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Abstract: An assertion is a statement that specifies a condition that must be true at a particular point during program 
execution. It serves as a tool to ensure the program functions as intended, reducing the risk of introducing 
subtle errors. Usually expressed algebraically, an assertion utilizes Boolean expressions to specify permissible 
relationships among program variables. In complex scenarios, calculating the expected value of a program 
variable often proves more effective than specifying the constraints it must adhere to. In this paper, we present 
an approach to formulating assertions using abstract models in a constructive manner, which complements 
the traditional algebraic style. Constructive assertions empower programmers to articulate comprehensive 
assertions, including pre and postconditions, in a succinct, comprehensible, reusable, and maintainable 
manner. 

1 INTRODUCTION 

An assertion, as defined by Matuszek (1976), is a 
statement establishing a condition expected to be true 
at a specific point during program execution. It is 
essentially a Boolean expression inserted directly into 
the code. If the condition evaluates as true, the 
program proceeds without disruption; if false, the 
assertion fails, triggering an exception or displaying 
an error message. Assertions can validate code 
assumptions, verify code logic, and aid in identifying 
potential errors promptly. Their adoption, often in the 
form of assert statements, has been widespread in 
programming languages, with empirical studies 
showing that code containing assertions has fewer 
defects (Casalnuovo et al., 2015; Counsell et al., 
2017; Kochhar & Lo, 2017). 

While traditional assertions express conditions 
algebraically, involving relationships among program 
variables and state components, writing such 
assertions can become complex, especially dealing 
with multiple variables or various object parts. 

This paper introduces a complementary approach 
called constructive assertions. In this approach, 
expected values for program variables are computed 
to produce more straightforward and understandable 
assertions. It leverages an abstraction of program 
states with an abstraction function (Hoare, 72; 
Sitaraman, Weide, & Ogden, 1997), providing an 

immutable model, to write assertions constructively 
and representation-independently. The paper also 
introduces an assertion library offering immutable 
collection classes specifically designed for writing 
assertions. Although demonstrated using Dart 
(Bracha, 2016) and Flutter (Flutter, 2023) for mobile 
applications, the concept of constructive assertions is 
applicable to other languages and platforms. 

The integration of traditional algebraic and new 
constructive assertions broadens the range of 
assertion techniques. Algebraic assertions define 
constraints on program variables and states, whereas 
constructive assertions provide a more streamlined 
approach to express expected outcomes. Therefore, 
this paper empowers programmers to select the most 
appropriate technique depending on the assertion's 
unique context and complexity. This enhances the 
thoroughness and effectiveness of assertions, 
ultimately fostering improved code quality and more 
efficient debugging practices. 

While existing literature extensively explores 
various applications of assertions, including 
debugging and testing tools utilizing pre and 
postconditions (Rosenblum, 1995; Chalin, 2014; 
Cheon, 2021; Cheon, 2022), as well as test oracles 
(Cheon & Leavens, 2005; Watson et al., 2020), a 
noticeable gap exists in publications studying distinct 
styles of writing assertions, particularly the 
comparative analysis of algebraic and constructive 
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methodologies. This specific aspect has received 
limited research attention. The use of an abstraction 
function to define an abstract assertion state can be 
considered a way to implement a model variable in a 
specification language (Cheon et al., 2005). The 
assertion library, designed to support constructive 
assertions, draws inspiration from the collections 
library of the Object Constraint Language (OCL) 
(Warmer & Kleppe, 2003). 

This paper is organized as follows. Section 2 
introduces assertions, covering algebraic and 
constructive writing styles. Section 3 presents an 
assertion library consisting of immutable collection 
classes. Section 4 demonstrates constructive 
assertions via examples, including app written in 
Flutter. Section 5 explores open issues and future 
research directions. Section 6 concludes the paper. 

