
Constructive Assertions with Abstract Models

Yoonsik Cheon
Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

Keywords: Abstraction Function, Assertion, Assertion Library, Assertion State, Constructive Assertion, Dart,
Object Constraint Language.

Abstract: An assertion is a statement that specifies a condition that must be true at a particular point during program
execution. It serves as a tool to ensure the program functions as intended, reducing the risk of introducing
subtle errors. Usually expressed algebraically, an assertion utilizes Boolean expressions to specify permissible
relationships among program variables. In complex scenarios, calculating the expected value of a program
variable often proves more effective than specifying the constraints it must adhere to. In this paper, we present
an approach to formulating assertions using abstract models in a constructive manner, which complements
the traditional algebraic style. Constructive assertions empower programmers to articulate comprehensive
assertions, including pre and postconditions, in a succinct, comprehensible, reusable, and maintainable
manner.

1 INTRODUCTION

An assertion, as defined by Matuszek (1976), is a
statement establishing a condition expected to be true
at a specific point during program execution. It is
essentially a Boolean expression inserted directly into
the code. If the condition evaluates as true, the
program proceeds without disruption; if false, the
assertion fails, triggering an exception or displaying
an error message. Assertions can validate code
assumptions, verify code logic, and aid in identifying
potential errors promptly. Their adoption, often in the
form of assert statements, has been widespread in
programming languages, with empirical studies
showing that code containing assertions has fewer
defects (Casalnuovo et al., 2015; Counsell et al.,
2017; Kochhar & Lo, 2017).

While traditional assertions express conditions
algebraically, involving relationships among program
variables and state components, writing such
assertions can become complex, especially dealing
with multiple variables or various object parts.

This paper introduces a complementary approach
called constructive assertions. In this approach,
expected values for program variables are computed
to produce more straightforward and understandable
assertions. It leverages an abstraction of program
states with an abstraction function (Hoare, 72;
Sitaraman, Weide, & Ogden, 1997), providing an

immutable model, to write assertions constructively
and representation-independently. The paper also
introduces an assertion library offering immutable
collection classes specifically designed for writing
assertions. Although demonstrated using Dart
(Bracha, 2016) and Flutter (Flutter, 2023) for mobile
applications, the concept of constructive assertions is
applicable to other languages and platforms.

The integration of traditional algebraic and new
constructive assertions broadens the range of
assertion techniques. Algebraic assertions define
constraints on program variables and states, whereas
constructive assertions provide a more streamlined
approach to express expected outcomes. Therefore,
this paper empowers programmers to select the most
appropriate technique depending on the assertion's
unique context and complexity. This enhances the
thoroughness and effectiveness of assertions,
ultimately fostering improved code quality and more
efficient debugging practices.

While existing literature extensively explores
various applications of assertions, including
debugging and testing tools utilizing pre and
postconditions (Rosenblum, 1995; Chalin, 2014;
Cheon, 2021; Cheon, 2022), as well as test oracles
(Cheon & Leavens, 2005; Watson et al., 2020), a
noticeable gap exists in publications studying distinct
styles of writing assertions, particularly the
comparative analysis of algebraic and constructive

Cheon, Y.
Constructive Assertions with Abstract Models.
DOI: 10.5220/0012418800003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 211-218
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

211

methodologies. This specific aspect has received
limited research attention. The use of an abstraction
function to define an abstract assertion state can be
considered a way to implement a model variable in a
specification language (Cheon et al., 2005). The
assertion library, designed to support constructive
assertions, draws inspiration from the collections
library of the Object Constraint Language (OCL)
(Warmer & Kleppe, 2003).

This paper is organized as follows. Section 2
introduces assertions, covering algebraic and
constructive writing styles. Section 3 presents an
assertion library consisting of immutable collection
classes. Section 4 demonstrates constructive
assertions via examples, including app written in
Flutter. Section 5 explores open issues and future
research directions. Section 6 concludes the paper.

2 CONSTRUCTIVE ASSERTIONS

2.1 Assertions

In programming, assertions are straightforward
statements that declare conditions expected to be true
at specific points during program execution
(Matuszek, 1976; Rosenblum, 1996). These Boolean
expressions, embedded within the code, facilitate
smooth program flow when conditions are met. If
false, assertions trigger errors, highlighting
unexpected situations. Operating as lightweight
mechanisms, assertions enable programmers to
validate code assumptions and logic, aiding in testing,
debugging, and enhancing software quality.

