given −→x , denote πi j(
−→x ), i, j ∈ {0,1}, as the

probability that the system is in state (i, j), i, j ∈
{0,1}.

In the following sections, we consider individual
and socially optimal strategies.

4 INDIVIDUAL OPTIMIZATION

Assume for the moment that only one server is idle
(i.e., state (0,1) or state (1,0)). Then the optimal
strategy of a customer located at a distance x from
server A (at a distance M − x from server B), is to ar-
rive to server A (server B) if server A (server B) is idle
and R ≥ cw

µA
+ cA

t x (R ≥ cw
µB

− cB
t (M − xB

e )). In other
words, the threshold strategies are:

vA =
R− cw/µA

cA
t

, and vB = M− R− cw/µB

cB
t

. (4)

For state (0,0), we need to relate separately to two
cases; vA ≤ vB, (case 1), and vA > vB, (case 2).

4.1 Case 1. vA ≤ vB

In this case, which is illustrated by Figure 1, every
customer between the origin and vA will turn to server
A, if he is idle, and every customer between vB and M
will turn to server B, if he is idle. The customers be-
tween vA and vB will not turn to any server (as their
utility is negative when turning to either server). In
fact, since the intervals [0,vA] and intervals [vB,M]
are disjoint, our system is equivalent to two indepen-
dent service systems. Therefore, the individual opti-
mal strategy (i.e., Nash equilibrium) is:

−→x E = (xA00,xA01,xB00,xB10) = (vA,vA,vB,vB).

Server A

0

vA vB Server B

M
Figure 1: vA ≤ vB.

4.2 Case 2. vA > vB

In this case, which is illustrated by Figure 2, if only
server A is idle, consumers located between the ori-
gin and vA will turn to server A. If only server B is
idle consumers located between vB and M will turn
to server B. However, if both servers are idle, con-
sumers located between the origin and vB will turn to
server A, and customers located between vA and M
will turn to server B. But customers located in the in-
terval [vB,vA] may potentially go to either server A or
B, (since the utility by going to either server, is posi-
tive). Thus, the optimizing individual strategy would
be turnning to the server which yields the greatest util-
ity for the consumer.

Server A

0

vB vA Server B

M
Figure 2: vB < vA.

If the customer turns to A, his benefit will be
R− cw

µA
+ cA

t x = cA
t (vA − x), whereas if he turns to B,

his benefit will be R− cw
µB

− cB
t (M − x) = cB

t (x− vB).
Consequently, if

cB
t (x− vB)< cA

t (vA − x), (5)

the customer will turn to A. The above is equivalent
to

x <
(cA

t vA + cB
t vB)

(cA
t + cB

t )
. (6)

Substituting vA and vB, from (4), in (6), we get

x <
cB

t M+ cw

(
1

µB
− 1

µA

)
(cA

t + cB
t )

.

Denote vT =
cB

t M+cw

(
1

µB
− 1

µA

)
(cA

t +cB
t )

, then a customer lo-
cated at x, and observes that the two servers are idle,
will turn to A if his location x, satisfies x < vT , and
otherwise, will turn to B. Hence, the individual opti-
mal strategy in this case is,

−→x E = (xA00,xA01,xB00,xB10) = (vT ,vA,vT ,vB).

Note that in the special case, in which cA
t = cB

t , and
µA = µB, then the individual optimal strategy is:

−→x E = (
M
2
,vA,

M
2
,M− vA). (7)
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5 SOCIALLY OPTIMAL
STRATEGY

Under social optimality, the mutual influences of ac-
tions chosen by the players must be taken into con-
sideration. These influences are not trivial. For exam-
ple, given −→x = (xA00,xA01,xB00,xB10), if we increase
xA00, to include consumers that are further away from
server A but still have positive utility (namely their
location x, satisfies xA00 < x < vA), then, on one hand
it may increase the social welfare function since con-
sumers that are further away from server A will now
get service. But on the otherhand, we may lose some
of the closer, (thus more valuable), consumers that
may find the server busy more often than before and
this may reduce the social welfare function.

Recall that the arrivals to server A from [0,x] fol-
low a Poisson process with rate of λA(x) =

∫ x
0 h(y)dy,

and the arrivals to server B from [x,M] follow a Pois-
son process with rate of λB(x) =

∫ M
x h(y)dy, where h

is the intensity function. Also recall that πi j(
−→x ), is

the probability that the system is in state (i, j) when
−→x = (xA00,xA01,xB00,xB10). Given −→x , the transition
diagram is presented in Figure 3.

