
Interpretable Android Malware Detection Based on Dynamic Analysis

Arunab Singh, Maryam Tanha, Yashsvi Girdhar and Aaron Hunter
School of Computing and Academic Studies, British Columbia Institute of Technology, Canada

Keywords: Malware, Dynamic Analysis, Android, Security.

Abstract: Android has emerged as the dominant operating system for smart devices, which has consequently led to the
proliferation of Android malware. In response to this, different analysis methods have been suggested for the
identification of Android malware. In this paper, we focus on so-called dynamic analysis, in which we run
applications and monitor their behaviour at run-time rather analyzing the source code and resources (which
is called static analysis). One approach to dynamic analysis is to use machine learning methods to identify
malware; essentially we run a large set of applications that may or may not be malware, and we learn how to
tell them apart. While this approach has been successfully applied, both academic and industrial stakeholders
exhibit a stronger interest in comprehending the rationale behind the classification of apps as malicious. This
falls under the domain of interpretable machine learning, with a specific focus on the research field of mobile
malware detection. To fill this gap, we propose an explainable ML-based dynamic analysis framework for
Android malware. Our approach provides explanations for the classification results by indicating the features
that are contributing the most to the detection result. The quality of explanations are assessed using stability
metrics.

1 INTRODUCTION

Mobile malware poses substantial security risks, im-
pacting both individuals and enterprises by exploit-
ing valuable data stored on mobile devices. Android,
holding a 72% market share (Statista, 2023), is a
prime target due to its open nature. Cyberattacks,
such as mobile banking threats (Kapersky, 2023), un-
derscore this vulnerability despite efforts by Google
and OEMs (original equipment manufacturers) (Ko-
vacs, ByEduard, 2023).

Dynamic analysis is an important technique for
Android malware detection. This approach involves
running potentially malicious Android applications in
a controlled environment to monitor their behavior in
real-time. By observing how an app interacts with the
device, network, and other applications, security ana-
lysts can uncover hidden malicious activities that may
not be evident through static analysis alone. Dynamic
analysis provides valuable insights into an app’s run-
time behavior, enabling the detection of malware that
exhibits polymorphic or obfuscated characteristics.

There is a great deal of research on Android mal-
ware detection through dynamic analysis, much of
which is based on using machine learning (ML) tech-
niques (Yan and Yan, 2018). While ML models show
promise in detecting malicious apps, their underly-

ing selection processes are often complex, making it
challenging to explain why an app has been classi-
fied as malicious. This lack of transparency hinders
the ability to understand the key features or behav-
iors that triggered the classification result, which is
crucial for both security analysts and app developers.
Moreover, the absence of explainability makes it diffi-
cult to identify false positives and false negatives, po-
tentially damaging the reputation of legitimate apps
and allowing some malicious ones to remain unde-
tected. Researchers are actively working on methods
to enhance the interpretability of ML models, as it’s
not only about making accurate predictions but also
about providing insights into why certain decisions
are made, thereby improving the overall effectiveness
and trustworthiness of ML-based systems. Explain-
able ML methods have not been employed extensively
for dynamic analysis. Moreover, some of the existing
research studies on dynamic analysis rely on inacces-
sible or outdated tools. A notable trend is the scarcity
of open-source initiatives or comprehensive instruc-
tions, hindering result reproduction and validation.

The main contributions of this paper are summa-
rized as follows:

• We present a clear methodology for producing a
tool for dynamic malware analysis. The list of

Singh, A., Tanha, M., Girdhar, Y. and Hunter, A.
Interpretable Android Malware Detection Based on Dynamic Analysis.
DOI: 10.5220/0012415800003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 195-202
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

195



apps used, the feature extraction and selection,
and developed ML models (for which we also ad-
dressed the class imbalance issues to improve the
results) are open-source and publicly available to
the research community on GitHub 1. This will
facilitate the reproducibility of our research.

