
On Feasibility of Transferring Watermarks from Training Data to
GAN-Generated Fingerprint Images

Venkata Srinath Mannam, Andrey Makrushin and Jana Dittmann
Department of Computer Science, Otto von Guericke University, Magdeburg, Germany

Keywords: Watermarking, Biometrics, Synthetic Fingerprints, Synthetic Data Detection, GAN, Pix2pix.

Abstract: Due to the rise of high-quality synthetic data produced by generative models and a growing mistrust in images
published in social media, there is an urgent need for reliable means of synthetic image detection. Passive
detection approaches cannot properly handle images created by ”unknown” generative models. Embedding
watermarks in synthetic images is an active detection approach which transforms the task from fake detection
to watermark extraction. The focus of our study is on watermarking biometric fingerprint images produced
by Generative Adversarial Networks (GAN). We propose to watermark images used for training of a GAN
model and study the interplay between the watermarking algorithm, GAN architecture, and training hyper-
parameters to ensure the watermark transfer from training data to GAN-generated fingerprint images. A
hybrid watermarking algorithm based on discrete cosine transformation, discrete wavelet transformation, and
singular value decomposition is shown to produce transparent logo watermarks which are robust to pix2pix
network training. The pix2pix network is applied to reconstruct realistic fingerprints from minutiae. The
watermark imperceptibility and robustness to GAN training are validated by peak signal-to-noise ratio and bit
error rate respectively. The influence of watermarks on reconstruction success and realism of fingerprints is
measured by Verifinger matching scores and NFIQ2 scores respectively.

1 INTRODUCTION

Since the invention of Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014), there has
been a significant rise in related research from six
papers in 2015 to 762 in 2020 (Farou et al. 2020).
GANs can generate realistic synthetic samples which
are not tied to real persons, making such data very
useful in areas with limited real data or strict restric-
tions on private data use such as medical research or
biometrics. Synthetic images are often referred to as
deepfakes because deep learning techniques are uti-
lized for their production. Due to the security threats
that may be caused by deepfakes (read synthetic im-
ages), the Chinese government banned production of
deepfakes that are not watermarked (Edwards 2022).
The same might happen in other countries soon.

The primary concern of our initial study was syn-
thesis of realistic biometric fingerprint images. It has
been shown in (Bahmani et al. 2021, Bouzaglo and
Keller 2022, Makrushin et al. 2023) that GANs is a
valid approach for this purpose. Despite all the ben-
efits, GAN-generated biometric fingerprints can be
misused for e.g. identity fraud. The study in (Bon-

trager et al. 2018) shows that synthetic fingerprints
can mimic multiple identities without requiring a spe-
cific individual’s fingerprint. Another example of ma-
licious use of synthetic fingerprints is a fingerprint
morphing attack (Makrushin et al. 2021b). Hence,
our current concern is the active protection of syn-
thetic fingerprints by watermarking them.

Indeed the passive protection approach, that is a
”blind” detection of synthetic images, has its natural
limits when it comes to detection of fakes produced
by ”unknown” generative models. Moreover, synthe-
sis techniques and corresponding generative models
constantly improve over time. Hence, embedding a
watermark in all images produced by GANs is seen
as a remedy to the problem of growing fake media.
Watermarks enable an active protection transforming
the task of fake detection to the task of watermark ex-
traction.

In contrast to the most common goal of water-
marking generative models which is intellectual prop-
erty rights (IPR) protection, our motivation is linking
synthetic fingerprints to a particular generative model.
We currently disregard the fingerprint’s integrity veri-
fication due to the technical aspects of our embedding
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Figure 1: Overall schematic process.

algorithm. It means that our approach is applicable
mainly for annotation purposes. In other words, if we
have successfully extracted the watermark, we know
that the fingerprint image has been produced by our
model. If we cannot extract the watermark, we can
say nothing about the origin of the fingerprint image.
We see it also as a protection of the authors of a gen-
erative model. If the watermark has been removed by
perpetrators, the sample is not authentic anymore and
the model creators take no responsibility for its mali-
cious use. The study of watermark security is subject
to future research.