0,1 1,1 
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B
ሺ 𝑥

B
1
0
ሻ  

 

A   

 

 

𝜆𝐴ሺ𝑥A01ሻ 

Figure 3: Transition Diagram.

In order to find the steady-state probabilities, we
need to solve the following balance equation system:

1) µBπ01 +µAπ10 = [λA(xA00)+λB(xB00)]π00

2) µBπ11 +λA(xA00)π00 = [λB(xB10)+µA]π10

3) λB(xB10)π10 +λA(xA01)π01 = [µA +µB]π11

4) π00 +π10 +π01 +π11 = 1.

(8)

Let S(−→x ) = S(xA00,xA01,xB00,xB10) denote the social
welfare function. We have

S(−→x ) = π00(
−→x )

∫ xA00

0
cA

t (vA − y)h(y)dy+

π01(
−→x )

∫ xA01

0
cA

t (vA − y)h(y)dy+

π00(
−→x )

∫ M

xB00

cB
t (y− vB)h(y)dy+

π10(
−→x )

∫ M

xB10

cB
t (y− vB)h(y)dy.

(9)

We wish to find: −→x ∗ = (x∗A00,x
∗
A01,x

∗
B00,x

∗
B10) that

maximizes the social Welfare function S. Recall first
the model with a single server (see Section 2). Ac-
cording to (2), if server A was a single server, located
at the origin, then the optimal threshold strategy x∗A is
unique and satisfies,

vA =
1

µA

∫ x∗A

0
(x∗A − y)h(y)dy+ x∗A. (10)

Similarly, if server B was a single server, located at
M, then the optimal threshold strategy x∗B is unique
and satisfies,

vB = x∗B −
1

µB

∫ M

x∗B
(y− x∗B)h(y)dy. (11)

The values of x∗A and x∗B depend on the parameters
of the model and on the intensity function h. Under
some conditions, x∗A ≤ x∗B, (Case A), and under other
conditions, x∗A > x∗B, (Case B).

As we show in the sequal, x∗A and x∗B, although
originated in the single server mode, nevertheless play
a significant role in the model with two servers.

For simplicity, we assume from now on that
servers have the same capacity. Additionally, We nor-
malize all other parameters according to this common
capacity hence

µA = µB = 1.

Lemma 5.1. For all 0 < x < v,

• If x < x∗A, then∫ x
0 (v− y)h(y)dy < (λA(x)+1)(v− x)

• If x = x∗A, then∫ x
0 (v− y)h(y)dy = (λA(x)+1)(v− x)

• If x > x∗A, then∫ x
0 (v− y)h(y)dy > (λA(x)+1)(v− x)

Proof. Note that,∫ x

0
(v− y)h(y)dy =

∫ x

0
(v− x+ x− y)h(y)dy =

(v− x)λA(x)+
∫ x

0
(x− y)h(y)dy.

(12)
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It follows that,∫ x

0
(v− y)h(y)dy =

(v− x)λA(x)− x+
[
x+

∫ x

0
(x− y)h(y)dy

]
. (13)

By (10), x∗A satisfies,

v = x∗A +
∫ x∗A

0
(x∗A − y)h(y)dy. (14)

Thus, substituting x = x∗A in (13), we get:∫ x∗A

0
(v− y)h(y)dy = (v− x∗A)λA(x∗A)− x∗A + v

= (λA(x∗A)+1)(v− x∗A), (15)

proving the second statement of the lemma. Note that
x+

∫ x
0 (x− y)h(y)dy, appearing in the square brackets

at the right hand side of (13) is increasing in x, hence
it follows from (14) that:

• For x < x∗A,∫ x

0
(v− y)h(y)dy < (v− x)λA(x)− x+ v

= (λA(x)+1)(v− x), (16)

and,
• For x > x∗A,∫ x

0
(v− y)h(y)dy < (v− x)λA(x)− x+ v

= (λA(x)+1)(v− x), (17)

proving the first and last statements of the lemma.

A similar lemma, regarding server B is:

Lemma 5.2. For all v < x < M,

• If x < x∗B, then∫ M
x (y− v)h(y)dy > (λB(x)+1)(x− v).

• If x = x∗B, then∫ M
x (y− v)h(y)dy = (λB(x)+1)(x− v).

• If x > x∗B, then∫ M
x (y− v)h(y)dy < (λB(x)+1)(x− v).

