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Abstract: Intracellular signaling systems can be viewed as enzymatic reaction networks in which enzymes regulate each 
other through activation and inactivation, and exhibit various properties such as bistability depending on their 
regulatory structure and parameter values. In this study, we formulate the intracellular signaling systems as 
regulatory networks whose nodes are cyclic reaction systems of enzyme activation and inactivation, and 
propose an evaluation function that can identify bistability with low computational cost. For the purpose of 
demonstrating its effectiveness, we identified 4- and 5-node regulatory networks that exhibit bistability. 
Furthermore, the effect of parameter values on bistability was analyzed, suggesting that the regulatory 
structure is more dominant than parameter values for the emergence of bistability. 

1 INTRODUCTION 

Intracellular signaling systems can be viewed as 
enzymatic reaction networks in which enzymes 
regulate each other through activation and 
inactivation, and are known to exhibit various 
characteristics depending on their regulatory 
relationships and parameter values (Ferrell, 1998; 
Jeschke et al., 2013; Kholodenko, 2006; Mai & Liu, 
2013; Qiao et al., 2007; Volinsky & Kholodenko, 
2013). For example, the MAPK cascade, one of the 
most representative and well analyzed enzymatic 
reaction network, has been reported to have 
ultrasensitive properties that can function as an 
analog-to-digital conversion in the cell. It has also 
been shown that it can be bistable as an extreme case. 

Multistability, represented by bistability, 
corresponds to a stable group of states in the cell and 
is thought to provide robust control over intra- and 
extracellular disturbances (Gedeon et al., 2018; Ma et 
al., 2009; Yao et al., 2011). Bistability is also an 
important property from the standpoint of synthetic 
biology, as it may function as a memory element 
(Doncic et al., 2015). Therefore, it is interesting to 
know what kind of regulatory structures and 
parameter values of enzymatic reaction networks 
show bistability, and studies have been conducted to 
analyze the properties of enzymatic reaction networks 
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by changing the structure and parameter values of the 
networks in an exhaustive manner (Kuwahara & Gao, 
2013; Ramakrishnan & Bhalla, 2008; Shah & Sarkar, 
2011; Siegal-Gaskins et al., 2011; Sueyoshi & Naka, 
2017). 

In order to identify enzymatic reaction networks 
with specific properties, such as bistability, an 
evaluation function is needed to quantify the degree 
of the property. It is also necessary to select an 
appropriate mathematical model to describe the 
enzymatic reaction networks. With respect to the 
number of enzyme species that comprise the 
enzymatic reaction network, several efforts have been 
made to address the combinatorial increase in 
computational cost of their identification. 

One innovation is the simplification of the 
mathematical model of enzymatic reactions. 
Enzymatic reactions can be described by a system of 
differential equations by applying the law of mass 
action, but to reduce computational cost, the 
Michaelis-Menten or linear approximation is 
sometimes used (Adler et al., 2017; Kuwahara & Gao, 
2013; Ma et al., 2009; Shah & Sarkar, 2011; Sueyoshi 
& Naka, 2017; Yao et al., 2011). However, if 
possible, the analysis would be more accurate without 
those approximations. In fact, with respect to 
bistability, it has been suggested that the Michaelis-
Menten approximation overstates the evaluation 
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(Kim & Tyson, 2020; Naka, 2020). Therefore, in this 
study, we use a mathematical model that does not 
make any approximations, only applying the law of 
mass action. 

There are also several methods for the evaluation 
function of bistability. An enzymatic reaction 
network has two kinds of parameters: the total 
concentration of each enzyme that makes it up and the 
reaction rate constants for each enzyme. For a 
particular set of parameter values of a system, there 
are possible ways to transition from a random initial 
value group to a steady state (Naka, 2022). If the 
system is bistable and a sufficient number of initial 
value groups are used, bistability can be detected due 
to the system transitions to two values of steady 
states. However, the computational cost is higher 
because steady-state values must be obtained for a 
number of initial value groups. 

Another possible method is to fix one value of a 
certain reaction rate constant, etc. as an input to the 
system, and then gradually change the value to obtain 
a steady state sequentially. If the system is bistable, it 
takes advantage of the property that different steady-
state values are reached when its input values are 
increased or decreased. This is less computationally 
expensive than the aforementioned method. This 
method will be referred to as the sequential steady-
state tracking method in this study. Figure 1 shows an 
example of a regulatory network consisting of 4 
nodes. In this study, we propose an evaluation 
function using hysteresis response that extends the 
sequential steady-state tracking method and verify its 
effectiveness. 