To illustrate, consider a Dart function calculating
the maximum value from a list of integers. The
function assumes a non-empty input list, a critical
point addressed by an assertion at the code's outset. If
the function encounters an empty list, this assertion
signals an error to inform the invalid input. Further
assertions, strategically placed post-computation,
verify that the returned value represents the maximum
within the input list. Any failure triggers an assertion
exception, signaling potential implementation errors.

int max(List<int> list) {
assert(list.length > 0, 'Invalid argument');
var result;
… // calculate the result.
assert(list.contains(result), 'Wrong result');
 assert(list.every((n) => n <= result, 'Wrong result');
 return result;

}

By using assertions during development and
testing, one can effectively verify both the
preconditions (input assumptions) and postconditions
(expected output) of the code, thereby enhancing its
reliability. Note that assertions are typically disabled
in production environments and automatically
removed from the Dart/Flutter production code.

2.2 Assertion Styles

Traditionally, assertions are formed by examining
program states to assert facts that these states must
meet. This algebraic approach constrains program
states by specifying permissible relationships among
program variables and state components. For
instance, in the earlier max() function, the first assert
statement ensures the list's length is greater than 0,
indicating a non-empty list. Similarly, other assert
statements verify that the result is an element of the
list and is greater than or equal to every other element
in the list.

An alternative approach involves calculating the
expected value of a state component and asserting the
equivalence between the actual and expected values,
termed the constructive style. For example, instead of
explicitly listing properties of a maximum value in a
list, we can find the maximum value using the
reduce() method and assert that the result is equal to
this calculated value:

assert(result == list.reduce((r,e) => math.max(r,e));

This constructive style focuses on calculated
expected results and their equivalence with actual
values. Both algebraic and constructive styles have
merits, depending on specific code requirements.

In this paper, we informally use the term
constructive assertions. These assertions take a
Boolean expression, denoted as P(x), where x
represents program variables or state components.
P(x) outlines constraints on a program's state or
establishes permissible relationships among its
components. When P(x) is structured as x == E(y), we
classify it as a constructive assertion, where E(y)
calculates or constructs the anticipated value or state
for the specific variable or component x. The essence
lies in computing a solution rather than enumerating
solution properties.

For example, asserting the sorted order of a list,
denoted as l, conventionally involves scrutinizing the
sorted property of the list:

for (var i = 0; l < l.length - 1; i++) {

 assert(l[i] <= l[i + 1]);
}

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

212

Contrastingly, a constructive approach creates a
sorted version of the list and asserts the equivalence
between the sorted and original lists:

assert(listEquals(l, List<int>.from(l)..sort()));

Although the assertion involves Dart-specific
constructs and syntax, its essence is summarized as l
== l.clone()..sort(). The listEquals() function from
the Flutter SDK compares two lists element-wise; the
List class's == operator evaluating object identity. To
create a fresh list and prevent inadvertent alterations
to the original, we use the List.from() method. Dart's
cascade notation (..), exemplified as e..m(), allows
executing a series of operations on the same object
without introducing temporary variables. Thus, the
expression List<int>.from(l)..sort() efficiently clones
and sorts the list, yielding its sorted version.

This constructive approach is particularly
effective for asserting state changes and specifying
the behavior of mutation operations. For example,
asserting the insertion of a value n into a sorted list l
while maintaining its sorted order is succinctly
expressed using constructive assertions:

var expected = List<int>.from(l)..append(n)..sort();
// … code to insert n to l.
assert(listEquals(l, expected));

The local variable expected is an assertion-only
variable introduced to store the expected value of l
calculated in the initial state. This calculated value is
then compared to the actual value of l in the final
state. As done previously, before the calculation, the
list is cloned to prevent unintended modifications to
the original list.

Now, let's formulate the same assertion using the
conventional style of stating properties. The skeletal
code is shown below:

var preL = List<int>.from(l); // initial value of l
// … code to insert n into l.
assert(…);

In the final state, we need to formulate the
properties that l is a version of preL with n
appropriately inserted. This entails articulating the
following properties (see Section 3):

• The list l maintains its sorted order. This
implies that for each index i from 0 to l.length
- 2, the element at index i is less than or equal
to the element at index i + 1.

• The value n is present within the list l after the
insertion operation.

• There are no other changes in l. That is, all
elements are retained and no new elements

other than n have been introduced. This
principle, referred to as the frame axiom
(Borgida et al., 1993), makes the assertion
comprehensive and conclusive.