5.1 Socially Optimal Strategies in the
Symmetric Case

In this section we assume that the model is completely
symmetric with regards to the two servers. We will
show that in case A (namely when x∗A ≤ x∗B), con-
sumers with distances that are less than x∗A from server
A, turn to server A in any case (wheather server B

is avilable or not). Similarly, consumers with dis-
tances that are less than x∗A from server B (i.e., their
location is M − x∗A and beyond) turn to server B. In
Case B (namely when x∗A > x∗B), we will show that
if both servers are available, then server A serves
consumers with locations between 0 and M/2, and
server B serves consumers from that point on (until
the end of the interval [0,M]). Interestingly, if only
one server is available, say server A, then she serves
consumers with distances that are beyond x∗A, which
was the service-threshold when server A was the only
server in a single-server system.

We assume that,
• A1. h(M− y) = h(y), ∀0 ≤ y ≤ M.

• A2. cA
t = cB

t , thus travel cost is simply ct .

The following 4 properties follow,
• P1. vB = M− vA. We denote v = vA.

• P2. x∗B = M− x∗A.

• P3. x∗B10 = M− x∗A01.

• P4. x∗B00 = M− x∗A00.

Recall that in all cases (including the general non-
symmetric case), xA00 ≤ xB00, (see (3)). This together
with P4 above gives in the symmetric case

x∗A00 ≤
M
2
. (18)

Lemma 5.3. In the symmetric case, for all 0≤ x≤M,

λB(M− x) = λA(x).

Proof. By A1,

λB(M− x) =
∫ M

M−x
h(u)du =∫ x

0
h(M−u)du =

∫ x

0
h(u)du = λA(x). (19)

Denote a = 1+λA(xA00)(2+λA(xA01)).

Proposition 5.4. In the symmetric case,

π00 =
1
a
, π01 = π01 =

λA(xA00)

a
,

and,

π11 =
λA(xA00)λA(xA01)

a
.

The proof follows from Lemma 5.3, Assumptions
A1-A3 and Properties P1-P4 above.
Proposition 5.5. In the symmetric case,

S(−→x ) =
2ct

a(∫ xA00

0
(v− y)h(y)dy + λA(xA00

∫ xA01

0
(v− y)h(y)dy

)
(20)
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Proof. By Proposition 5.4, the assumptions and prop-
erties, we obtain by (9) that:

S(−→x ) =

1
a

∫ xA00

0
ct(vA − y)h(y)dy+

λA(xA00)

a

∫ xA01

0
ct(vA − y)h(y)dy+

+
1
a

∫ M

M−xA00

ct(y−M+ vA)h(y)dy+

λA(xA00)

a

∫ M

M−xA01

ct(y−M+ vA)h(y)dy.

(21)

Now, by A1 and by substituting t = M − y in∫ M
M−xA00

ct(y−M+ vA)h(y)dy, we obtain∫ M

M−xA00

ct(y−M+vA)h(y)dy=
∫ xA00

0
ct(vA−t)h(t)dt.

(22)
Similarly,∫ M

M−xA01

ct(y−M+vA)h(y)dy=
∫ xA01

0
ct(vA−t)h(t)dt.

(23)
Substituting (22) and (23) in (21) gives

S(−→x ) =

1
a

∫ xA00

0
ct(vA − y)h(y)dy+

λA(xA00)

a

∫ xA01

0
ct(vA − y)h(y)dy+

1
a

∫ xA00

0
ct(vA − y)h(y)dy+

λA(xA00)

a

∫ xA01

0
ct(vA − y)h(y)dy =

2ct

a(∫ xA00

0
(vA − y)h(y)dy +λA(xA00)

∫ xA01

0
(vA − y)h(y)dy

)
.

(24)

As Propositions 5.4 and 5.5 show, because of the
symmetry, S(−→x ) can be presented as a function of the
parameters of server A only, namely; xA00 and xA01.
The values of xB00 and xB10 are then derived according
to properies P1-P4 above. Hence in this section we
abbreviate the notations so that

v = vA, x00 = xA00, x01 = xA01,

λ00 = λA(xA00), λ01 = λA(xA01).

In the new notations, we obtain from Proposi-
tion 5.5:
S(x00,x01) =

2ct

(
1
a

∫ x00

0
(v− y)h(y)dy+

λ00

a

∫ x01

0
(v− y)h(y)dy

)
.

(25)

We wish to find (x∗00,x
∗
01), that maximizes

S(x00,x01). (x00,x01)
∗ must satisfy that both deriva-

tives of S, (with respect to x00, and x01) equal zero.
Recall that x∗A is the socially optimal strategy in the

case of a single server A (see Section 2). We wish to
prove first that (x∗A,x

∗
A) is the unique maximum point

of S(x00,x01).