• We employ an explanation technique for interpret-
ing the predictions made by our ML models and
evaluate its effectiveness. In this way, we can
identify the features that are contributing the most
to detection of an app as malware as well as eval-
uating the quality of explanations. To the best
of our knowledge, this study is the first work at-
tempting to provide a systematic approach to use
explainable ML methods for dynamic analysis of
Android malware.

• We have created datasets of traces for recent An-
droid apps (goodware and malware), which is
well-suited for dynamic analysis. Also, using our
open-source scripts, researchers can generate new
datasets in an easy and seamless manner.

2 BACKGROUND AND RELATED
WORK

2.1 Preliminaries

There are two main approaches to Android malware
detection and analysis: static analysis and dynamic
analysis. The static analysis approach involves ana-
lyzing the code and resources of an app without ex-
ecuting it. One problem with static analysis is that it
is generally unable to detect new malicious behaviour
that happens at run-time (Yan and Yan, 2018). It is
also not effective in identifying malicious deforma-
tion techniques such as java reflection and dynamic
code loading (Pan et al., 2020). Hence, a comprehen-
sive approach to malware analysis can not be based
solely on static methods. Dynamic analysis refers to
the approach where the behaviour of an application
is monitored while it is executed in a controlled en-
vironment. In this manner, we can monitor things
like system calls, network traffic, user interactions
and inter-process communication. One advantage of
this approach is that it can identify zero-day attacks
that have not previously been observed. Moreover, it
can identify malware that has been deliberately writ-
ten to evade static analysis(Yan and Yan, 2018). Com-
pared with static analysis, there are fewer studies on

1https://github.com/maryam-
tanha/DynamicAndroidMalwareAnalysis

dynamic analysis and it needs further investigation by
the research community. Therefore, in this paper, our
focus is on dynamic analysis for Android malware de-
tection.

2.2 Interpretable Machine Learning for
Dynamic Analysis

There are many studies that have used ML meth-
ods (including deep learning) for dynamic analysis
of Android malware. However, researchers have
raised concerns regarding the over-optimistic classi-
fication results produced by various ML-based mal-
ware detection techniques (Arp et al., 2022; Pendle-
bury et al., 2019). Furthermore, the approaches to
Android malware detection mainly rely on black-box
models. Consequently, security analysts frequently
found themselves questioning the reliability of pre-
dictions from such highly accurate ML-based mal-
ware detection models and pondering the suitability
of model selection before deployment. In response
to these issues, several studies introduced methods
aimed at explaining the predictions made by ML-
based malware detection models. Examples of such
studies for static analysis are (Fan et al., 2020; Wu
et al., 2021; Liu et al., 2022b). While there are stud-
ies that attempt at providing explanations for dynamic
analysis such as (De Lorenzo et al., 2020), none of the
existing ones have investigated using eXplainable Ar-
tificial Intelligence techniques(XAI) (Dwivedi et al.,
2023) for interpreting the results of classification for
dynamic analysis.

2.3 Using System Calls for ML-Based
Dynamic Analysis

In the following, we give a brief summary of the
main recent studies that employed system calls as
their only set of features or along with other features.
We refer interested readers to (Yan and Yan, 2018;
Liu et al., 2022a; Razgallah et al., 2021) for more
comprehensive surveys of dynamic analysis for An-
droid malware detection. SpyDroid (Iqbal and Zulk-
ernine, 2018), is an Android malware dynamic anal-
ysis framework that utilizes multiple malware detec-
tors. It supports monitoring CPU and memory usage
as well as kernel system calls.Android malware de-
tection system (AMDS) (Zhang et al., 2022) relies on
system call traces, which are processed using N-gram
analysis. The experimental findings illustrate that
AMDS exhibits the ability to detect threats at an early
stage with high accuracy. TwinDroid (Asma Raza-
gallah, 2022) is a dataset of 1000 system call traces
for Android apps. An early version of TwinDroid is