The MAPK cascade, a representative signaling 
system that relays between the plasma membrane and 
cell nucleus with respect to cell growth factor (EGF) 
signaling, is thought to be the cause of cell cancer, 
and much has been learned about its abnormalities 
(Ferrell, 1998; Jeschke et al., 2013; Kholodenko, 
2006; Mai & Liu, 2013; Qiao et al., 2007; Volinsky 
& Kholodenko, 2013). A major component of the 
signaling system represented by the MAPK cascade 
is the enzymatic activation/inactivation cyclic 
reaction system through phosphorylation and 
dephosphorylation of enzymes. The cyclic reaction 
system is a combination of two post-translational 
modification reactions. Therefore, we model and 
analyze the intracelluler signaling system as a 
regulatory network consisting of enzymatic 
activation/inactivation cyclic reaction systems, which 
mutually regulate each other. 

 
Figure 1: Regulatory network consisting of 4 nodes. The 
number is the node number. Node 1 is an input node. Node 
4 is the output node. Blue and red arrows represent positive 
and negative regulations, respectively. 

2 REGULATORY NETWORKS TO 
BE ANALYZED 

The regulatory network is a representation of the 
regulatory relationships between enzymes, where 
each node included corresponds to a cyclic reaction 
system of enzymatic activation and inactivation. The 
cyclic reaction system is an enzymatic reaction 
system that combines two post-translational 
modification reactions represented by 
phosphorylation. It is represented by the following 
reaction scheme.  

 

Ui is the inactive form of the enzyme, Si is the 
activating enzyme that catalyzes the activation of Ui, 
Qi is the enzyme-substrate complex to which Ui and 
Si are bound, Pi is the active form of the enzyme, Vi 
is the inactivating enzyme that catalyzes the 
inactivation of Pi, Ri is the enzyme-substrate complex 
to which Pi and Vi are bound. ai, di, ki, bi, ei, and li are 
the reaction rate constants for each reaction. The 
subscript i is the node number in the regulatory 
network. 

By applying the law of mass action to the reaction 
scheme, we obtain a system of differential equations 
describing the behavior of the system shown below.  

The activated enzyme Pi catalyzes the activation or 
inactivation reaction of the enzyme at the other node. 
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Figure 1 shows an example of a regulatory 
network consisting of 4 nodes. The blue arc from 
node j to node i means that the activated enzyme Pj at 
node j is catalyzing the activation reaction of the 
enzyme at node i as the activated enzyme Si. This is 
called node j positively regulating node i. The red arc 
from node j to node i means that the activated enzyme 
Pj at node j is catalyzing the inactivation reaction of 
the enzyme at node i as the inactivating enzyme Vi. 
This is called node j negatively regulating node i. 

In this study, assuming a typical signaling system 
such as a MAPK cascade, we will analyze regulatory 
networks with 4 and 5 nodes that satisfy the following 
constraints.  

• It has one input node and one output node, and 
is connected from the input node to the output 
node with positive or negative regulations 
through intermediate nodes.  

• Each node receives at most two regulations, 
positive and negative, from the other nodes. 

• Each node regulates at most two other nodes. 
• There is no auto-regulaton.  
• The input node is node 1 and is not regulated by 

any other node. 
• The output node is node N if the number of 

nodes is N. Since a regulation of the outside of 
the regulatory network is assumed for the output 
node, the output node regulates at most one 
other node in the regulatory network. 

There are 80 regulatory networks of 4 nodes and 912 
regulatory networks of 5 nodes that satisfy the above 
conditions. 

3 IDENTIFICATION OF 
BISTABILITY USING THE 
HYSTERESIS RESPONSE 

The value of the reaction rate constant k1 of the cyclic 
reaction system corresponding to the input node is the 
external input to the regulatory network, which is the 
oscillatory stimulus in the following equation. 

 

T is the period of oscillation. In this study, the period 
was set to 3600 seconds, i.e. 1 hour. This is large 
enough to allow time for the intracellular signaling 
system to reach a steady state.The system is intended  
 

 
Figure 2: Oscillatory input and the response. Response of 
the output enzyme activity to the oscillatory input stimulus 
for the regulatory network of Fig. 1. The blue curve is the 
time course of k1, the input to the system. Two periods are 
displayed. The ochre curve is the time course of the relative 
concentration of P4, the output of the system. The red circle 
corresponds to the value of the output when the value of the 
input is 0.5, indicated by the blue circle. 

to maintain an approximate steady state in its 
response to the oscillatory input. The output of the 
regulatory network is the relative concentration PN of 
the activated enzyme at node N if the number of nodes 
is N. 