2 CONSTRUCTIVE ASSERTIONS 

2.1 Assertions 

In programming, assertions are straightforward 
statements that declare conditions expected to be true 
at specific points during program execution 
(Matuszek, 1976; Rosenblum, 1996). These Boolean 
expressions, embedded within the code, facilitate 
smooth program flow when conditions are met. If 
false, assertions trigger errors, highlighting 
unexpected situations. Operating as lightweight 
mechanisms, assertions enable programmers to 
validate code assumptions and logic, aiding in testing, 
debugging, and enhancing software quality. 

To illustrate, consider a Dart function calculating 
the maximum value from a list of integers. The 
function assumes a non-empty input list, a critical 
point addressed by an assertion at the code's outset. If 
the function encounters an empty list, this assertion 
signals an error to inform the invalid input. Further 
assertions, strategically placed post-computation, 
verify that the returned value represents the maximum 
within the input list. Any failure triggers an assertion 
exception, signaling potential implementation errors. 
 

int max(List<int> list) { 
assert(list.length > 0, 'Invalid argument'); 
var result; 
… // calculate the result. 
assert(list.contains(result), 'Wrong result'); 
 assert(list.every((n) => n <= result, 'Wrong result'); 
 return result; 

} 
 

By using assertions during development and 
testing, one can effectively verify both the 
preconditions (input assumptions) and postconditions 
(expected output) of the code, thereby enhancing its 
reliability. Note that assertions are typically disabled 
in production environments and automatically 
removed from the Dart/Flutter production code. 

2.2 Assertion Styles 

Traditionally, assertions are formed by examining 
program states to assert facts that these states must 
meet. This algebraic approach constrains program 
states by specifying permissible relationships among 
program variables and state components. For 
instance, in the earlier max() function, the first assert 
statement ensures the list's length is greater than 0, 
indicating a non-empty list. Similarly, other assert 
statements verify that the result is an element of the 
list and is greater than or equal to every other element 
in the list. 

An alternative approach involves calculating the 
expected value of a state component and asserting the 
equivalence between the actual and expected values, 
termed the constructive style. For example, instead of 
explicitly listing properties of a maximum value in a 
list, we can find the maximum value using the 
reduce() method and assert that the result is equal to 
this calculated value: 
 

assert(result == list.reduce((r,e) => math.max(r,e)); 
 

This constructive style focuses on calculated 
expected results and their equivalence with actual 
values. Both algebraic and constructive styles have 
merits, depending on specific code requirements. 

In this paper, we informally use the term 
constructive assertions. These assertions take a 
Boolean expression, denoted as P(x), where x 
represents program variables or state components. 
P(x) outlines constraints on a program's state or 
establishes permissible relationships among its 
components. When P(x) is structured as x == E(y), we 
classify it as a constructive assertion, where E(y) 
calculates or constructs the anticipated value or state 
for the specific variable or component x. The essence 
lies in computing a solution rather than enumerating 
solution properties. 

For example, asserting the sorted order of a list, 
denoted as l, conventionally involves scrutinizing the 
sorted property of the list: 

 
for (var i = 0; l < l.length - 1; i++) { 

 assert(l[i] <= l[i + 1]); 
} 
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Contrastingly, a constructive approach creates a 
sorted version of the list and asserts the equivalence 
between the sorted and original lists: 

 

assert(listEquals(l, List<int>.from(l)..sort())); 
 

Although the assertion involves Dart-specific 
constructs and syntax, its essence is summarized as l 
== l.clone()..sort(). The listEquals() function from 
the Flutter SDK compares two lists element-wise; the 
List class's == operator evaluating object identity. To 
create a fresh list and prevent inadvertent alterations 
to the original, we use the List.from() method. Dart's 
cascade notation (..), exemplified as e..m(), allows 
executing a series of operations on the same object 
without introducing temporary variables. Thus, the 
expression List<int>.from(l)..sort() efficiently clones 
and sorts the list, yielding its sorted version. 