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

196



used in (Razgallah and Khoury, 2021) for Android
malware detection by using n-grams as well as Term
Frequency–Inverse Document Frequency (TF–IDF)
weight vector of system calls and ML classification
methods. MALINE (Dimjašević et al., 2016) em-
ploys system call frequency and system call depen-
dency for indicating malicious behaviour. Another
recent study, (Mahdavifar et al., 2020), detects mal-
ware families based on different categories of sys-
tem calls and applying a semi-supervised deep learn-
ing method. Sequences of system calls are used in
Deep4MalDroid (Hou et al., 2016) to construct a
weighted directed graph, which is then given to a deep
learning framework for malware detection. Droid-
Scribe (Dash et al., 2016) provides a framework for
malware family classification. It utilizes (Tam et al.,
2015) as its dynamic analysis component to capture
system calls information.

3 METHODOLOGY

In this section, we explain our approach for develop-
ing an Android malware detection system based on
dynamic analysis using interpretable machine learn-
ing.

3.1 Data Collection and Pre-Processing

We used the AndroZoo dataset (Allix et al., 2016) for
obtaining our goodware and part of our malware. An-
droZoo is commonly used by research community for
Android malware detection and analysis. Note that
AndroZoo does not explicitly label apps as malware.
Instead, it provides the number of antiviruses from
VirusTotal (VirusTotal, 2023) that flagged the app as
malware. Particularly, there is a property for an app
called vt detection in AndroZoo. A non-zero value for
this property means that one or more antivirus tools
have flagged this app as malware; otherwise, the app
is considered to be goodware (vt detection=0). To
collect our malware samples, we chose the apps such
that their vt detection is more than 4 (to have more
confidence in their label). A similar approach has
been employed in (Pendlebury et al., 2019). More-
over, we also downloaded malware from VirusShare
(VirusShare, 2023), which is a repository of malware
samples. The quality of the dataset is of crucial im-
portance for Android malware ML-based detection.
If the dataset is not up-to-date or not representative
of the population under study, the conclusions may
be invalid. Therefore, while selecting the apps, we
considered addressing issues including realistic class
ratio and temporal inconsistency.

3.1.1 Realistic Class Ratio and Addressing Class
Imbalance

To have realistic settings, the class ratio between be-
nign and malware classes at test time is chosen sim-
ilar to the one at deployment time. In the Android
app domain, malware is the minority class. Similar
to (Pendlebury et al., 2019; Miranda et al., 2022), we
used the average overall ratio of 10% Android mal-
ware in our test samples to represent the real-world
scenario. Moreover, we addressed the dataset imbal-
ance issue by using class weights and undersampling
techniques. More details are provided in Section 4.

3.1.2 Addressing Temporal Inconsistency

Temporal inconsistency (i.e., when malware and be-
nign apps are selected randomly from different time
periods)(Miranda et al., 2022; Cavallaro et al., 2023)
unrealistically improves the performance of the ML-
based malware detection approaches. Additionally,
explanations of ML-based Android malware detec-
tion suggest that the models can accurately pre-
dict malware by relying on temporal-related features
rather than the actual characteristics of malicious and
benign behaviors (Liu et al., 2022b). To prevent
temporal inconsistency, we chose both malware and
goodware from the same timeframe, i.e., 2022.

3.2 Feature Selection

There are different features that may be included in
developing a dynamic analysis solution. Many of the
primary studies on dynamic analysis selected features
associated with system calls and dynamic activities
such as network access and memory dump to capture
malicious behavior (Razgallah et al., 2021; Liu et al.,
2022a; Saneeha Khalid, 2022). Among such features,
system calls are the mainstream and have been fa-
vored by the research community for dynamic anal-
ysis of Android malware. In contrast to API calls,
Linux kernel system calls are independent from the
Android Operating System (OS) version, rendering
them more robust against strategies employed by mal-
ware to evade detection. Therefore, in this paper, we
focus primarily on the analysis of system calls. All
apps interact with the platform where they are ex-
ecuted by requesting services through a number of
available system calls. These calls define an interface
that allow apps to read/write files, send/receive data
through the network, read data from a sensor, make a
phone call, etc. Legitimate apps can be characterized
by the way they use such an interface, which facil-
itates the identification of malicious components in-

Interpretable Android Malware Detection Based on Dynamic Analysis

197



Figure 1: Proposed framework.

serted into a seemingly harmless app and, more gen-
erally, other forms of malware.