Proposition 5.6. Given x00 > 0, the x̃01 = x̃01(x00),
that satisfies

∂

∂x01
S(x00,x01) = 0,

is the unique local maximum point of S(x00,•). If
x00 ̸= x∗A, then x̃01(x00)> x∗A.

Proof. Note that the derivatives of π00 and π01 with
respect to x01 are,

π
′
00 =− λ00h(x01)

(1+λ00(2+ l01))2 =−λ00h(x01)

a2 , (26)

and,

π
′
01 =−

λ2
00h(x01)

(1+λ00(2+λ01))2 =−
λ2

00h(x01)

a2 . (27)

It follows from (25), (26) and (27) that

∂

∂x01
S(x00,x01) =

λ00h(x01)

a2

{−
∫ x00

0
(v−y)h(y)dy+(v−x01)(1+λ00(2+λ01))−

λ00

∫ x01

0
(v− y)h(y)dy} (28)

Thus, for a given x00, the x̃01 = x̃01(x00) for which
∂

∂x01
S(x00,x01) = 0, solves:

−
∫ x00

0
(v−y)h(y)dy+(v−x01)(1+λ00(2+λ01))−

λ00

∫ x01

0
(v− y)h(y)dy = 0, (29)

where λ01 =
∫ x01

0 h(y)dy.
Now, if we differentiate the left hand side of (29)

with respect to x01, we arrive at

−λ00(v− x01)h(x01)− (1+λ00(2+λ01))+

λ00(v− x01)h(x01) =−a < 0. (30)

Hence the left hand side of (29) is decreasing in
x01. It follows that,

∂

∂x01
S(x00,x01)> 0, ∀x01 < x̃01,

∂

∂x01
S(x00,x01) = 0, for x01 = x̃01,
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and
∂

∂x01
S(x00,x01)< 0, ∀x01 > x̃01.

Thus, x̃01 is indeed the unique local maximum of
S(x00,•).

Denote λ∗
A = λA(x∗A) =

∫ x∗A
0 h(y)dy. For any given

x00, (29) presents the condition for ∂

∂x01
S(x00,x01) =

0. Subtituting x01 = x∗A in the left hand side of (29)
gives

−
∫ x00

0
(v− y)h(y)dy−

λ00

∫ x∗A

0
(v− y)h(y)dy+(v− x∗A)(1+λ00(2+λ

∗
A))

=−
∫ x00

0
(v− x∗A + x∗A − y)h(y)dy−

λ00

∫ x∗A

0
(v− y)h(y)dy+(v− x∗A)(1+λ00(2+λ

∗
A)) =

− (v− x∗A)λ00 −
∫ x00

0
(x∗A − y)h(y)dy−

λ00

∫ x∗A

0
(v− y)h(y)dy+

(v− x∗A)(1+2λ00 +λ00λ
∗
A).

(31)

By (12),∫ x∗A

0
(v−y)h(y)dy = (v−x∗A)λ

∗
A+

∫ x∗A

0
(x∗A−y)h(y)dy.

Substituting this in (31) gives

− (v− x∗A)λ00 −
∫ x00

0
(x∗A − y)h(y)dy−

λ00

(
(v− x∗A)λ

∗
A +

∫ x∗A

0
(x∗A − y)h(y)dy

)
+(v− x∗A)(1+2λ00 +λ00λ

∗
A) = (v− x∗A)(−λ00 −λ00λ

∗
A+

1+2λ00 +λ00λ
∗
A)+(−λ00 −1+1)

∫ x∗A

0
(x∗A − y)h(y)dy−∫ x00

0
(x∗A − y)h(y)dy =

(32)

= (λ00 +1)
[

v−
(

x∗A +
∫ x∗A

0
(x∗A − y)h(y)dy

)]
+∫ x∗A

x00

(x∗A − y)h(y)dy.

Note that by (10), the expression in the square brakets
above equals 0, hence we get∫ x∗A

x00

(x∗A − y)h(y)dy, (33)

which is positive for all x00 ̸= x∗A, as now explained:
For x∗A ≥ x00 this is obvious. For x∗A < x00, the left
hand side of (33) equals

−
∫ x00

x∗A
(x∗A − y)h(y)dy =

∫ x00

x∗A
(y− x∗A)h(y)dy > 0.

So we proved that for x00 ̸= x∗A, the left hand side
of (29), is positive for x01 = x∗A. Now, in comparis-
sion to that, if we substitute x01 = x̃01(x00) in the left
hand side of (29), then by definition of x̃01(x00), this
equals 0. Earlier (see (30)) we showed that the left
hand side of (29) is decreasing in x01. Hence it fol-
lows that x̃01(x00)> x∗A.