This constructive approach is particularly 
effective for asserting state changes and specifying 
the behavior of mutation operations. For example, 
asserting the insertion of a value n into a sorted list l 
while maintaining its sorted order is succinctly 
expressed using constructive assertions: 
 

var expected = List<int>.from(l)..append(n)..sort(); 
// … code to insert n to l. 
assert(listEquals(l, expected)); 

 

The local variable expected is an assertion-only 
variable introduced to store the expected value of l 
calculated in the initial state. This calculated value is 
then compared to the actual value of l in the final 
state. As done previously, before the calculation, the 
list is cloned to prevent unintended modifications to 
the original list. 

Now, let's formulate the same assertion using the 
conventional style of stating properties. The skeletal 
code is shown below: 
 

var preL = List<int>.from(l); // initial value of l 
// … code to insert n into l. 
assert(…); 

 

In the final state, we need to formulate the 
properties that l is a version of preL with n 
appropriately inserted. This entails articulating the 
following properties (see Section 3): 

• The list l maintains its sorted order. This 
implies that for each index i from 0 to l.length 
- 2, the element at index i is less than or equal 
to the element at index i + 1. 

• The value n is present within the list l after the 
insertion operation. 

• There are no other changes in l. That is, all 
elements are retained and no new elements 

other than n have been introduced. This 
principle, referred to as the frame axiom 
(Borgida et al., 1993), makes the assertion 
comprehensive and conclusive. 

The complexity of stating certain properties, such 
as the last one above, can be notably intricate, 
especially when verifying not only the existence of an 
element within a list but also the exact count of its 
occurrences when duplicates are allowed. 

Modern object-oriented programming languages, 
such as Dart (Bracha, 2016), offer a spectrum of 
language constructs and functionalities that 
streamline the composition of assertions through a 
constructive approach. These include lambda 
expressions, higher-order functions, cascade 
notation, operator overriding, and collections. 
Complementing these capabilities, we can enhance 
the efficacy of constructive assertions by introducing 
a dedicated assertion library. 

3 ASSERTION LIBRARY  

Constructive assertions are highly valuable for 
validating modifications in object state or side effects, 
enabling programmers to formulate complete 
postconditions. For example, let us consider the code 
snippet to insert an element e into a list l at a position 
i. Below, we present its pre and postconditions 
without utilizing constructive assertions: 
 

// precondition 
assert(i >= 0 && i <= l.length); 
var preL = List<int>.from(l); // initial value of l 
l[i] = e; 
// postcondition 
for (var j = 0; j < i – 1; j++) { 
   assert(l[j] == preL[j]; 
} 
assert(l[i] == e); 
for (var j = i; j < preL.length; j++) { 
   assert(l[j+1] == preL[j]); 
} 

 

Surprisingly, for this simple one-line operation, 
the postcondition assertions are long and somewhat 
complicated, meticulously detailing the effects on 
each location within the list, including the newly 
added one. We can enhance the clarity of the 
postcondition by employing the constructive 
approach and incorporating more appropriate 
terminology, such as “insert,” as illustrated below: 
 

assert(listEquals(l, preL..insert(i,e)); 
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Assuming familiarity with the insert() operation, 
the resultant assertion offers a notably simpler and 
more elegant expression compared to the original 
version. It states that the final state of l is equivalent 
to the result state of “inserting” the element at the 
position i within its initial state. It is worth noting that 
the insert() operation used in the assertion carries a 
side effect. However, this side effect is confined to a 
duplicate copy (preL) that is created to write 
assertions, rendering it inconsequential for actual 
operations of the code. In a way, this duplicated copy 
represents an assertion state that remains 
imperceptible to the operational code. 

Two immediate improvements can enhance the 
clarity of the above assertion further. Firstly, using 
the overridable == operator available in Dart instead 
of the listEquals() function improves readability. 
Secondly, a more significant refinement involves 
avoiding the manual cloning of objects in the initial 
state, such as preL in the example, and utilizing 
mutation operations like insertion. The reason is that 
it poses the risk of inadvertent mutations on the 
program state and thus potential reliability issues, as 
assertions should remain free from side effects. To 
address these concerns and enhance the effectiveness 
of constructive assertions, we propose introducing an 
assertion library. 