3.3 Feature Extraction Process

We explored a variety of tools to collect system calls
produced by running an Android app in an emula-
tor. We mainly used adb (ADB, 2023), Android
Emulator (Android Studio, 2023), and strace (strace,
2023). Moreover, Monkey (monkey, 2023) was em-
ployed to simulate random user interactions with an
app. We have examined all of the traces from our
tests and we focus on extracting system calls and their
frequencies. Certain system calls might be indicative
of malicious behavior, such as trying to access sen-
sitive data or performing unauthorized action. Also,
unusual or high frequencies of certain system calls
might indicate that it is performing some action ex-
cessively, which could be an indication of malicious
activity. Thus, we identified a list of distinctive system
calls used in all the strace logs for malware and good-
ware. For each system call, its frequency is included
in our feature vector.

3.4 Classification Models and
Explanation Method

We have opted to employ Random Forest (RF)
(Breiman, 2001) and eXtreme Gradient Boost (XG-
Boost) (Chen et al., 2015), as our classification meth-
ods. Both of these methods are considered as ensem-
ble learning techniques. Such techniques combine the
predictions of multiple ML models. To interpret the
prediction results from the above classifiers, we em-
ployed Local Interpretable Model-agnostic Explana-
tions (LIME) (Ribeiro et al., 2016), which is a widely
used approach in various other fields (Belle and Pa-
pantonis, 2021). Apart from its model-agnostic na-
ture and the ability to offer localized interpretabil-
ity, LIME is favored for its simple implementation
and lower computational overhead when compared to
similar techniques in the field of eXplainable Artifi-
cial Intelligence (XAI) (Dwivedi et al., 2023). More-
over, LIME has been used for explaining the ML-
based predictions for static analysis of Android mal-
ware (Fan et al., 2020). LIME operates by altering
specific feature values within a single data sample and
then monitors the resulting impact on the output, es-

Table 1: Scenarios.

Scenario No. Goodware No. Malware
S1-10 2430 270
S2-15 2295 405
S3-20 2160 540

Table 2: Model performance evaluation metrics and their
computed values for the first three scenarios.

Scenario Classifier Precision Recall F1-Score
S1-10 RF 1 0.33 0.5
S1-10 XGBoost 0.79 0.50 0.61
S2-15 RF 0.93 0.47 0.62
S2-15 XGBoost 0.81 0.57 0.67
S3-20 RF 0.89 0.53 0.67
S3-20 XGBoost 0.78 0.60 0.68

sentially acquiring the classification label of the mod-
ified sample. Once predictions are created for a col-
lection of perturbed input samples, LIME proceeds
to approximate the decision boundary and calculate
the weights that denote the significance of individual
features. It should be noted that LIME is a post hoc
explainable method, i.e., it is applied to a model after
training. Figure 1 shows our proposed framework.

4 PERFORMANCE EVALUATION
AND ANALYSIS OF RESULTS

4.1 Experimental Setup

We carried out our experiments on a Tensorbook with
Ubuntu 22.04 OS, Intel Core i7-processor (14 cores),
NVIDIA RTX 3070 Ti GPU, and 32 GB memory
(DDR5-4800). We randomly chose 2,798 benign
apps AndroZoo and 624 malware from AndroZoo and
VirusShare. The Android emulator was used to emu-
late a Pixel 6 (API 31) device. Moreover, 146 unique
system calls were identified by analyzing the traces
for benign apps and malware; these have been incor-
porated in our feature vector. Finally, the classifica-
tion algorithms are implemented using Scikit-Learn
ML library (scikit-learn, 2023).