The complexity of stating certain properties, such
as the last one above, can be notably intricate,
especially when verifying not only the existence of an
element within a list but also the exact count of its
occurrences when duplicates are allowed.

Modern object-oriented programming languages,
such as Dart (Bracha, 2016), offer a spectrum of
language constructs and functionalities that
streamline the composition of assertions through a
constructive approach. These include lambda
expressions, higher-order functions, cascade
notation, operator overriding, and collections.
Complementing these capabilities, we can enhance
the efficacy of constructive assertions by introducing
a dedicated assertion library.

3 ASSERTION LIBRARY

Constructive assertions are highly valuable for
validating modifications in object state or side effects,
enabling programmers to formulate complete
postconditions. For example, let us consider the code
snippet to insert an element e into a list l at a position
i. Below, we present its pre and postconditions
without utilizing constructive assertions:

// precondition
assert(i >= 0 && i <= l.length);
var preL = List<int>.from(l); // initial value of l
l[i] = e;
// postcondition
for (var j = 0; j < i – 1; j++) {
 assert(l[j] == preL[j];
}
assert(l[i] == e);
for (var j = i; j < preL.length; j++) {
 assert(l[j+1] == preL[j]);
}

Surprisingly, for this simple one-line operation,
the postcondition assertions are long and somewhat
complicated, meticulously detailing the effects on
each location within the list, including the newly
added one. We can enhance the clarity of the
postcondition by employing the constructive
approach and incorporating more appropriate
terminology, such as “insert,” as illustrated below:

assert(listEquals(l, preL..insert(i,e));

Constructive Assertions with Abstract Models

213

Assuming familiarity with the insert() operation,
the resultant assertion offers a notably simpler and
more elegant expression compared to the original
version. It states that the final state of l is equivalent
to the result state of “inserting” the element at the
position i within its initial state. It is worth noting that
the insert() operation used in the assertion carries a
side effect. However, this side effect is confined to a
duplicate copy (preL) that is created to write
assertions, rendering it inconsequential for actual
operations of the code. In a way, this duplicated copy
represents an assertion state that remains
imperceptible to the operational code.

Two immediate improvements can enhance the
clarity of the above assertion further. Firstly, using
the overridable == operator available in Dart instead
of the listEquals() function improves readability.
Secondly, a more significant refinement involves
avoiding the manual cloning of objects in the initial
state, such as preL in the example, and utilizing
mutation operations like insertion. The reason is that
it poses the risk of inadvertent mutations on the
program state and thus potential reliability issues, as
assertions should remain free from side effects. To
address these concerns and enhance the effectiveness
of constructive assertions, we propose introducing an
assertion library.

The assertion library aims to offer a high-level
vocabulary tailored for manipulating program states,
with a specific emphasis on creating anticipated
values without unintentionally impacting the actual
program state. This is accomplished through the
provision of immutable collection classes designed
for abstracting concrete program states into assertion
states. The underlying idea involves mapping a
program state to an abstract state and formulating
assertions in terms of this abstract state. Thus,
assertions indirectly impose constraints on the code
without explicitly referring to concrete program
states. To illustrate this concept, the preceding
assertion can be elegantly rewritten using the library:

var expected = OCLSequence<int>(l).insertAt(e, i);
l[i] = e;
assert(expected == l);

The program state l is abstracted into an
immutable sequence, and the insertAt() operation is
an immutable insertion operation as it creates a new
sequence incorporating the original data and the
newly inserted element. Importantly, this operation
leaves the initial sequence untouched. The thoughtful
override of the == operator facilitates the comparison
of sequences, allowing the conversion of a concrete
collection, such as a list, into a sequence when

necessary. This approach ensures the clarity of the
assertion without compromising the integrity of the
program state.

The assertion library operates similarly to
mathematical toolkits commonly found in formal
specification languages like VDM-SL and Z (Jones,
1986; Spivey, 1989). Realizing the assertion library
can be achieved through various avenues. In this
paper, we utilize the Dart implementation of OCL
collection classes (Cheon, Lozano, & Prabhu, 2023).
The implementation provides various collections,
including sets, ordered sets, bags, and sequences,
meticulously designed for immutability, with
operations conforming to the OCL standard (Object
Management Group, 2023). It also incorporates
streamlined Dart language-specific adaptations, such
as translating iteration operations into higher-order
functions, enabling conversion between Dart and
OCL collections, and introducing other Dart-inspired
operations.