Figure 2 shows an example of the response of the 
4-node regulatory network shown in Fig. 1 to a 
oscillatory input. The total concentration of each 
enzyme and the reaction rate constant are all set to 1, 
except for k1, the input to be varied. The unit system 
is the μM-sec system. The blue curve is the time 
course of k1, the input to the system. Two periods are 
displayed. The ochre curve is the time course of the 
relative concentration of P4, the output of the system. 
The time course of the output differs when the input 
is increasing and when it is decreasing, indicating the 
appearance of hysteresis. When the input is 
increasing, the output gradually decreases as the input 
increases, but when the input is decreasing, the output 
is almost zero until the value of the input is around 
0.25, at which point it rapidly increases. The red 
circle in the figure corresponds to the value of the 
output when the input value is 0.5, indicated by the 
blue circle. It can be seen that the values are different 
when the input is increasing and when it is 
decreasing. 

The phase diagram between input k1 and output P4 
in Fig. 2 is shown in Fig. 3. The blue and red circles 
correspond to those in Fig. 2. The upper right-
descending line corresponds to the output when the 
input is rising, and the lower curve corresponds to the 
output when the input is decreasing. It can be seen 
that a typical hysteresis appears, where the response 
differs between rising and falling inputs. From the 
figure, it can be read that the input is bistable in the 
range of 0.2 to around 0.8. 
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Figure 3: Hysteresis on the oscillatory response. Phase 
diagram of the input k1 and output P4 in Fig. 2. The blue and 
red circles correspond to those in Fig. 2. 

The hysteresis loss H is used as a quantitative 
measure of the bistability of the system, which is 
formulated as bellow. 
The hysteresis loss is the area of the closed region 
appearing in the phase diagram. The area is 
approximated by a finite sum of T/d time intervals, 
where T is the period of the input and d is the number 
of divisions. Since both input and output are 
normalized to a maximum value of 1, the maximum 
hysteresis loss is 1. In this study, the value of the 
number of divisions d is set to 50. The convergence 
rate C is used to quantify the degree of convergence 
of the hysteresis loss, which is formulated as bellow. 
This is the difference between the hysteresis loss in 
the first period and the hysteresis loss in the 
subsequent period. 

Figure 4 shows the hysteresis loss using the 
sequential steady-state tracking method mentioned 
above. This is a method in which the steady-state 
 

 

value of the system is first obtained with zero input, 
and the value at that time is used as the initial value, 
and the steady-state value is obtained sequentially as 
the input is gradually increased. Therefore, the 
accuracy is considered to be higher than the method 
using hysteresis response proposed here. However, if 
this method is executed in a form corresponding to 
the number of divisions mentioned above, a 
convergence calculation of the system is performed 
for the number of divisions, and the computational  
 

 

cost is at least the number of division times. The 
curves in Fig. 4 is similar to that in Fig. 3 using 
hysteresis, indicating that the hysteresis-based 
method proposed here is effective. Mathematica  
 

 
Figure 4: Hysteresis on the steady state. Hysteresis loss by 
sequential steady-state tracking method. 

v13.0 was used to derive a system of differential 
equations describing the behavior of the system from 
the enzymatic reaction network and to numerically 
solve the derived system of differential equations to 
calculate hysteresis loss H and convergence rate C, 
and to analyze bistability (Wolfram Research, 2021). 

4 IDENTIFICATION OF 
BISTABLE REGULATORY 
NETWORKS 

The results of the analysis for 80 regulatory networks 
of 4 nodes that satisfy the constraints are shown in 
Fig. 5. The horizontal axis is the hysteresis loss H and 
the vertical axis is the convergence rate C. The total 
concentration of each enzyme and the reaction rate 
constants, all set to 1, are circled in red. The unit 
system is μM-sec. 