4.2 Performance Evaluation

We used the grid searching method with 10-fold
cross validation for hyperparameter tuning. Since our
dataset is imbalanced, having high accuracy does not
necessarily mean high detection rate for our positive
class (i.e., malware). Therefore, we have looked into
other metrics which are better representatives for the
performance of our classifiers as follows.

In our first set of experiments, we examined three

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

198



scenarios, each maintaining a consistent 10% mal-
ware ratio during testing, while the training data con-
tained 10% (S1-10), 15% (S2-15), and 20% (S3-20)
malware in these respective scenarios. Table 1 shows
the distribution of goodware and malware in the train-
ing sets of our scenarios. Note that although maintain-
ing a realistic class ratio during training can reduce
the overall error rate, different ratios can be employed
to adjust the decision boundary, thereby balancing the
trade-off between false positives and false negatives
(and subsequently affect precision and recall). Table 2
summarizes the obtained values of performance met-
rics from the three scenarios. If we look at the recall
values of the malware class, XGBoost has a higher
value in all three scenarios. Therefore, XGBoost per-
forms better than RF in terms of detecting malware
(i.e., it correctly identifies malware with higher prob-
ability). It is evident from the three scenarios that
When the ratio of malware in the training set goes
up, the decision boundary moves towards the good-
ware class, i.e., the recall is increased for malware but
the precision is reduced. Therefore, if our objective
is to improve malware detection (i.e., recall), we can
increase the malware ratio in the training set. Overall,
XGBoost has a better performance compared with RF
classifier due to its higher F1-score. Also, we can see
the increase in F1-score when we increase the mal-
ware ratio (having a more balanced dataset) in s2-15
and s3-20 compared with s1-10 scenario. This results
from the fact that the F1-score is a measure of har-
monic mean of precision and recall. So, the closer the
values of precision and recall are to each other, the
better (higher) the F1-score will be.
Addressing Class Imbalance Using Under-
Sampling: In this scenario (named s4-u-10), we
applied Tomek links under-sampling technique
(Haibo and Yunqian, 2013) to our training set.
Tomek links consist of pairs of closely located
instances belonging to different classes. Tomek
links are present when two samples are each other’s
nearest neighbors. By eliminating the majority class
instances in each pair, the separation between the two
classes is widened, thus facilitating the classification
process. Figure 2 shows the results of this scenario
for different classifiers and in comparison with
s1-10 (as our base scenario). Figure 2a displays
21%, and 14% improvement in recall and F1-score,
respectively for the RF classifier. Moreover, Figure
2b illustrates 12.6% , 6%, and 9.8% improvement in
precision, recall and F1-score, respectively for the
XGBoost classifier.
Addressing Class Imbalance Using Class Weights:
In this scenario, named s5-w-10, we used class
weights to address the class imbalance problem. By

(a) (b)

Figure 2: Performance comparison of s1-10 scenario with
scenarios addressing class imbalance.

assigning higher weights to the minority class (i.e.,
malware class), the model is enabled to give more im-
portance to malware samples during training and mit-
igate the bias towards the majority class (i.e., benign
class). The class weights are inversely proportional to
their frequency of occurrence in the dataset. Figure
2 illustrates the performance of the classifiers when
adding the class weights. In Figure 2a, we observe
60% and 30% improvement in recall and F1-score,
respectively for the RF classifier. Similarly, figure
2b shows 26% and 18% improvement in recall and
F1-score, respectively for the XGBoost classifier. It
should be noted that adding class weights is only ef-
fective (i.e., the improvement in the metrics is notice-
able) if the dataset is highly imbalanced (i.e., ratio of
10% or less for malware in our experiments).

Considering the two techniques that we used for
addressing the class imbalance and improving the
performance of models, class weight shows more
promise in terms of improving metrics when making
a comparison with Tomek links technique (s4-u-10).
Particularly, when adding class weights, the amount
of increase in F1-score is 16% for the RF classifier
and 8.2% for the XGBoost classifier compared with
the Tomek links scenario (s4-u-10). A drawback to
under-sampling is that we have eliminated informa-
tion that may be valuable; however, in a large dataset,
this may become less of a concern as the number of
removed benign samples is much lower than the total
number of such samples.