4 EXAMPLES

In this section, we apply constructive assertions to a
small Flutter app for text-based notetaking adapted
from Zammetti (2019). The app comprises two main
screens: a note list display and a note editor (see
Figure 1). Our focus is on the app's model and state
management, crucial in the reactive programming of
Flutter, where the user interface (UI) functions as a
mapping from the state to widgets. Widgets are
regenerated and adapted automatically in response to
state modifications.

Figure 1: Sample screens: list screen and note editor.

Figure shows the architecture of the app,
consisting of three widget classes and several non-
widget classes. The main widget class hosts two
widgets—one for note display and the other for

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

214

editing. This class dynamically selects and updates its
view, driven by the screen index (screenIndex) stored
within the model class.

The app's state, managed by the NotesModel
class, comprises an ordered collection of notes, with
an optional note for buffered editing. All notes persist
in a local database, and the NotesModel class ensures
synchronized updates between this database and in-
memory notes. The state also includes a screen index
(screenIndex), indicating the active screen widget—
NotesList or NoteEntry. Changing this index triggers
seamless UI updates facilitated by the state
management framework in use.

Figure 2: Class diagram.

Now, let's examine a portion of the NotesModel
class implementation to explore its assertions. Below,
we show the skeletal code that instantiates the
previously discussed associations and attributes. This
model class is defined as a subclass of a state
management framework class, facilitating automatic
UI reconstruction in response to state changes. The
specific choice of the state management framework
does not impact our discussion in this paper.

class NotesModel extends Model {
 final List<Note> _notes = [];
 Note? noteEdited;
 int screenIndex = 0;
 …
 get __notes => OCLSequence<Note>(_notes);
 get __notesDB async => OCLSequence<Note>(
 await DBWorker.db.getAll());
}

The code features two getter methods (__notes
and __notesDB) serving as abstraction functions to
access abstract views of notes within the (in-memory)
model and those stored in the database. These getters
transform Dart lists into immutable sequences
(OCLSequence). They are assertion-only methods
designed solely for writing assertions; we may
introduce an annotation like @assert to indicate this.

We are now ready to examine several key
operations of the NotesModel class and formulate
their assertions. Writing assertions is a common
practice for verifying code assumptions and logic.
Our aim is to construct complete pre and
postconditions for these operations to evaluate the
effectiveness of constructive assertions.

The loadNotes() method populates notes to be
displayed by the notes list screen by fetching them
from a local database (see below). This method
should be invoked upon app launch and when the list
screen widget is created.

Future<void> loadNotes() async {
 …
 assert(__notes == await __notesDB);
}

Its constructive postcondition is expressed as
__notes == await __noteDB. The abstraction
functions simplify its formulation, resulting in a clear
assertion. They return OCL sequences, and the
overridden == operator evaluates the equality of these
sequences. The use of abstraction functions improves
the reusability and maintainability of assertions. If the
implementation changes, only the abstraction
functions need redefining, eliminating the need to
rewrite assertions. This assertion also shows the
advantage of abstraction, as the database is perceived
as a sequence of notes, independent of specific
storage intricacies.

The createNote() method, shown below, serves as
a callback function to be invoked when the user taps
the floating action button on the notes list screen (see
Figure). This action facilitates the creation of a new
note, which will later either be discarded or added to
the list of notes using the saveNote() method to be
introduced later in this section.

void createNote() {
 …
 assert(noteEdited == Note.empty());
 assert(screenIndex == screenIndexNote);
}

The method creates an empty note and assigns it
to the editing buffer noteEdited field, anticipating its
later presentation by the note editor widget. It also
modifies the screenIndex field to prompt a UI update,
transitioning to the note editor screen. The overridden
== operator in the Note class enables proper
comparison, and the side effect of creating a new
empty note in the first assertion occurs within the
assertion state, remaining unobservable to the code.