Note that the watermarking mechanism needs to
be an integral part of the GAN model, because after
sharing the model, the image generation is not con-
trolled by model creators and there is no chance to
watermark synthetic images. Hence, we propose to
embed transparent and robust watermarks into train-
ing images so that after the model training the gener-
ated fingerprint images contain the same transparent
watermark and are still of high utility. Figure 1 pro-
vides an overview of our experimental process.

Our evaluation addresses two objectives: assess-
ing the retrieved watermark and evaluating the qual-
ity of the fingerprints generated by the GAN. For
the former, we utilize the Peak Signal-to-Noise Ratio
(PSNR) to measure imperceptibility and the Bit Error
Rate (BER) to calculate the watermark’s robustness.
For the latter, we employ NIST Fingerprint Image
Quality scores (NFIQ2) (NIST 2023) to determine the
realistic appearance of the fingerprints, and Verifinger
matching scores (Neurotechnology 2023) to evaluate
the fingerprint reconstruction success.

Our contributions can be summarized as follows:
• We introduce a novel combination of a traditional

watermarking algorithm based on DCT, SVD and

DWT (Kang et al. 2018) and the pix2pix net-
work for fingerprint generation (Makrushin et al.
2023) which ensures the transfer of logo water-
marks from training to GAN-generated fingerprint
images;

• We derive the optimal parameters of the water-
marking algorithm along with optimal pix2pix hy-
perparameters;

• We extensively evaluate the proposed combina-
tion showing that our GAN models generate de-
cent fingerprint images from which watermarks
can be extracted.

Hereafter, the paper is structured as follows: Sec-
tion 2 introduces relevant literature, followed by a de-
tailed description of our concept and implementation
in Section 3. Section 4 summarizes our experiments,
Section 5 contains results and discussion and Section
6 concludes the paper offering a summary and future
work.

2 RELATED WORK

2.1 Deepfake Detection

Our focus is on synthesis of fingerprint images via
GANs. GANs are currently the state of the art in im-
age generation, creating high-resolution, photorealis-
tic images (Karras et al. 2018, Isola et al. 2017), and,
most importantly, the generated images are deepfakes.
These deepfakes are a threat if misused. A study re-
ported in (Marra et al. 2019) addresses this issue by
detecting GAN-generated images through the unique
noise residual patterns left behind by generative mod-
els. The study in (Yu et al. 2019) introduces a neural
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network classifier capable of identifying the origin of
image generation. These detection approaches can be
attributed as ”passive”.

2.2 Watermarks

The ease of copying, storing, or modifying data has
also led to increased malicious activities. To combat
such activities, watermarking techniques have been
introduced, where visible or invisible information is
embedded into a carrier signal. Further, watermarks
are seen as additional information with which the ori-
gin is annotated. Imperceptibility, robustness, secu-
rity, and recovery are the most important characteris-
tics of watermarking. Various forms of watermarks,
including text, images, audio, or video, can be em-
bedded. Here, we focus on embedding text and im-
ages into images. Embedding a watermark into im-
ages can be done via spatial or frequency domain-
based methods, each with its own advantages and
drawbacks. Spatial domain techniques such as LSB,
correlation-based techniques, spread spectrum tech-
niques, and patchwork work by manipulating pixel
values and bitstreams directly offer computational
simplicity. Frequency domain techniques such as
Discrete Wavelet Transform (DWT), Discrete Cosine
Transform (DCT), Discrete Fourier Transform (DFT),
Singular Value Decomposition (SVD) etc. are com-
plex but robust against resizing or cropping (attacks).
As per (Kumar et al. 2018), using a specific water-
marking method may only satisfy one or two char-
acteristics of watermarking. To address this, hybrid
techniques like DCT+SVD (Tian et al. 2020) and
DWT+DCT+SVD (Kang et al. 2018) have been in-
troduced. We use a hybrid technique based on the
frequency domain.

2.3 Fingerprint Synthesis via GANs

Biometrics is a field that greatly benefits from
high-quality data generated by GANs. The rea-
son is that acquiring biometric data from real per-
sons is challenging due to high costs and privacy
concerns caused by data protection regulations like
the European Union (EU) General Data Protection
Regulation (GDPR). Current open-source fingerprint
databases are limited in quality and number of sam-
ples.