To further investigate the effect of reaction rate 
constants on hysteresis loss, the reaction rate 
constants of the nodes other than the input node were 
varied. However, to prevent the combination of 
parameters from becoming too large, the six values 
included in the cyclic reaction system comprising 
each node were kept the same value. The range of 
change was set to 11 values of 2p (p is an integer from 
-5 to 5) to approximately include the values used in 
the literature as reaction rate constants for the 
enzymes comprising the MAPK cascade (Brightman 
& Fell, 2000; Hatakeyama et al., 2003; Huang & 
Ferrell, 1996; Levchenko et al., 2000; Schoeberl et 
al., 2002). On the other hand, with respect to the input 
node, k1 among the reaction rate constants of that 
cyclic reaction system was assumed to be the 
oscillatory input and all other reaction rate constants 
were fixed at 1, since it is intended to change the 
concentration of P1, which is the input to node 2.  
Thus, the total number of combinations of parameters 
is 113=1331. In practice, however, the values of all  
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Figure 5: Aspect of hysteresis on 4 nodes networks. Results 
for 80 4-node regulatory networks. The horizontal axis is 
the hysteresis loss H and the vertical axis is the convergence 
rate C. The red circles are the results when the total 
concentration of each enzyme and the reaction rate 
constants are all set to 1. The other set of fine dots 
correspond to the case where the reaction rate constants of 
the nodes other than the input node are varied. 

reaction rate constants are multiplied by a factor of 10 
for the purpose of increasing the rate of convergence. 
This is the same as multiplying the period of the 
oscillatory input by a factor of 10, which means that 
the velocity of the oscillation is slowed down to 1/10. 

The results are shown as a set of blue and green 
fine dots in Fig. 5. Only one regulatory network had 
a hysteresis loss value of about 0.1. The hysteresis 
loss of 0.1 is a fairly prominent value for the 
hysteresis loss region in the phase diagram. This 
regulatory network corresponds to the red circle and 
the fine green points isolated on the right side of the 
figure. This is the regulatory network used as an 
example in Fig. 1 through Fig. 4. Compared to the 
distribution of the red circles, the variation due to the 
parameter values indicated by the fine colored dots is 
distributed over a limited small area. This suggests 
that the network structure is dominant with respect to 
the property of bistability and robust with respect to 
parameter values, despite the limitation that the 
reaction rate constants within each node are identical. 

There are 912 regulatory networks of 5 nodes that 
satisfy the constraints. Figure 6 shows the results of 
the analysis. As in Fig. 5, the horizontal axis is the 
hysteresis loss H and the vertical axis is the 
convergence rate C. 

The meaning of the red circles and colored fine 
point groups is the same as in Fig. 5. In the 6-node 
regulatory network, eight had hysteresis loss values 
greater than 0.01. These correspond to the eight red 
circles and green fine dots scattered on the right side 
of the fig. 6. As in the 5-node regulatory network, the 
variation due to the values of the parameters indicated 
 

 
Figure 6: Aspect of hysteresis on 5 nodes networks. Results 
for 912 5-node regulatory networks. The horizontal axis is 
the hysteresis loss H and the vertical axis is the convergence 
rate C. The red circles are the results when the total 
concentration of each enzyme and the reaction rate 
constants are all set to 1. The other set of fine dots 
correspond to the case where the reaction rate constants of 
the nodes other than the input node are varied. 

by the fine blue and green dots is distributed in a 
limited area, compared to the distribution of the red 
circles. This suggests again that the network structure 
is dominant with respect to the bistability property 
and robust with respect to the parameter values, 
although there is still the restriction that the reaction 
rate constants within each node are identical. 

Figure 7 shows 5-node regulatory networks with 
hysteresis loss greater than 0.01. The regulatory 
structure of the network and the phase diagram of 
input k1 and output P5 are laid out. It can be seen that 
the regulatory structure of the 4-node regulatory 
network, which exhibits the bistability shown in Fig. 
1, is contained in the third from the top of the left 
column and the second from the top of the right 
column. It is a structure of mutual negative regulation 
between node 2 and node 3 and positive regulation 
between node 3 and node 4. The regulatory structures 
of the remaining three regulatory networks are also 
found to have similar structures, although there is 
intervening positive regulation in between. 

5 CONCLUSIONS 

For 4- and 5-node regulatory networks, where the 
cyclic reaction system is the node and the regulatory 
relationship between them is the arc, the method 
using hysteresis response for identifying bistability 
was found to be effective. This method has errors 
compared to the sequential steady-state tracking 
method, but the computational cost is much lower. 
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Figure 7: Bistable regulatory 5 nodes networks. 5-node regulatory networks with hysteresis loss greater than 0.01. The 
regulatory structure of the network and the phase diagram of input k1 and output P5 are laid out. 

This error is not particularly problematic when it 
comes to primary screening of the regulatory 
networks. 