The deleteNote() method removes a note from the
list and the database (see below), triggered by a user
tap on the delete slide action (see Figure). This
method alters the list of notes, presenting an
interesting case for assertions. The first two assertions
confirm the presence of the note in the list and a non-
null id, indicating its existence in the database.
Considering the side effects, pre-state calculations
anticipate final values for both the notes list and the

{ordered} *

0..1
<<widget>>

Notes

Note

<<widget>>
NotesList

<<widget>>
NotesEntry DBWorker

<<model>>
NotesModel

+screenIndex: int

Constructive Assertions with Abstract Models

215

database, stored in notesExp. The excluding()
operation is an immutable removal operation defined
in OCL collection classes. Post-state assertions then
validate the equivalence between these final values
and the expected sequences of notes. As expected,
abstraction functions are used to retrieve the actual
final values. The last assertion confirms that the
method prompts an update of the notes list screen to
reflect the note's removal.

void deleteNote(Note note) async {
 assert(__notes.includes(note));
 assert(note.id != null);
 var notesExp = __notes.excluding(note);
 …
 assert(__notes == notesExp);
 assert(await __notesDB == notesExp);
 assert(screenIndex == screenIndexList);
}

The user can edit a note by tapping on it displayed
in the notes list screen, triggering the editNote()
method to transition to the editing screen (see below).
The precondition requires the tapped note to exist in
the list of notes. The postcondition ensures that the
noteEdited field contains an equivalent note to the
argument, emphasizing that it's not the same instance.
This field serves as an editing buffer, signifying that
changes are temporary until explicitly saved. The last
assertion confirms that the method triggers a UI
update to transition to the editing screen.

void editNote(Note note) {
 assert(__notes.includes(note));
 …
 assert(noteEdited == note
 && !identical(noteEdited, note));
 assert(screenIndex == screenIndexNote);
}

The saveNote() method (see below), invoked
when the user taps the save button on the note editing
screen (see Figure), handles updates to both the notes
list and the database, addressing the complexities of
editing new and existing notes.

Future<void> saveNote() async {
 assert(noteEdited != null);
 assert(noteEdited!.id == null
 || _notes.any((e) => e.id == noteEdited!.id));
 var preNote = noteEdited!.clone();
 var preNotes = __notes;
 …
 if (preNote.id != null) {
 var index = preNotes.indexWhere(
 (e) => e.id == preNote.id);
 assert(__notes ==
 preNotes.setAt(index, preNote));

 assert(await __notesDB) == __notes;
 } else {
 var lastNote = __notes.last;
 assert(lastNote.id != null);
 assert(preNotes.collect((e) =>
 e.id).excludes(lastNote.id));
 assert(__notes ==
 preNotes.append(preNote..id = lastNote.id));
 assert(await __notesDB ==__notes);
 }
 assert(screenIndex == screenIndexList);
}

The first assertion ensures that the method is
invoked when there is an active editing buffer. The
second confirms that the edited note is either new or
an existing one based on its ID. The subsequent pair
of local variables, preNote and preNotes, store pre-
state values for later reference in the post-state,
necessitating cloning due to potential modifications
by the code. For an existing note, the postcondition
locates the index of the edited note, replaces it in the
pre-state list, and ensures that the change is reflected
in the database. In the case of a new note, the post
condition asserts the uniqueness of the ID field, and
using a constructive approach, appends the edited
note to the list with an ID selected by the code.

5 DISCUSSIONS

Creating assertions covering complete pre and
postconditions is uncommon, except in certain cases,
such as aiming for formal code verification. However,
when such needs arise, using constructive assertions
with an assertion library enables programmers to
express them in a concise, understandable, reusable,
and maintainable manner. To substantiate this claim,
we measured the size complexities of assertions by
comparing constructive assertions to conventional
algebraic assertions across 24 methods in the Notes
and NotesModel model classes. For the comparison,
we wrote equivalent assertions in conventional
algebraic style. The results are summarized in Table
I, where only assertions involving abstraction
functions for non-primitive values were counted as
constructive; that is, assertions in the form of x = E,
with E being a primitive expression, were not
considered constructive.

The first row compares the total source lines of
code (SLOC) for both code and assertions, revealing
a 13% reduction in SLOC for the constructive style
(257 vs. 295). The second row compares only
assertions, including supporting code, showing a
notable difference. Constructive style includes 49

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

216

assert statements within 75 SLOC, while algebraic
style incorporates 59 assertions within 115 SLOC.
This translates to 35% less code for the constructive
style. If we specifically examine only those assertions
written constructively and their corresponding
algebraic assertions (the last row), it becomes evident
that constructive style requires fewer assertions (36%
less) and significantly fewer SLOC (67% less). These
findings underscore the efficiency of constructive
assertions, providing a concise and understandable
approach for expressing complete pre and
postconditions.