The assertion library aims to offer a high-level 
vocabulary tailored for manipulating program states, 
with a specific emphasis on creating anticipated 
values without unintentionally impacting the actual 
program state. This is accomplished through the 
provision of immutable collection classes designed 
for abstracting concrete program states into assertion 
states. The underlying idea involves mapping a 
program state to an abstract state and formulating 
assertions in terms of this abstract state. Thus, 
assertions indirectly impose constraints on the code 
without explicitly referring to concrete program 
states. To illustrate this concept, the preceding 
assertion can be elegantly rewritten using the library: 
 

var expected = OCLSequence<int>(l).insertAt(e, i); 
l[i] = e; 
assert(expected == l); 

 

The program state l is abstracted into an 
immutable sequence, and the insertAt() operation is 
an immutable insertion operation as it creates a new 
sequence incorporating the original data and the 
newly inserted element. Importantly, this operation 
leaves the initial sequence untouched. The thoughtful 
override of the == operator facilitates the comparison 
of sequences, allowing the conversion of a concrete 
collection, such as a list, into a sequence when 

necessary. This approach ensures the clarity of the 
assertion without compromising the integrity of the 
program state. 

The assertion library operates similarly to 
mathematical toolkits commonly found in formal 
specification languages like VDM-SL and Z (Jones, 
1986; Spivey, 1989). Realizing the assertion library 
can be achieved through various avenues. In this 
paper, we utilize the Dart implementation of OCL 
collection classes (Cheon, Lozano, & Prabhu, 2023). 
The implementation provides various collections, 
including sets, ordered sets, bags, and sequences, 
meticulously designed for immutability, with 
operations conforming to the OCL standard (Object 
Management Group, 2023). It also incorporates 
streamlined Dart language-specific adaptations, such 
as translating iteration operations into higher-order 
functions, enabling conversion between Dart and 
OCL collections, and introducing other Dart-inspired 
operations. 

4 EXAMPLES  

In this section, we apply constructive assertions to a 
small Flutter app for text-based notetaking adapted 
from Zammetti (2019). The app comprises two main 
screens: a note list display and a note editor (see 
Figure 1). Our focus is on the app's model and state 
management, crucial in the reactive programming of 
Flutter, where the user interface (UI) functions as a 
mapping from the state to widgets. Widgets are 
regenerated and adapted automatically in response to 
state modifications. 

 
Figure 1: Sample screens: list screen and note editor. 

Figure  shows the architecture of the app, 
consisting of three widget classes and several non-
widget classes. The main widget class hosts two 
widgets—one for note display and the other for 
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editing. This class dynamically selects and updates its 
view, driven by the screen index (screenIndex) stored 
within the model class. 

The app's state, managed by the NotesModel 
class, comprises an ordered collection of notes, with 
an optional note for buffered editing. All notes persist 
in a local database, and the NotesModel class ensures 
synchronized updates between this database and in-
memory notes. The state also includes a screen index 
(screenIndex), indicating the active screen widget—
NotesList or NoteEntry. Changing this index triggers 
seamless UI updates facilitated by the state 
management framework in use. 

 
Figure 2: Class diagram. 

Now, let's examine a portion of the NotesModel 
class implementation to explore its assertions. Below, 
we show the skeletal code that instantiates the 
previously discussed associations and attributes. This 
model class is defined as a subclass of a state 
management framework class, facilitating automatic 
UI reconstruction in response to state changes. The 
specific choice of the state management framework 
does not impact our discussion in this paper. 
 

class NotesModel extends Model {  
    final List<Note> _notes = []; 
    Note? noteEdited;  
    int screenIndex = 0; 
    … 
    get __notes => OCLSequence<Note>(_notes); 
    get __notesDB async => OCLSequence<Note>( 
        await DBWorker.db.getAll()); 
} 

 

The code features two getter methods (__notes 
and __notesDB) serving as abstraction functions to 
access abstract views of notes within the (in-memory) 
model and those stored in the database. These getters 
transform Dart lists into immutable sequences 
(OCLSequence). They are assertion-only methods 
designed solely for writing assertions; we may 
introduce an annotation like @assert to indicate this.  