To address this, the Anguli (Ansari 2011) syn-
thetic fingerprint generator, based on the SFinGe al-
gorithm (Cappelli 2004), has been developed. How-
ever, the patterns generated by Anguli lack realism
and therefore can be easily recognized as such. To
generate more realistic synthetic fingerprints, GANs

have been employed in (Bouzaglo and Keller 2022,
Makrushin et al. 2023) showing their ability to create
convincing synthetic fingerprints.

Fingerprint synthesis can be achieved through var-
ious approaches, including physical, statistical, or
data-driven (GAN) modeling. Current statistical and
physical modeling approaches tend to produce fin-
gerprints that lack realism. They are usually visu-
ally distinguishable from real fingerprints. In con-
trast, GAN-based approaches usually produce realis-
tic synthetic fingerprints. Modeling approaches can
be combined by, for instance, applying CycleGAN
that makes outcomes of a model-based generator ap-
pear realistic (Wyzykowski et al. 2020). Another
technique in (Bahmani et al. 2021) uses StyleGAN
to generate a fingerprint from a random latent vec-
tor. Also, the pix2pix network can be employed to
reconstruct a fingerprint from a given minutiae tem-
plate (Makrushin et al. 2023).

2.4 Watermarking Generative Models

The trend of watermarking Deep Neural Networks
(DNNs) has recently gained prominence. From now
on the watermarks are embedded not in media, but
in functions. Given this paradigm shift and the ur-
gent need for Intellectual Property Rights (IPR) pro-
tection in DNNs, research in (Barni et al. 2021) states
the similarities, challenges, and errors to avoid in
DNN watermarking in comparison to traditional wa-
termarking. A study in (Chen et al. 2019) proposes a
watermarking approach in which the watermark is di-
rectly integrated into the weights of specific layers of
the network. Unlike many other DNN watermarking
methods primarily focused on IPR protection, this ap-
proach also tackles the challenge of uniquely tracking
users. A study in (Wu et al. 2021) employs a dual-
DNN-network approach. They train a GAN model
and its output is fed to another network tasked with re-
constructing a predefined watermark. Their key nov-
elty includes an objective function that calculates the
watermark loss and also, a secret key that is needed to
decode the watermark.

The first study addressing the transferability of ar-
tificially embedded watermarks from training images
to outputs produced by GAN (Yu et al. 2021) pro-
poses the four-step approach. The first step begins
with training an encoder-decoder network. Second,
the trained encoder network is utilized to embed a
watermark into the training data set. Third, GAN is
trained using the watermarked dataset. Fourth, the de-
coder is employed to extract the watermark from the
GAN-created deepfakes.

Another study by (Fei et al. 2022) offers GAN
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Intellectual Property Protection (IPR) using a super-
vised method. The methodology begins with the
training of a deep learning-based image watermark-
ing network that incorporates an imperceptible wa-
termark into an image employing an encoder-decoder
network. Following the successful training of the wa-
termarking network, the decoder component remains
fixed and is leveraged in the GAN training process
to ensure the integration of the watermark within the
images generated by the GAN. The novelty lies in
a combined loss function comprising both the con-
ventional GAN loss and the watermark loss. They
have also introduced an image processing layer capa-
ble of performing data augmentation operations, en-
suring the robustness of the embedded watermark.

In contrast to (Wu et al. 2021, Yu et al. 2021, Fei
et al. 2022), our approach combines traditional wa-
termarking with a pix2pix-based fingerprint genera-
tor, requiring no training of the watermarking part and
no watermark loss function during the GAN training.
The main novelty is in finding a viable combination
of a GAN-based fingerprint generator and a water-
marking algorithm that produces watermarks robust
to GAN training.

3 OUR CONCEPT

In this research, we present a novel approach that
aims to watermark the images produced by the gen-
erator of a trained GAN model using traditional dig-
ital watermarking techniques applied to GAN train-
ing images. We first embed a watermark into the
training dataset with the selected digital watermark-
ing method. Next, the data pre-processing step per-
forms minutiae map creation from the fingerprint.
Finally, training with the modified pix2pix network
from (Makrushin et al. 2023) is performed. The
reason for selecting pix2pix as a generative model is
its ability to produce high-quality realistic fingerprint
images. The main criteria for selection of the water-
marking algorithm is its conformity with the pix2pix
model implying that the watermark survives in a GAN
training process. The repositories containing the wa-
termarking algorithm and the GAN model code are
available at https://github.com/mannam95/dct svd
in dwt watermark and https://gitti.cs.uni-magdeburg.
de/Andrey/gensynth-pix2pix respectively.