4.3 Analysis of LIME Explanations

So far, our focus has been on analyzing the perfor-
mance of our classifiers and mitigating the class im-
balance issue for dynamic analysis. We do not have
any information about the contributions of different
features (i.e., the frequency of system calls) to the
predictions made by our classifiers. In other words
there is an important question to answer ”Why is an
Android App classified as malware by our ML mod-
els?”. To provide some insights for the prediction
results, we have utilized the LIME explainable tech-
nique. Furthermore, we focus on XGBoost classifier

Interpretable Android Malware Detection Based on Dynamic Analysis

199



(a) APK package name: com.jiccos.jicco

(b) APK package name: com.wGuitarProTabs

(c) APK package name: com.hmsqw.customer

Figure 3: Examples of LIME explanations for three true positives in the testing set.

results with class weights (scenario s5-w-10) since it
outperforms the RF classifier.

We analyzed the true positives (15 samples) for
our testing set, which includes a total of 300 An-
droid apps out of which 30 apps are malware. As we
mentioned earlier, LIME provides local explainabil-
ity, i.e., it indicates the most contributing features to
the prediction result for a test instance. We config-
ure LIME to show the top five features for a predic-
tion in our experiments. Figure 3 shows output ex-
amples of applying LIME to three test instances. By
looking at prediction probabilities, Figure 3a shows
that the XGBoost classifier is 100% confident that
com.jiccos.jicco is malware. Similarly, the confi-
dence of the classifier is 92% and 99% when de-
tecting malware in Figure 3b and Figure 3c. More-
over, the top five system calls (based on their fre-
quencies) are shown in Figure 3. For instance, the
most important system calls (based on their frequen-
cies) to the prediction in Figure 3a are exit group,
sched get priority max, futex, write, and listen with
weights of 0.16, 0.13, 0.05, 0.07, and 0.06, respec-
tively. Note that the descriptions of system calls can
be found in (syscalls(2)–Linux manual page, 2023).
Additionally, the explanation provides the reasons

Table 3: Top system calls and their presence in true posi-
tives.

System call Presence in true positives
exit group 66%

sched get priority max 46%
sched getscheduler 33%

futex 26%

why the model make this prediction. Table 3 displays
the top four system calls that are present in most of
the true positives based on the output of LIME.
Explanation Quality: One important aspect of ex-
planations to consider is their stability, i.e., the
changes in explanations when utilizing the explain-
able method (in our case LIME) multiple times under
the same conditions. We use two stability metrics,
which were defined in (Visani et al., 2022) for LIME,
namely Variables Stability Index (VSI) and Coeffi-
cients Stability Index (CSI). High VSI values ensure
that the variables (features) obtained in various LIME
instances are consistently identical. Conversely, low
values indicate unreliable explanations, as different
LIME calls may yield entirely different variables to
explain the same machine learning decision. Regard-
ing CSI, high values guarantee the reliability of LIME
coefficients for each feature. Conversely, low values

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

200



advise practitioners to exercise caution: for a given
feature, the initial LIME call may yield a specific co-
efficient value, but subsequent calls are likely to pro-
duce different values. As the coefficient represents
the impact of the feature on the ML model decision,
obtaining different values corresponds to significantly
distinct explanations. The average of VSI values is
90.6% with standard deviation of 5% whereas the av-
erage of CSI values is 97.6% with standard deviation
of 3.8%. Therefore, in our experiments for malware
detection LIME results are more stable w.r.t. to CSI
rather than VSI.
Limitations of Our Approach: It should be noted
that system calls are inherently low-level and lack the
extensive information found in the more semantically
enriched Android APIs. Therefore, mapping them di-
rectly to the malware’s behavior is a challenging task.
A dataset that mapped high-level Android APIs to dif-
ferent representations of low-level system call traces
was created in (Nisi et al., 2019). But the dataset is
not accessible and we could not use it to map the sys-
tem calls to API calls and subsequently relate them
to an app’s behavior. Moreover, we examined the re-
ports from VirusTotal for some of our malware in the
testing set but the features listed are mainly related to
static analysis of those apps.