We are now ready to examine several key 
operations of the NotesModel class and formulate 
their assertions. Writing assertions is a common 
practice for verifying code assumptions and logic. 
Our aim is to construct complete pre and 
postconditions for these operations to evaluate the 
effectiveness of constructive assertions. 

The loadNotes() method populates notes to be 
displayed by the notes list screen by fetching them 
from a local database (see below). This method 
should be invoked upon app launch and when the list 
screen widget is created. 
 

Future<void> loadNotes() async { 
     … 
     assert(__notes == await __notesDB); 
} 

 

Its constructive postcondition is expressed as 
__notes == await __noteDB. The abstraction 
functions simplify its formulation, resulting in a clear 
assertion. They return OCL sequences, and the 
overridden == operator evaluates the equality of these 
sequences. The use of abstraction functions improves 
the reusability and maintainability of assertions. If the 
implementation changes, only the abstraction 
functions need redefining, eliminating the need to 
rewrite assertions. This assertion also shows the 
advantage of abstraction, as the database is perceived 
as a sequence of notes, independent of specific 
storage intricacies. 

The createNote() method, shown below, serves as 
a callback function to be invoked when the user taps 
the floating action button on the notes list screen (see 
Figure ). This action facilitates the creation of a new 
note, which will later either be discarded or added to 
the list of notes using the saveNote() method to be 
introduced later in this section.  

void createNote() { 
    … 
    assert(noteEdited == Note.empty()); 
    assert(screenIndex == screenIndexNote); 
} 

 

The method creates an empty note and assigns it 
to the editing buffer noteEdited field, anticipating its 
later presentation by the note editor widget. It also 
modifies the screenIndex field to prompt a UI update, 
transitioning to the note editor screen. The overridden 
== operator in the Note class enables proper 
comparison, and the side effect of creating a new 
empty note in the first assertion occurs within the 
assertion state, remaining unobservable to the code. 

The deleteNote() method removes a note from the 
list and the database (see below), triggered by a user 
tap on the delete slide action (see Figure ). This 
method alters the list of notes, presenting an 
interesting case for assertions. The first two assertions 
confirm the presence of the note in the list and a non-
null id, indicating its existence in the database. 
Considering the side effects, pre-state calculations 
anticipate final values for both the notes list and the 

{ordered}  *

0..1
<<widget>>

Notes

Note

<<widget>>
NotesList

<<widget>>
NotesEntry DBWorker

<<model>>
NotesModel

+screenIndex: int
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database, stored in notesExp. The excluding() 
operation is an immutable removal operation defined 
in OCL collection classes. Post-state assertions then 
validate the equivalence between these final values 
and the expected sequences of notes. As expected, 
abstraction functions are used to retrieve the actual 
final values. The last assertion confirms that the 
method prompts an update of the notes list screen to 
reflect the note's removal. 
 

void deleteNote(Note note) async { 
    assert(__notes.includes(note)); 
    assert(note.id != null); 
    var notesExp = __notes.excluding(note); 
    …     
    assert(__notes == notesExp); 
    assert(await __notesDB == notesExp); 
    assert(screenIndex == screenIndexList); 
} 

  

The user can edit a note by tapping on it displayed 
in the notes list screen, triggering the editNote() 
method to transition to the editing screen (see below). 
The precondition requires the tapped note to exist in 
the list of notes. The postcondition ensures that the 
noteEdited field contains an equivalent note to the 
argument, emphasizing that it's not the same instance. 
This field serves as an editing buffer, signifying that 
changes are temporary until explicitly saved. The last 
assertion confirms that the method triggers a UI 
update to transition to the editing screen. 
 

void editNote(Note note) { 
    assert(__notes.includes(note)); 
    … 
    assert(noteEdited == note  
       && !identical(noteEdited, note)); 
    assert(screenIndex == screenIndexNote); 
} 

 

The saveNote() method (see below), invoked 
when the user taps the save button on the note editing 
screen (see Figure ), handles updates to both the notes 
list and the database, addressing the complexities of 
editing new and existing notes. 
 