3.1 Watermarking Techniques

For our goal of annotating the model, we choose
watermarking methods that ensure imperceptibility
(making the watermarked image indistinguishable

from the original) and robustness (withstanding the
GAN training process).

We employ two hybrid watermarking approaches,
namely DCT-SVD-in-DWT (Kang et al. 2018) and
DWT-DCT-SVD (guofei 2022) to embed the water-
mark into the training data. The former enables the
embedding of images, while the latter can embed
text. During our initial studies, the text watermarking
had poor results, so we focused on the DCT-SVD-
in-DWT (Kang et al. 2018) method (hereafter, it is
referred to as IWA). IWA involves watermark embed-
ding and extraction. The watermark information or
payload, a 2-bit 32x32 binary image, is embedded
into a cover image. The binary logo size varies de-
pending on the cover image size. For more details see
(Kang et al. 2018). IWA extracts the watermark di-
rectly from the watermarked image requiring no orig-
inal cover image or watermark logo/text. Note that
some algorithms may require the original cover im-
age.

In our approach, the embedding key is not given
explicitly. It is rather implicit in the embedding al-
gorithm so that the embedding key can be seen in
a combination of the watermark’s location, size and
pattern. More precisely, our embedding key is a tu-
ple of logo-size, logo-shape, and coordinates where
the top left pixel of the logo is located. Although the
watermarking algorithm is publicly known, decoding
the logo without this tuple is extremely challenging.
In essence, it requires an exhaustive search with all
possible combinations. Randomization of the water-
mark location and encryption of the watermark pat-
tern would introduce the strong security into our wa-
termark embedding scheme. For the matter of sim-
plicity, we currently work with a particular watermark
logo at a fixed location.

At a high level, the process of watermark embed-
ding and extraction is given by Equations 1, 2 and 3.

K = (coordinates,size,shape) (1)

I∗ = IWAemb(I,W,K) (2)

W ∗ = IWAext(I∗,K) (3)

In Equation-1 coordinates, size, and shape are of
the watermark logo. I represents the original cover
image, which is a fingerprint in our case. W denotes
the watermark information being embedded. The wa-
termarked image is represented by I∗, while W ∗ refers
to the recovered watermark. IWAemb, and IWAext de-
note watermark embedding and extraction functions
respectively. Given I and W , IWAemb produces I∗.
Subsequently, given a watermarked image I∗, IWAext
extracts the watermark W ∗.
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Figure 2: Watermarking process adopted from (Kang et al. 2018). “Wen” stands for the watermark image bit. “M1S1” and
“M2S1” are the largest singular values of the applied SVD on the respected “M1” and “M2”. “E” is the mean of the largest
singular values. α is the embedding strength. Cover image is from Neurotechnology CrossMatch Dataset (Neurotechnology
2023).

The overall watermarking process is depicted in
Figure 2. First, the cover image undergoes a trans-
formation called 2D-DWT. From the resulting sub-
bands (LL, HL, LH, HH), one is chosen. This selected
sub-band is then divided into non-overlapping blocks
of size 8x8. For each block, another transformation
called 2D-DCT is applied. From the resulting coef-
ficient matrix, 8 elements are selected based on their
index using zig-zag scanning. These 8 elements are
arranged in two matrices. Both matrices go through
SVD, and the largest singular values are modified ac-
cordingly as shown in Figure 2. To extract the water-
mark, the same steps are applied. Instead of modify-
ing the singular values, the watermark information is
extracted. For more details see (Kang et al. 2018).

Figure 3: A high-level overview of the pix2pix architecture.
G stands for generator, and D for discriminator. x is the
minutiae map, y is the watermarked fingerprint, and G(x) is
a fingerprint synthesized by G.