The authors have proposed a representation of 
enzymatic reaction networks using set partitioning 
and a search algorithm based on the representation, in 
which a method with random initial value group is 
used as the evaluation function for bistability (Naka, 
2022). The computational cost was therefore 
enormous, requiring time on the order of several days 
to complete the search. The evaluation function using 
hysteresis response proposed here is expected to have 
an application to search as well, since its cost is 
expected to be about 1/100 of that estimated from its 
computational complexity. In fact, most of the 
computational cost is the convergence calculation 
performed to find the steady state of the system. In 

the sequential steady state tracking method used to 
validate the proposed method, the convergence 
calculation must be performed as many times as the 
number of divisions of the parameter values to be 
analyzed, which in this study is set at 50, resulting in 
a computational cost approximately 50 times higher. 
Furthermore, the method using a random initial value 
group described above requires a sufficient number of 
initial values to separate two transition destinations in 
a bistable system. Even if the value is set to about 10, 
the convergence calculation must be performed about 
500 times, i.e., the number of initial values multiplied 
by the number of divisions. In the evaluation function 
using the hysteresis response proposed here, the 
convergence calculation to find the steady state of the 
system only needs to be performed once to find the 
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initial values, and as a result, the computational cost 
is about 1/100 of the original cost. 

The results also suggest that the regulatory 
structure of the network is dominant with respect to 
the bistability compared to the parameter values. This 
indicates that, when searching for regulatory 
networks with bistability, it may be effective, for 
example, to fix all parameter values to 1 and search 
for variations in structure only. 

By the way, the enzymatic reaction networks 
analyzed here were cyclic reaction systems as nodes. 
The MAPK cascade, a typical signal transduction 
system, includes the process of double 
phosphorylation. To extend the mathematical model 
of this study to include the process of double 
phosphorylation in the analysis, the set of differential 
equations derived from a single node can be modified. 
In the future, we intend to extend it as such and apply 
it to a more realistic analysis of bistability in 
intracellular signaling systems. 

REFERENCES 

Adler, M., Szekely, P., Mayo, A., & Alon, U. (2017). 
Optimal Regulatory Circuit Topologies for Fold-
Change Detection. Cell Syst, 4(2), 171-181 e178. 
https://doi.org/S2405-4712(16)30419-7 [pii], 
10.1016/j.cels.2016.12.009  

Brightman, F. A., & Fell, D. A. (2000). Differential 
feedback regulation of the MAPK cascade underlies the 
quantitative differences in EGF and NGF signalling in 
PC12 cells. FEBS Letters, 482, 169-174.  

Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., 
Vasen, G., Colman-Lerner, A., Loog, M., & Skotheim, 
J. M. (2015). Compartmentalization of a bistable switch 
enables memory to cross a feedback-driven transition. 
Cell, 160(6), 1182-1195. https://doi.org/10.1016/ 
j.cell.2015.02.032, S0092-8674(15)00198-1 [pii]  

Ferrell, J. E., Jr. (1998). How regulated protein 
translocation can produce switch-like responses. 
Trends in Biochemical Science, 23, 461-465.  

Gedeon, T., Cummins, B., Harker, S., & Mischaikow, K. 
(2018). Identifying robust hysteresis in networks. PLoS 
Comput Biol, 14(4), e1006121. https://doi.org/10.1371/ 
journal.pcbi.1006121 PCOMPBIOL-D-17-01583 [pii]  

Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., 
Yumoto, N., Ichikawa, M., Kim, J. H., Saito, K., Saeki, 
M., Shirouzu, M., Yokoyama, S., & Konagaya, A. 
(2003). A computational model on the modulation of 
mitogen-activated protein kinase (MAPK) and Akt 
pathways in heregulin-induced ErbB signalling. 
Biochemical Journal, 373(Pt 2), 451-463.  

Huang, C. F., & Ferrell, J. E., Jr. (1996). Ultrasensitivity in 
the mitogen-activated protein kinase cascade. 
Proceedings of the National Academy of Science of the 
United States of America, 93, 10078-10083.  