Similarly,
Proposition 5.7. Given x01 > 0, the x̃00 = x̃00(x01),
that satisfies

∂

∂x00
S(x00,x01) = 0,

is unique and it is the local maximum point of
S(•,x01). If x01 ̸= x∗A, then x̃00(x01)< x∗A.

The proof of Proposition 5.7 is very similar to
the proof of Proposition 5.6. and involves proving
that for a given x01, the x̃00 = x̃00(x01) for which

∂

∂x00
S(x00,x01) = 0, solves:

− (2+λ01)
∫ x00

0
(v− y)h(y)dy+∫ x01

0
(v− y)h(y)dy+(v− x00)a = 0. (34)

Theorem 5.8. The point (x∗A,x
∗
A) is the unique global

maximum point of S(x00,x01), and it satisfies that

S(x∗A,x
∗
A) = 2ct(v− x∗A).

Proof. Substituting x00 = x01 = x∗A in (20) and uti-
lizing Lemma 5.1 indeed gives 2ct(v− x∗A). In order
to prove that (x∗A,x

∗
A) is the unique global maximum

point of S(x00,x01), we first, prove that (x∗A,x
∗
A) is

the only point in which both derivatives of S(x00,x01),
(with respect to x00 and with respect to x01), equal 0.
A point in which both derivatives equal 0, must satisfy
both (29) and (57).

Recall that, Equation (29) is:

−
∫ x00

0
(v−y)h(y)dy+(v−x01)(1+λ00(2+λ01))−

λ00

∫ x01

0
(v− y)h(y)dy = 0, (35)

and Equation (57) is:

− (2+λ01)
∫ x00

0
(v− y)h(y)dy+∫ x01

0
(v− y)h(y)dy+(v− x00)a = 0. (36)
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From (29) we have:∫ x00

0
(v− y)h(y)dy = (v− x01)a−λ00

∫ x01

0
(v− y)h(y)dy.

Subtituting this in (57) gives:

−(2+λ01)

[
(v− x01)a−λ00

∫ x01

0
(v− y)h(y)dy

]
+∫ x01

0
(v− y)h(y)dy+(v− x00)a = 0. (37)

This implies that:

a
(

v− x00 − (2+λ01)(v− x01)
)
+(

1+λ00(2+λ01)
)∫ x01

0
(v− y)h(y)dy = 0, (38)

which is equivalent to:

a
(

v− x00 − (2+λ01)(v− x01)
)
+

a
∫ x01

0
(v− y)h(y)dy = 0. (39)

From this we arrive at:

x01 − x00+[∫ x01

0
(v− y)h(y)dy− (1+λ01)(v− x01)

]
= 0. (40)

We first show that x00 must equal x∗A : If on the con-
trary, x00 ̸= x∗A, then we proved in Proposition 5.6 that
x̃01(x00)> x∗A. But in that case, by Lemma 5.1, the ex-
pression in the square brackets above is positive. Ad-
ditionally, x01 − x00 > 0, (since, x00 ≤ M/2 < x∗A <
x̃01(x00)). Thus the left hand side of (40) is strictly
positive and thus cannot satisfy (40). Hence,

x00 = x∗A. (41)

Now, if x̃01 ̸= x∗A, then by Proposition 5.7, x00 < x∗A,
which contradicts (41), thus,

x̃01(x∗A) = x∗A. (42)

Hence, we proved that (x∗A,x
∗
A) is the only point

in which both derivatives of S equal 0. To prove that
(x∗A,x

∗
A) is also the unique global maximum point, we

need to check the value of S at the borders, namely
at the boundaries of the rectangular [0,M/2]× [0,M] :
If x00 = 0, then λ00 = 0. Hence by Proposition 5.4,

π01 = π01 =
λ00

a
= 0.

Hence from the the balance equation for state
(1,1) (see equation 3 in the balance equation system
appearing in (8)), we get:

0 = [µA +µB]π11,

which implies that π11 = 0, hence π00 = 1. Thus the
service-system is always empty and thus S(0,x01) =
0, which is smaller than S(x∗A,x

∗
A) = 2ct(v− x∗A).

If x01 = 0, then (25) gives

S(x00,0) = 2ct

(
1

1+2λ00

∫ x00

0
(v− y)h(y)dy

)
,

which implies:

S(x00,0)< 2ct

(
1

1+λ00

∫ x00

0
(v− y)h(y)dy

)
. (43)

Recall that in M/G/1/1, (see Section 2), the prob-
ability that the system is empty when the service-
threshold is x00, (and µ = 1), is

π0(x00) =
1

1+λ00
.