3.2 Fingerprint Generative Models

Our experimental approach utilizes the pix2pix net-
work, specifically a conditional generative adversar-
ial network (CGAN). The CGAN consists of two key
components: a generator and a discriminator, which
undergo adversarial training. On the one hand, the
generator is based on U-Net architecture proposed by
(Ronneberger et al. 2015) and adapted by (Isola et al.
2017), which is responsible for image-to-image trans-
lation. On the other hand, the discriminator functions
as a patch-based binary classifier. The initial design
of the pix2pix architecture (Isola et al. 2017) was in-
tended for 256x256 pixel images. In our study, the
fingerprint images have native resolution of 500 ppi
and depicted on 515x512 pixel images. Hence, we
adopt the modified version of the pix2pix network de-
veloped by (Makrushin et al. 2023). At a high level,
the pix2pix network can be seen in Figure 3. For more
details see (Isola et al. 2017, Makrushin et al. 2023).

The pix2pix network (Isola et al. 2017) genera-
tor requires two images: one for conditioning and the
other as the true target. Here, the conditioning im-
age is the minutiae map of the fingerprint, while the
true targets are the watermarked fingerprints. To cre-
ate the minutiae map, we extract minutiae using the
Neurotechnology VeriFinger SDK v12.0 (Neurotech-
nology 2023). The extracted minutiae are then en-
coded into a minutiae map. The encoding methods
for minutiae are directed lines and pointing minutiae
as introduced in (Makrushin et al. 2023).
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Figure 4: The process of embedding the watermark into the training dataset and extracting the watermark from the recon-
structed fingerprint.

Since we focus on the transferability of water-
marks and not on comparing different minutiae en-
codings, we simply adopt the directed lines for en-
coding the minutiae. The discriminator receives a
concatenated tensor as input, which consists of the
minutiae map supplied to the generator and the origi-
nal fingerprint. The discriminator is utilized solely for
training. Post-training, the generator is used alone to
reconstruct fingerprints. The overall process of em-
bedding the watermark into the training dataset and
extracting the watermark from the reconstructed fin-
gerprint is depicted in Figure 4.

4 EVALUATION

4.1 Evaluation Metrics

The watermark can be assessed via several metrics:
Peak Signal to Noise Ratio (PSNR), Structural Simi-
larity (SSIM), Bit Error Rate (BER), Mean Absolute
Error (MAE), and Normalized Correlation (NC). For
evaluating the imperceptibility, we can use PSNR or
SSIM. In contrast, the robustness of the watermarked
image can be evaluated using MAE, BER, or NC. In
this study, we use PSNR and BER to evaluate imper-
ceptibility and robustness, respectively.

Following the ideas from (Makrushin et al. 2021a)
we measure the realistic appearance of fingerprints by
NFIQ2 scores (NIST 2023) yielding values from 0 to

100. The higher, the better utility and realism.
For fingerprint reconstruction, the True Accep-

tance Rate (TAR) is obtained by comparing the recon-
structed and original fingerprints using the fingerprint
matcher from VeriFinger SDK v12.0 (Neurotechnol-
ogy 2023) which returns similarity scores from 0 to
infinity. The higher, the more similar the fingerprints
are. The decision thresholds are set by False Accept
Rate (FAR) levels - 36, 48, and 60 for FAR levels of
0.1%, 0.01%, and 0.001%, respectively.

4.2 Training and Test Datasets

Our study utilizes a dataset of 50,000 fingerprints
generated by a StyleGAN2-ada model (Karras et al.
2020) trained with 408 Neurotechnology (Neurotech-
nology 2023) fingerprint samples. These samples
were captured using a CrossMatch Verifier 300 scan-
ner at 500 ppi. The images were padded to 512x512
pixels prior to training. We select subsets of 2,000,
100, and 10,000 samples for training, validation, and
test respectively. To ensure the diversity of dataset
splits, we computed Mean Absolute Error (MAE) for
all combinations, identifying a diverse range of MAE
values, approximately between 30 and 230. Calculat-
ing the Verifinger scores could also help us to identify
the diversity. However, we omit it in this study due to
time constraints.