Jeschke, M., Baumgartner, S., & Legewie, S. (2013). 
Determinants of cell-to-cell variability in protein kinase 
signaling. PLoS Comput Biol, 9(12), e1003357. 
https://doi.org/10.1371/journal.pcbi.1003357 
PCOMPBIOL-D-13-00825 [pii]  

Kholodenko, B. N. (2006). Cell-signalling dynamics in 
time and space. Nat Rev Mol Cell Biol, 7(3), 165-176. 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&list_uids=164
82094  

Kim, J. K., & Tyson, J. J. (2020). Misuse of the Michaelis-
Menten rate law for protein interaction networks and its 
remedy. PLoS Comput Biol, 16(10), e1008258. 
https://doi.org/10.1371/journal.pc bi.1008258  

Kuwahara, H., & Gao, X. (2013). Stochastic effects as a 
force to increase the complexity of signaling networks. 
Sci Rep, 3, 2297. https://doi.org/10.1038/srep02297 
srep02297 [pii]  

Levchenko, A., Bruck, J., & Sternberg, P. W. (2000). 
Scaffold proteins may biphasically affect the levels of 
mitogen-activated protein kinase signaling and reduce 
its threshold properties. Proceedings of the National 
Academy of Science of the United States of America, 
97(11), 5818-5823.  

Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, 
C. (2009). Defining network topologies that can 
achieve biochemical adaptation. Cell, 138(4),  
760-773. https://doi.org/10.1016/j.cell.2009.06.013  
S0092-8674(09)00712-0 [pii]  

Mai, Z., & Liu, H. (2013). Random parameter sampling of 
a generic three-tier MAPK cascade model reveals major 
factors affecting its versatile dynamics. PLoS One, 8(1), 
e54441. https://doi.org/10.1371/journal.pone.0054441 
PONE-D-12-24261 [pii]  

Naka, T. (2020). Validity of the Michaelis-Menten 
Approximation for the Stability Analysis in Regulatory 
Reaction Networks. BIOSTEC 2020 (13th International 
Joint Conference on Biomedical Engineering Systems 
and Technologies), Valletta, Malta. 

Naka, T. (2022). The partition representation of enzymatic 
reaction networks and its application for searching bi-
stable reaction systems. PLoS One, 17(1), e0263111. 
https://doi.org/10.1371/journal.pone.0263111  

Qiao, L., Nachbar, R. B., Kevrekidis, I. G., & Shvartsman, 
S. Y. (2007). Bistability and oscillations in the Huang-
Ferrell model of MAPK signaling. PLoS Comput Biol, 
3(9), 1819-1826. https://doi.org/07-PLCB-RA-0294 
[pii] 10.1371/journal.pcbi.0030184  

Ramakrishnan, N., & Bhalla, U. S. (2008). Memory 
switches in chemical reaction space. PLoS Comput 
Biol, 4(7), e1000122. https://doi.org/10.1371/ 
journal.pcbi.1000122  

Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D., & Muller, 
G. (2002). Computational modeling of the dynamics of 
the MAP kinase cascade activated by surface and 
internalized EGF receptors. Nature Biotechnology, 20, 
370-375.  

Shah, N. A., & Sarkar, C. A. (2011). Robust network 
topologies for generating switch-like cellular 
responses. PLoS Comput Biol, 7(6), e1002085. 

Identification of Bistability in Enzymatic Reaction Networks Using Hysteresis Response

485



https://doi.org/10.1371/journal.pcbi.1002085 10-
PLCB-RA-2608 [pii]  

Siegal-Gaskins, D., Mejia-Guerra, M. K., Smith, G. D., & 
Grotewold, E. (2011). Emergence of switch-like 
behavior in a large family of simple biochemical 
networks. PLoS Comput Biol, 7(5), e1002039. 
https://doi.org/10.1371/journal.pcbi.1002039  
PCOMPBIOL-D-10-00298 [pii] 

Sueyoshi, C., & Naka, T. (2017). Stability Analysis for the 
Cellular Signaling Systems Composed of Two 
Phosphorylation-Dephosphorylation Cyclic Reactions. 
Computational Molecular Bioscience, 7, 33-45.  

Volinsky, N., & Kholodenko, B. N. (2013). Complexity of 
receptor tyrosine kinase signal processing. Cold Spring 
Harb Perspect Biol, 5(8), a009043. https://doi.org/ 
10.1101/cshperspect.a009043a009043 [pii] 5/8/a009 
043 [pii]  

Wolfram Research, I. (2021). Mathematica. In (Version 
13.0)  

Yao, G., Tan, C., West, M., Nevins, J. R., & You, L. (2011). 
Origin of bistability underlying mammalian cell cycle 
entry. Mol Syst Biol, 7, 485. https://doi.org/10.1038/ 
msb.2011.19msb201119 [pii]  

 

BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms

486