In M/G/1/1, we denoted the social welfare function,
when the service-threshold is x, as S1(x). By (1):

S1(x) = ct

∫ x

0
(v− y)h(y)π0(x)dy. (44)

Thus it follows from (43) that:

S(x00,0)< 2ct

∫ x00

0
(v− y)h(y)π0(x00)dy =

2S1(x00)< 2S1(x∗A) = 2ct

∫ x∗A

0
(v− y)h(y)π0(x∗A)dy

= 2ct

∫ x∗A

0
(v− y)h(y)

1
1+λ∗

A
dy =

2ct

1+λ∗
A

∫ x∗A

0
(v− y)h(y)dy. (45)

By Lemma 5.1, the right hand side of (45) equals
2ct(v− x∗A), which by Theorem 5.8 equals S(x∗A,x

∗
A).

Hence,
S(x00,0)< S(x∗A,x

∗
A).

For the cases of x00 = M/2, or x01 = M, we can
use the symmetry of the model with regards to the
servers, and thus, for example, x00 = M, implies that
for server B, xB00 = M, as well (see (3)) which yields
λB00 = 0, and from that point to continue like in the
case where λ00 = 0.

Corollary 5.9. Given x00,

S(x00, x̃01(x00)) = 2ct(v− x̃01(x00)).

Proof. By (25) we have:

S(x00, x̃01(x00)) =
2ct

a(∫ x00

0
(v− y)h(y)dy +λ00

∫ x̃01(x00)

0
(v− y)h(y)dy

)
.

(46)
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Additionally, x̃01(x00) satisfies (29), implying
that:

λ00

∫ x̃01(x00)

0
(v− y)h(y)dy =

−
∫ x00

0
(v− y)h(y)dy+a

(
v− x̃01(x00)

)
. (47)

Subtituting (47) in (46), gives:

S(x00, x̃01(x00)) =
2ct

a

[∫ x00

0
(v− y)h(y)dy−∫ x00

0
(v− y)h(y)dy+a(v− x̃01(x00))

]
= 2ct(v− x̃01(x00)). (48)

Recall that Case A is defined by x∗A ≤ x∗B, and
Case B is defined by x∗A > x∗B. Theorem 5.10 ahead
claims that under social optimality, in Case A, each
server serves consumers that are x∗A or less, away
from the servic point, and that in Case B: When both
servers are idle, then each server serves consumers
that are M/2 or less, away from the service point.
In case only one server is available, then she serves
consumers with distance that exceeds x∗A, where the
service- threshold is determined according to (49)
ahead.

Formally, going back to our earlier notations; re-
call that x00 was an abbreviation for xA00 the service-
threshold of server A when both servers are idle, and
xB00 was the service-threshold of server B when both
servers are idle. Similarly, xA01 ( xB10) was the service
threshold of A, (B) when only he was available.
Theorem 5.10. In the symmetric model, the strat-
egy −→x ∗ = (x∗A00,x

∗
A01,x

∗
B00,x

∗
B10) that maximizes so-

cial welfare S(−→x ), is the following
• Case A, namely when x∗A ≤ x∗B, then:
(x∗A00,x

∗
A01,x

∗
B00,x

∗
B10) = (x∗A,x

∗
A,M − x∗A,M − x∗A),

and S = 2ct(v− x∗A).
• Case B, namely when x∗A > x∗B,

1. If both servers are available then (x∗A00,x
∗
B00)=

(M/2,M/2), and S = 2ct(v−M/2).
2. If only server A is available then, x∗A01 =

x̃01(M/2), and if only server B is available
then, x∗B10 = M− x̃01(M/2). In both cases, S =
2ct(v − x̃01(M/2)), where x̃01(M/2), is the
unique solution for:∫ M

2

0
(v− y)h(y)dy −

(v− x01)
(

1+λA(M/2)(2+λ01)
)

+λA(M/2)
∫ x01

0
(v− y)h(y)dy = 0. (49)

Proof. Because of the symmetry between servers A
and B, we have by properties P3 and P4, that x∗B10 =
M− x∗A01, and x∗B00 = M− x∗A00, hence we only need
to prove the theorem for server A. Recall that in the
symmetric case xA00 must satisfy

x∗A00 ≤
M
2
,

(see (18)). Now, by Theorem 5.8, (x∗00,x
∗
01) = (x∗A,x

∗
A)

is the unique global maximum of the social welfare
function S, hence whenever this solution is possible
(i.e., x∗A ≤ M/2), then this will be the strategy of
server A. This proves the statement of the theorem
regarding case A, (since in that case, x∗A ≤ M/2.).