Further, the training dataset is embedded with the
IWA watermarking algorithm and followed by a two-
step filtration process. We first extract the embedded
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watermark and compute the BER score between the
extracted watermark logo and the original. Secondly,
we pick the watermarked fingerprint samples where
the BER score is less than or equal to 0.03. The reason
for filtering the training set only is to include finger-
prints with recoverable watermarks and ensuring their
utility for our GAN training objectives. It is important
to note that this filtration step is applied to the training
dataset only. From this filtered dataset, 1,000 images
were randomly selected for training, while the vali-
dation and test sets remained unchanged at 100 and
10,000 samples, respectively.

4.3 Experiments

We validate the proposed approach of reconstructing
the watermarked fingerprints from the given minutiae
maps via the following four experiments:

• Exp1: Find initial watermarking parameters.
• Exp2: Find optimal watermarking + GAN param-

eters.
• Exp3: Train with a different watermark logo.
• Exp4: Train with un-watermarked fingerprints.

Table 1 contains the set of parameters that are
tested for the optimal performance of the watermark-
ing algorithm IWA along with the fingerprint gener-
ative model. The optimal watermarking parameters
identified in the first experiment (Exp1) include the
watermark’s embedding strength and the embedding
level. We explore the embedding strengths of 5, 8,
and 10 and assess all four wavelet subbands for em-
bedding level: LL, HL, LH, and HH.

Table 1: Watermarking and GAN experiment configura-
tions with training hyperparameters.

Parameter Type Parameter Name Selected Values
Exp1

Watermarking α (Alpha) 5, 8, 10
Watermarking Embedding Level LL, HL, LH, HH

GAN Learning Rate 0.001
GAN Epochs 1200

Exp2
Watermarking α (Alpha) α1, α2
Watermarking Embedding Level EL1, EL2

GAN Learning Rate 0.001, 0.0007
GAN Epochs 1200, 1600, 2000

Exp3
The best hyperparameters from Exp2

Exp4
The best hyperparameters from Exp2

In our second experiment (Exp2) we select the
best (in terms of highest recovery rates) two param-
eters for the embedding strength (α1, α2) and the em-
bedding level (EL1, EL2). Here, we explore the GAN

parameters with learning rates of 1e-3 and 7e-4 with
1200, 1600, and 2000 training epochs.

Additionally, we conduct two ablation studies in
Exp3 and Exp4 to assess the impact of the watermark
itself. In Exp3, we embed different watermark logo
into training data. Please note that in Exp1 and Exp2,
we embed “Logo-Pi” as a standard watermark, just as
in Exp3 the “Logo-HourGlass”. Both watermarks can
be seen in Figure 2. In Exp4, the generative model is
trained with raw fingerprints without any watermarks.
For both Exp3 and Exp4, the best model hyperparam-
eters are selected from the results of Exp2.

In total, we conducted 12 experiments for Exp1,
trained 24 models for Exp2, and one model each for
Exp3 and Exp4. All training setups utilized the Adam
optimizer, batch normalization with a batch size of
64, and dropout layers are excluded. In all training
runs, the learning rate linearly decays to zero after the
model completes half of its training.

Notice that our GAN watermarking scheme is
specified for biometric fingerprint images only. To
the best of our knowledge, this is the very first study
that attempts to watermark GAN-generated finger-
print images making a fair comparative study to other
generic GAN watermarking approaches hardly possi-
ble.

5 RESULTS AND DISCUSSION

Table 2: Exp1 results: watermarking recovery rates. The
scores (in%) represent the total number of samples out of
all the test data where the ”BER < 0.1”. LR: learning rate,
EP: epochs, α: embedding strength.

LR EP α

Watermarking Recovery Rates in %
Embedding Level

LL HL LH HH

0.001 1200
5 88.99 24.78 22.12 0
8 78.99 78.11 78.99 0.23
10 74.60 90.25 91.86 7.47

The metric used in our Exp1 is the Bit Error Rate
(BER) between the original and recovered watermark
from the pix2pix reconstructed fingerprint, specifi-
cally within the bounding box with coordinates (x1 =
9,y1 = 6,x2 = 24,y2 = 25). We adopted this approach
as GANs, including pix2pix, are known to generate
noise around the produced images.