Table 1: Size complexities of assertions.

 Con. Alg. C/A 1 – C/A
Total SLOC 257 295 0.87 0.13
No. all assert stmts
SLOC

49
75

59
115

0.83
0.65

0.17
0.35

No. con./alg. assert
SLOC

18
20

28
60

0.64
0.33

0.36
0.67

We observed in our assertions that most accessor
methods, such as the getNoteId() method listed
below, exhibit an interesting assertion pattern where
postconditions, whether algebraic or constructive,
often parallel the code logic for calculating the return
value. Constructive assertions, structurally similar
but referencing specification-only variables (e.g.,
__notes), highlight their advantage. In contrast to
algebraic-style assertions, constructive assertions
retain reusability despite changes in the underlying
representation. When the representation changes,
only the abstraction functions require redefinition,
simplifying maintenance and preserving assertion
integrity. This shows the robustness and adaptability
of constructive assertions, contributing to more
reusable and maintainable code.

Note? getNoteId(int id) {
var result = notes.any((e) => e.id == id) ?
 notes.firstWhere((e) => e.id == id) : null;
…
assert(result == (__notes.exists((e) => e.id == id) ?
 __notes.any((e) => e.id == id) : null));
 return result;
}

In the previous section, we briefly touched upon
how we assert that a method initiates a UI update by
indicating the expected screenIndex value. However,
in our actual implementation code, we employed two
assert statements: one in the pre-state to clear a flag
and another in the post-state to verify if the flag is set
to a specific value (refer to the skeletal code below).
To facilitate this, we introduced an assertion-only
method __uiNotified(), which serves the dual purpose

of clearing the flag and checking it for a specific
value.

assert(__uiNotified()); // clear the flag.
…
assert(__uiNotified(screenIndexNote); // check.

While effective, this technique has inherent
challenges, especially when used to verify if a
specific method was invoked during execution, such
as state management framework methods. It can be
error-prone and may require additional handling for
nested cases. Investigating built-in mechanisms to
assert the occurrence of method calls could simplify
and streamline the formulation of such assertions
(Cheon & Perumandla, 2007).

An assertion typically focuses on a single program
state, representing either the initial state for a
precondition or the final state for a postcondition.
However, in scenarios where a postcondition requires
referencing the initial value of a changing program
variable, the introduction of a specification-only local
variable becomes essential. Despite its utility, there
are drawbacks. For objects, careful handling is crucial
to ensure accurate cloning, particularly when the
object's state might be altered by the code. While
OCL collection classes offer automatic cloning for
collections, manual intervention is needed for non-
collection types. Caution is also warranted if the
object undergoes mutation within assertions, as the
order of assertions could impact correctness. The use
of specification-only local variables may introduce
namespace clutter and the risk of accidental
references in the code, which could be addressed
through a well-defined naming convention or
annotation. Overcoming these challenges presents a
promising avenue for future research and refinement.

In addition to assertion-only variables, assertion-
only code—comprising code sections, functions,
methods, and classes—can coexist within the asserted
codebase. Unlike assertion-only variables, integrating
assertion-only code within regular code does not pose
issues, aside from its presence in the production code.
It is advisable, however, to confine the use of
assertion-only code to assertion-specific contexts.
Clear indication of its purpose can be achieved
through a well-defined naming convention or
annotations. While most instances of assertion-only
code are private within classes or libraries, certain
scenarios may require public visibility. For instance,
when introducing a method to clone a Note object for
assertion purposes, the method needs to be public if
the Note class and NotesModel class are in separate
libraries. Abstraction functions serve as another
example, enabling client assertions to manipulate

Constructive Assertions with Abstract Models

217

values abstractly. Exploring the potential
establishment of a specialized interface, such as an
assertion interface, could be an intriguing avenue for
future research, allowing client code to formulate
assertions about objects with hidden states and
enhancing the assertion framework's capabilities and
flexibility.

6 CONCLUSIONS

This paper has introduced and explored the concept
of constructive assertions as a valuable technique for
enhancing code reliability and verification. By
leveraging abstraction functions and assertion-only
variables, we have demonstrated how constructive
assertions offer a concise and comprehensible
approach to specifying program behavior. The
assertion library of immutable collection classes
further underscores the potential of this approach.
While challenges such as proper cloning and
namespace pollution warrant consideration, the future
holds promise for refining and expanding the utility
of constructive assertions. As software development
continues to evolve, the judicious application of this
technique stands to contribute to more reusable,
maintainable, and reliable software systems.