In Case B, x∗A > M/2, hence x∗A is not an option
for x∗00 which must satisfy x∗A00 ≤

M
2 .

Recall that (29) defines x̃01(x00) for a given x00,
where (29) is

−
∫ x00

0
(v− y)h(y)dy+(v− x01)(1+λ00(2+λ01))

−λ00

∫ x01

0
(v− y)h(y)dy = 0. (50)

Define the left hand side of (29), as a function
f (x00,x01). By definition of x̃01(x00),

f (x00, x̃01(x00)) = 0. (51)

We showed, (see (30)), that f (x00,x01) is decreasing
in x01.

Below we show that f (x00,x01) is also decreasing
in x00 for all x00 ̸= x∗A. This implies that x̃01(x00) is
decreasing as a function of x00, since if we increase
x00 to x00 + ε then since f (x00,x01) is decreasing in
x00, then f (x00 + ε, x̃01(x00)) < f (x00, x̃01(x00)) = 0,
and since f is also decreasing in x01, then f (x00 +
ε, x̃01(x00 + ε)) = 0 implies that x̃01(x00 + ε) <
x̃01(x00).

To see that indeed f (x00,x01) is decreasing in x00,
for all x00 ̸= x∗A, note that the derivative of f with
respect to x00, is:

− (v− x00)+(v− x01)(2+λ01)h(x00)

−h(x00)
∫ x01

0
(v− y)h(y)dy, (52)

which equals:

h(x00)
[
(1+λ01)(v− x01)−

∫ x01

0
(v− y)h(y)dy

]
−

x01h(x00). (53)

By Lemma 5.1, the expression in the square brackets
is negative, (since by Proposition 5.6, if x00 ̸= x∗A, then
x̃01(x00)> x∗A).

Now, by Corollary 5.9, S(x00, x̃01(x00)) = 2ct(v−
x̃01(x00)), which is maximized for the smallest
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x̃01(x00). Since we showed that x̃01(x00) is decreas-
ing as a function of x00, then 2ct(v − x̃01(x00)) is
maximized for the largest x00 possible, which is M/2,
(see (18)). Thus x00 = M/2 and x01 = x̃01(M/2).

The value of S in case A and case B1 in Theo-
rem 5.10, follow from (25). The value of S in case B2
follow from Corollary 5.9.

6 CONCLUSIONS

In this study we establish that if the model is sym-
metric with regards to the servers, then under social
optimality, when the service points are distant from
each other, each server behaves as he would if he was
the sole server. But when the service points are within
close proximity, then when only one server is idle, so-
cial optimality dictates that the available server also
caters to distant customers, a behavior it would not
exhibit if it were the sole server in the service sys-
tem (i.e., in M/M/1/1). These results apply when
both servers are informed about each other’s status
(idle/busy). While sharing information about server
status is beneficial, there are situations where it is not
feasible. Take, for instance, two ride-sharing drivers
operating in the same area without real-time knowl-
edge of each other’s current ride status. In this sce-
nario, each driver independently accepts ride requests
without knowing whether the other is currently occu-
pied. This lack of information may lead to subop-
timal resource allocation as both drivers might end
up serving nearby locations simultaneously, poten-
tially reducing overall efficiency. For future research,
comparing between the two models; the model where
servers are informed about each other’s status to the
model where servers are ignorant of each other’s sta-
tus would be intriguing. How significant is this infor-
mation? If there is a substantial difference between
the outcomes, it may warrant consideration for inter-
vention by authorities.
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APPENDIX

Proof of Proposition 5.7

Proof. Note that the derivatives of π00 and π01 with
respect to x00 are,

π
′
00 =

(
1
a

)′
=

(
1

1+λ00(2+λ01)

)′

=− (2+λ01)h(x00)

(1+λ00(2+λ01))2 =− (2+λ01)h(x00)

a2 ,

(54)

and,

π
′
01 =

(
λ00

a

)′
=

(
λ00

1+λ00(2+λ01)

)′
=

h(x00)(1+λ00(2+λ01))−λ00h(x00)(2+λ01)

(1+λ00(2+λ01))2

=
h(x00)(1+2λ00 +λ00λ01 −2λ00 −λ00λ01)

(1+λ00(2+λ01))2

=
h(x00)

(1+λ00(2+λ01))2 =
h(x00)

a2 .