Future<void> saveNote() async { 
    assert(noteEdited != null); 
    assert(noteEdited!.id == null 
        || _notes.any((e) => e.id == noteEdited!.id)); 
    var preNote = noteEdited!.clone(); 
    var preNotes = __notes; 
    … 
    if (preNote.id != null) { 
        var index = preNotes.indexWhere( 
             (e) => e.id == preNote.id); 
        assert(__notes ==  
             preNotes.setAt(index, preNote)); 

        assert(await __notesDB) == __notes; 
    } else { 
        var lastNote = __notes.last; 
        assert(lastNote.id != null); 
        assert(preNotes.collect((e) =>  
            e.id).excludes(lastNote.id)); 
        assert(__notes ==  
            preNotes.append(preNote..id = lastNote.id)); 
        assert(await __notesDB  ==__notes); 
    } 
    assert(screenIndex == screenIndexList); 
} 

 

The first assertion ensures that the method is 
invoked when there is an active editing buffer. The 
second confirms that the edited note is either new or 
an existing one based on its ID. The subsequent pair 
of local variables, preNote and preNotes, store pre-
state values for later reference in the post-state, 
necessitating cloning due to potential modifications 
by the code. For an existing note, the postcondition 
locates the index of the edited note, replaces it in the 
pre-state list, and ensures that the change is reflected 
in the database. In the case of a new note, the post 
condition asserts the uniqueness of the ID field, and 
using a constructive approach, appends the edited 
note to the list with an ID selected by the code. 

5 DISCUSSIONS 

Creating assertions covering complete pre and 
postconditions is uncommon, except in certain cases, 
such as aiming for formal code verification. However, 
when such needs arise, using constructive assertions 
with an assertion library enables programmers to 
express them in a concise, understandable, reusable, 
and maintainable manner. To substantiate this claim, 
we measured the size complexities of assertions by 
comparing constructive assertions to conventional 
algebraic assertions across 24 methods in the Notes 
and NotesModel model classes. For the comparison, 
we wrote equivalent assertions in conventional 
algebraic style. The results are summarized in Table 
I, where only assertions involving abstraction 
functions for non-primitive values were counted as 
constructive; that is, assertions in the form of x = E, 
with E being a primitive expression, were not 
considered constructive. 

The first row compares the total source lines of 
code (SLOC) for both code and assertions, revealing 
a 13% reduction in SLOC for the constructive style 
(257 vs. 295). The second row compares only 
assertions, including supporting code, showing a 
notable difference. Constructive style includes 49 
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assert statements within 75 SLOC, while algebraic 
style incorporates 59 assertions within 115 SLOC. 
This translates to 35% less code for the constructive 
style. If we specifically examine only those assertions 
written constructively and their corresponding 
algebraic assertions (the last row), it becomes evident 
that constructive style requires fewer assertions (36% 
less) and significantly fewer SLOC (67% less). These 
findings underscore the efficiency of constructive 
assertions, providing a concise and understandable 
approach for expressing complete pre and 
postconditions. 

Table 1: Size complexities of assertions. 

 Con. Alg. C/A 1 – C/A 
Total SLOC 257 295 0.87 0.13
No. all assert stmts 
SLOC 

49 
75

59 
115 

0.83 
0.65 

0.17 
0.35

No. con./alg. assert 
SLOC 

18 
20

28 
60 

0.64 
0.33 

0.36 
0.67

We observed in our assertions that most accessor 
methods, such as the getNoteId() method listed 
below, exhibit an interesting assertion pattern where 
postconditions, whether algebraic or constructive, 
often parallel the code logic for calculating the return 
value. Constructive assertions, structurally similar 
but referencing specification-only variables (e.g., 
__notes), highlight their advantage. In contrast to 
algebraic-style assertions, constructive assertions 
retain reusability despite changes in the underlying 
representation. When the representation changes, 
only the abstraction functions require redefinition, 
simplifying maintenance and preserving assertion 
integrity. This shows the robustness and adaptability 
of constructive assertions, contributing to more 
reusable and maintainable code. 
 