REFERENCES

Borgida, A., Mylopoulos, J., & Reiter, R. (1993). '. . . and
nothing else changes': the frame problem in procedure
specifications. 15th International Conference on
Software Engineering (ICSE), IEEE, 303-314.

Bracha, G. (2016). The Dart Programming Language.
Addison-Wesley.

Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., &
Ray, B. (2015). Assert use in GitHub projects.
IEEE/ACM 37th International Conference on Software
Engineering (ICSE), Florence, Italy, 755-766.

Chalin, P. (2014). Ensuring that your Dart will hit the mark:
An introduction to Dart contracts. International
Conference on Information Reuse and Integration,
Redwood City, CA, August 13-15, IEEE, 369-377.

Cheon, Y. (2021). Toward more effective use of assertions
for mobile app development. International Conference
on Progress in Informatics and Computing, Shanghai,
China, December 17-19, IEEE, 319-323.

Cheon, Y. (2022). Design assertions: executable assertions
for design constraints. 14th International Symposium on
Software Engineering Processes and Applications
(SEPA), July 4-7, Malaga, Spain. Published as ICCSA
2022 Workshops, Lecture Notes in Computer Science,
13381, 617-631, Springer.

Cheon, Y. & Leavens, G. T. (2002). A simple and practical
approach to unit testing: The JML and JUnit way. In
16th European Conference on Object-Oriented
Programming (ECOOP), Malaga, Spain, June. Lecture
Notes in Computer Science, 2374, 231–255, Springer.

Cheon, Y., Leavens, G. T., Sitaraman, M., & Edwards, S.
(2005). Model variables: cleanly supporting abstraction
in design by contract. Software: Practice and
Experience, 35(6), 583-599, Wiley.

Cheon, Y., Lozano, R., & Prabhu, R. S. (2023). A library-
based approach for writing design assertions.
IEEE/ACIS 21st International Conference on Software
Engineering Research, Management, and Applications
(SERA), Orlando, FL, USA, 22-27.

Cheon, Y. & A. Perumandla (2007). Specifying and
checking method call sequences of Java programs.
Software Quality Journal, 15(7), 7-25, Springer.

Counsell, S., Hall, T., Shippey, T., Bowes, T., Tahir, A., &
MacDonell, S. (2017). Assert use and defectiveness in
industrial code. IEEE International Symposium on
Software Reliability Engineering Workshops
(ISSREW), Toulouse, France, 20-23.

Flutter. (2023). Retrieved from https://flutter.dev.
Hoare, C. A. R. (1972). October. Proof of correctness of

data representations, Acta Informatica, 1(1), 271–281.
Jones, C. B. (1986). Systematic Software Development

Using VDM. Prentice Hall.
Kochhar, P.S. & Lo, D. (2017). Revisiting assert use in

GitHub projects. 21st International Conference on
Evaluation and Assessment in Software Engineering
(EASE), June, 298-307.

Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., & Cok, D.
(2005). How the design of JML accommodates both
runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3), 185-208.

Matuszek, D. (1976). The case for assert statement. ACM
SIGPLAN Notices, 36-37, August.

Object Management Group. (2023). Object Constraint
Language, version 2.4. Retrieved November 13, 2023,
from https://www.omg.org/spec/OCL/.

Rosenblum, D. S. (1995). A practical approach to
programming with assertions. IEEE Transactions on
Software Engineering, 21(1), 19-31, January.

Spivey, J. (1989). The Z Notation: A Reference Manual.
Prentice Hall.

Sitaraman, M., Weide, B. W., & Ogden, W. F. (1997). On
the practical need for abstraction relations to verify
abstract data type representations, IEEE Transactions
on Software Engineering, 23(3), 157-170, March.

Warmer, J. & Kleppe, A. (2003). The Object Constraint
Language: Getting Your Models Ready for MDA (2nd
ed.). Addison-Wesley.

Watson, C., Tufano, M., Moran, K., Bavota, G., &
Poshyvanyk, D. (2020). On learning meaningful assert
statements for unit test cases. IEEE/ACM 42nd
International Conference on Software Engineering
(ICSE), Seoul, Korea, 1398-1409.

Zammetti, F. (2019). Practical Flutter: Improve Your
Mobile Development with Google’s Latest Open-
Source SDK. Apress.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

218