(55)

It follows from (54), (55) and (25), that

∂

∂x00
S(x00,x01) = 2ct

h(x00)

a2

[−(2+λ01)
∫ x00

0
(v− y)h(y)dy+(v− x00)a+∫ x01

0
(v− y)h(y)dy]. (56)

Thus, for a given x01, the x̃00 = x̃00(x01) for which

∂

∂x00
S(x00,x01) = 0,

solves:

− (2+λ01)
∫ x00

0
(v− y)h(y)dy+∫ x01

0
(v− y)h(y)dy+(v− x00)a = 0, (57)

where λ00 =
∫ x00

0 h(y)dy, and a = 1+λ00(2+λ01).
Now, if we differentiate the left hand side of (57)

with respect to x00, we arrive at

− (2+λ01)(v− x00)h(x00)− (1+λ00(2+λ01))+

(2+λ01)(v− x00)h(x00) =−a < 0. (58)

It follows that,

∂

∂x00
S(x00,x01)> 0, ∀x00 < x∗00,

∂

∂x00
S(x00,x01) = 0, for x00 = x∗00,

and
∂

∂x00
S(x00,x01)< 0, ∀x00 > x∗00.

We now prove that if x01 ̸= x∗A, then x∗00(x01) <
x∗A.

Recall that λ∗
A = λA(x∗A) =

∫ x∗A
0 h(y)dy. For

any given x01, (57) presents the condition for
∂

∂x00
S(x00,x01) = 0. Subtituting x00 = x∗A in the left

hand side of (57) gives

− (2+λ01)
∫ x∗A

0
(v− y)h(y)dy+∫ x01

0
(v− y)h(y)dy+(v− x∗A)(1+λ

∗
A(2+λ01)).

(59)

By Lemma 5.1:

− (2+λ01)
∫ x∗A

0
(v− y)h(y)dy+

∫ x01

0
(v− y)h(y)dy+

(v− x∗A)(1+λ
∗
A(2+λ01)) =

− (2+λ01)

[
(v− x∗A)λ

∗
A +

∫ x∗A

0
(x∗A − y)h(y)dy

]
+∫ x01

0
(v− x∗A + x∗A − y)h(y)dy+(v− x∗A)(1+λ

∗
A(2+λ01))

=−(2+λ01)

[
(v− x∗A)λ

∗
A +

∫ x∗A

0
(x∗A − y)h(y)dy

]
+

(v− x∗A)λ01 +
∫ x01

0
(x∗A − y)h(y)dy+

(v− x∗A)(1+λ
∗
A(2+λ01)) =

(v− x∗A)(−2λ
∗
A −λ01λ

∗
A +λ01 +1+2λ

∗
A +λ01λ

∗
A)

− (1+λ01 +1)
∫ x∗A

0
(x∗A − y)h(y)dy+∫ x01

0
(x∗A − y)h(y)dy =

(1+λ01)

[
v−

(
x∗A +

∫ x∗A

0
(x∗A − y)h(y)dy

)]
−∫ x∗A

x01

(x∗A − y)h(y)dy.

(60)

Note that by (10), the expression in the square
brakets above equals 0, hence we get that

−
∫ x∗A

x01

(x∗A − y)h(y)dy,

which is negative for all x00 ̸= x∗A.
Now, in comparission to that, if we substitute

x00 = x̃00(x01) in the left hand side of(57), then by
definition of x̃00(x01), this equals 0. Earlier (see (58))
we showed that the left hand side of (57) is decreasing
in x00. Hence it follows that x̃00(x01)< x∗A.
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Proof of Lemma 5.2

Proof. Note that,∫ M

x
(y− v)h(y)dy = (x− v)λB(x)+ x−[

x−
∫ M

x
(y− x)h(y)dy

]
. (61)

It follows from (61) and (11) that for x = x∗B,∫ M

x∗B
(y− v)h(y)dy = (x∗B − v)λ∗

B + x∗B − v =

(x∗B − v)(λ∗
B +1), (62)

proving the second statement of the lemma. Note that
x−

∫ M
x (y−x)h(y)dy, appearing in the square brackets

at the right hand side of (61) is increasing in x, hence
it follows from (62) that:

• If x< x∗B, then
∫ M

x (y−v)h(y)dy> (x−v)λB(x)+
x− v = (λB(x)+1)(x− v),

• If x> x∗B, then
∫ M

x (y−v)h(y)dy< (x−v)λB(x)+
x− v = (λB(x)+1)(x− v),

proving the first and last statements of the lemma.
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