We consider watermark is recovered if BER is less
than 0.1. This threshold is determined manually by
a visual inspection. We have found that embedding
the watermark in the pix2pix network training images
is effective. However, recovery rates vary for each
embedding level, as shown in Table-2. HH subband
embedding results in near-zero recovery rates, pre-
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Table 3: Exp2 results: Evaluation of watermarking and GAN parameters in 24 training configurations. EL: embedding level,
LR: learning rate, EP: epochs, and ”BER < 0.1” - the number of samples (in %) recovered at this threshold.

Id
Parameters TAR at FAR of Avg.

NFIQ2
Watermark
Recovery Rate

Avg.
PSNR

α EL LR EP 0.1% 0.01% 0.001% at BER< 0.1
1 8 HL 0.001 1200 48.64 24.89 11.27 13.70 78.11 % 31.15
2 8 HL 0.001 1600 52.31 26.58 11.46 15.47 85.69 % 31.22
3 8 HL 0.001 2000 54.64 29.57 14.79 14.75 86.44 % 31.20
4 8 HL 0.0007 1200 58.15 33.64 17.85 14.89 79.93 % 31.25
5 8 HL 0.0007 1600 58.21 34.16 17.54 15.42 86.21 % 31.22
6 8 HL 0.0007 2000 52.60 29.55 14.52 14.07 84.32 % 31.29
7 8 LH 0.001 1200 49.01 24.40 10.30 08.49 78.99 % 31.13
8 8 LH 0.001 1600 45.60 20.65 07.85 10.23 86.18 % 31.13
9 8 LH 0.001 2000 48.61 23.78 10.11 09.90 83.13 % 31.10
10 8 LH 0.0007 1200 59.45 35.58 18.62 11.61 81.51 % 31.20
11 8 LH 0.0007 1600 54.59 29.64 14.40 13.19 83.61 % 31.14
12 8 LH 0.0007 2000 59.69 35.77 19.60 11.05 82.25 % 31.20
13 10 HL 0.001 1200 52.80 27.50 12.58 12.25 90.25 % 31.23
14 10 HL 0.001 1600 50.01 26.29 14.40 12.08 92.65 % 31.10
15 10 HL 0.001 2000 59.80 36.27 19.17 10.62 89.03 % 31.20
16 10 HL 0.0007 1200 48.55 26.31 12.36 10.40 86.52 % 31.21
17 10 HL 0.0007 1600 48.22 25.64 11.65 09.63 88.60 % 31.17
18 10 HL 0.0007 2000 46.46 23.91 11.01 10.11 84.47 % 31.21
19 10 LH 0.001 1200 49.48 24.71 10.32 06.27 91.86 % 31.04
20 10 LH 0.001 1600 45.89 22.17 08.69 06.13 89.74 % 31.13
21 10 LH 0.001 2000 63.45 39.29 20.49 09.25 92.92 % 31.23
22 10 LH 0.0007 1200 51.64 26.93 12.26 07.33 87.41 % 31.12
23 10 LH 0.0007 1600 57.67 33.13 17.23 09.16 87.24 % 31.22
24 10 LH 0.0007 2000 57.21 32.68 16.45 10.87 91.21 % 31.22

sumably due to its sensitivity to filtering operations.
Conversely, the LL subband shows promising recov-
ery rates but the original image quality has degraded.
The reason for that is that the LL band contains high-
level image information. Changing it will directly im-
pact the image content. HL and LH subbands have
a mix of image frequencies and show high recovery
rates. Thus, we select them for further experiments.
Assessing the importance of embedding strength (α
factor), we discovered that increasing the α improves
watermark robustness, with a recovery rate exceeding
90% for both HL and LH subbands, if α is set to 10.
However, the α of 8 also yields almost 80% recov-
ery rate. Therefore, we proceed with combinations of
embedding strengths 8 and 10 and embedding levels
HL and LH in our further investigations.