Note? getNoteId(int id) { 
var result = notes.any((e) => e.id == id) ? 
   notes.firstWhere((e) => e.id == id) : null; 
… 
assert(result == (__notes.exists((e) => e.id == id) ? 
  __notes.any((e) => e.id == id) : null)); 
  return result; 
} 

 

In the previous section, we briefly touched upon 
how we assert that a method initiates a UI update by 
indicating the expected screenIndex value. However, 
in our actual implementation code, we employed two 
assert statements: one in the pre-state to clear a flag 
and another in the post-state to verify if the flag is set 
to a specific value (refer to the skeletal code below). 
To facilitate this, we introduced an assertion-only 
method __uiNotified(), which serves the dual purpose 

of clearing the flag and checking it for a specific 
value. 
 

assert(__uiNotified()); // clear the flag. 
… 
assert(__uiNotified(screenIndexNote); // check. 

 

While effective, this technique has inherent 
challenges, especially when used to verify if a 
specific method was invoked during execution, such 
as state management framework methods. It can be 
error-prone and may require additional handling for 
nested cases. Investigating built-in mechanisms to 
assert the occurrence of method calls could simplify 
and streamline the formulation of such assertions 
(Cheon & Perumandla, 2007). 

An assertion typically focuses on a single program 
state, representing either the initial state for a 
precondition or the final state for a postcondition. 
However, in scenarios where a postcondition requires 
referencing the initial value of a changing program 
variable, the introduction of a specification-only local 
variable becomes essential. Despite its utility, there 
are drawbacks. For objects, careful handling is crucial 
to ensure accurate cloning, particularly when the 
object's state might be altered by the code. While 
OCL collection classes offer automatic cloning for 
collections, manual intervention is needed for non-
collection types. Caution is also warranted if the 
object undergoes mutation within assertions, as the 
order of assertions could impact correctness. The use 
of specification-only local variables may introduce 
namespace clutter and the risk of accidental 
references in the code, which could be addressed 
through a well-defined naming convention or 
annotation. Overcoming these challenges presents a 
promising avenue for future research and refinement. 

In addition to assertion-only variables, assertion-
only code—comprising code sections, functions, 
methods, and classes—can coexist within the asserted 
codebase. Unlike assertion-only variables, integrating 
assertion-only code within regular code does not pose 
issues, aside from its presence in the production code. 
It is advisable, however, to confine the use of 
assertion-only code to assertion-specific contexts. 
Clear indication of its purpose can be achieved 
through a well-defined naming convention or 
annotations. While most instances of assertion-only 
code are private within classes or libraries, certain 
scenarios may require public visibility. For instance, 
when introducing a method to clone a Note object for 
assertion purposes, the method needs to be public if 
the Note class and NotesModel class are in separate 
libraries. Abstraction functions serve as another 
example, enabling client assertions to manipulate 
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values abstractly. Exploring the potential 
establishment of a specialized interface, such as an 
assertion interface, could be an intriguing avenue for 
future research, allowing client code to formulate 
assertions about objects with hidden states and 
enhancing the assertion framework's capabilities and 
flexibility. 

6 CONCLUSIONS 

This paper has introduced and explored the concept 
of constructive assertions as a valuable technique for 
enhancing code reliability and verification. By 
leveraging abstraction functions and assertion-only 
variables, we have demonstrated how constructive 
assertions offer a concise and comprehensible 
approach to specifying program behavior. The 
assertion library of immutable collection classes 
further underscores the potential of this approach. 
While challenges such as proper cloning and 
namespace pollution warrant consideration, the future 
holds promise for refining and expanding the utility 
of constructive assertions. As software development 
continues to evolve, the judicious application of this 
technique stands to contribute to more reusable, 
maintainable, and reliable software systems. 
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