In Exp2, we employ the top-performing water-
marking parameters from Exp1 to refine GAN param-
eters across 24 training runs, as outlined in Table-
3. We assess the robustness and imperceptibility of
watermarked fingerprints via BER and PSNR scores,
with models 14 and 21 demonstrating superior robust-
ness with the α value of 10. The watermarks are im-
perceptible enough as all models exceed the accept-
able PSNR threshold of 30dB. The poor visual qual-
ity and low reconstruction rates measured by NFIQ2
and Verifinger matching scores respectively reveal

that our approach has a room for improvement. Fin-
gerprints of good quality are represented by NFIQ2
scores exceeding 35, whereas scores under 6 suggest
ineffective patterns. Our average NFIQ2 scores lie
around 10, suggesting that the visual quality of the
fingerprints is poor. Fingerprint reconstruction rates
reported in (Makrushin et al. 2023) are over 80%,
70%, and 60% at FAR levels of 0.1%, 0.01%, and
0.001% respectively. Our models demonstrate signif-
icantly lower reconstruction rates, with a maximum
of 63.45% and 59.80% at 0.1% FAR, using models
15 and 21 both with the α value of 10.

Table 4: Exp3 results; The “Model Id” column corresponds
to the configurations (“Id”) reported in Table 3.

Model Id Logo Avg BER
21 Pi 0.044
21 HourGlass 0.052

The results of Exp3 are reported in Table-4.
We see that watermarking capacity affects water-
marking robustness. On average, the model trained
with “Logo-Pi” embedded data outperforms the one
trained with “Logo-HourGlass” embedded data in
terms of BER scores.

The results of Exp4 are visualized in Figure 6.
The original un-watermarked data has an average
NFIQ2 score of around 75. The models trained with
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Figure 5: Visualization of a fingerprint image with and without a watermark. The red dots in the figure denote the locations
of minutiae.

“Logo-Pi”, “Logo-HourGlass”, and un-watermarked
data have the average NFIQ2 scores of approximately
10, 5, and 20, respectively. We see that watermark-
ing has an impact on the visual quality of recon-
structed fingerprints, but the highest degradation of
fingerprints is due to the reconstruction process, as
the model trained with un-watermarked data achieves
an average NFIQ2 score of only 20, compared to the
original raw scores of around 75. We suspect that the
GAN parameters obtained may not be optimal and re-
quire further exploration.

Figure 6: Distributions of NFIQ2 scores plotted for Exp3
and Exp4: Comparison of watermarks to each other and to
the training with un-watermarked data.

All in all, the configurations with the embedding
strength of 10, embedding levels HL or LH, the learn-
ing rate of 1e-3, and 1600 or 2000 epochs demonstrate
better performance than the remaining configurations.
The low fingerprint reconstruction scores could be at-
tributed to GAN noise or suboptimal GAN parame-
ters. A visual sample result can be seen in Figure 5.

6 CONCLUSION

Watermarking of synthetic images produced by a gen-
erative model is an important step towards protecting
the creators of generative models. This paper intro-
duces a novel approach to watermarking the training
images with DCT-SVD-in-DWT (Kang et al. 2018)
and training the pix2pix network with these water-
marked images. Our primary goal is to create real-
istic synthetic fingerprints and protect the GAN au-
thors by watermarking the model-generated images.
We achieve the former one using the pix2pix model
and the latter by transferring the watermark from the
training dataset to the model’s generated images. We
experiment with various parameters of the selected
watermarking technique in conjunction with training
hyperparameters of GAN. For watermarking, an em-
bedding strength of 10 results in superior outcomes,
primarily when the embedding level is either HL or
LH. Even though the optimal watermarking and GAN
parameters enable watermark extraction from the vast
majority of the reconstructed fingerprints so that the
fingerprints do not loose their utility, there is a room
for algorithm tuning to improve the NFIQ2 and Ver-
ifinger matching scores. The watermark recovery rate
in our experiments is not high enough to consider our
GAN watermarking scheme mature for application in
a practical scenario. Notice that fingerprint images,
due to their limited information content with black
and white lines, have a very low watermark capacity.
Applying our approach to colored more informative
images which accommodate more watermark capac-
ity may lead to significantly higher watermark recov-
ery rates. An adversarial attack might find the minu-
tiae setups that lead to vanishing watermarks in syn-
thetic fingerprint images. Hence, improvement of the
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practical effectiveness and robustness of our approach
is the subject to future work. All in all, given a robust
watermarking algorithm, we confirm that the water-
marks can be transferred from the GAN training im-
ages to the GAN-generated images. Future work will
include a thorough study of watermark transferability
across various generative network architectures and
extend the study to other domains like video. Further-
more, the embedding of encrypted watermarks will be
studied to address the security aspect.
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