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented an interpretable ML-based
dynamic analysis approach for Android malware de-
tection. We focused on extracting the frequency of
system calls as features to train our ML models. We
applied LIME to the prediction results of the ML
models to indicate the most contributing features to
each prediction. Finally, we evaluated the stability of
LIME explanations for true positives of our model.
For facilitating the reproducibility of our research, all
the codes and data are publicly accessible. Some of
the directions for future work are as follows. One
can use an enhanced user interaction simulator such
as ARES (Romdhana et al., 2022), rather than rely-
ing on the random interactions generated by Monkey.
Moreover, using other interpretable ML techniques
and comparing their explanation quality with LIME
is a promising area that needs further exploration.

REFERENCES

ADB (2023). https://https://developer.android.com/tools/
adb. Accessed: July 2023.

Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y.
(2016). Androzoo: Collecting millions of android
apps for the research community. In Proceedings of
the 13th International Conference on Mining Software
Repositories, MSR ’16, pages 468–471, New York,
NY, USA. ACM.

Android Studio (2023). https://developer.android.com/stud
io/\\run/emulator. Accessed: July 2023.

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pier-
azzi, F., Wressnegger, C., Cavallaro, L., and Rieck, K.
(2022). Dos and don’ts of machine learning in com-
puter security. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3971–3988.

Asma Razagallah, Raphael Khoury, J.-B. P. (2022). Twin-
droid: a dataset of android app system call traces and
trace generation pipeline. In Proceedings of the 19th
International Conference on Mining Software Reposi-
tories.

Belle, V. and Papantonis, I. (2021). Principles and prac-
tice of explainable machine learning. Frontiers in big
Data, page 39.

Breiman, L. (2001). Random forests. Machine learning,
45:5–32.

Cavallaro, L., Kinder, J., Pendlebury, F., and Pierazzi, F.
(2023). Are machine learning models for malware de-
tection ready for prime time? IEEE Security & Pri-
vacy, 21(2):53–56.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.,
Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T.,
et al. (2015). Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4):1–4.

Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi,
M., Kinder, J., and Cavallaro, L. (2016). Droidscribe:
Classifying android malware based on runtime behav-
ior. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 252–261. IEEE.

De Lorenzo, A., Martinelli, F., Medvet, E., Mercaldo, F.,
and Santone, A. (2020). Visualizing the outcome
of dynamic analysis of android malware with viz-
mal. Journal of Information Security and Applica-
tions, 50:102423.

Dimjašević, M., Atzeni, S., Ugrina, I., and Rakamaric,
Z. (2016). Evaluation of android malware detection
based on system calls. In Proceedings of the 2016
ACM on International Workshop on Security And Pri-
vacy Analytics, pages 1–8.

Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Pa-
tel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., et al.
(2023). Explainable ai (xai): Core ideas, techniques,
and solutions. ACM Computing Surveys, 55(9):1–33.

Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., and Liu, T.
(2020). Can we trust your explanations? sanity checks
for interpreters in android malware analysis. IEEE
Transactions on Information Forensics and Security,
16:838–853.

Haibo, H. and Yunqian, M. (2013). Imbalanced learn-
ing: foundations, algorithms, and applications. Wiley-
IEEE Press, 1(27):12.

Hou, S., Saas, A., Chen, L., and Ye, Y. (2016).
Deep4maldroid: A deep learning framework for an-

Interpretable Android Malware Detection Based on Dynamic Analysis

201



droid malware detection based on linux kernel system
call graphs. In 2016 IEEE/WIC/ACM International
Conference on Web Intelligence Workshops (WIW),
pages 104–111. IEEE.

Iqbal, S. and Zulkernine, M. (2018). Spydroid: A frame-
work for employing multiple real-time malware de-
tectors on android. In 2018 13th International Con-
ference on Malicious and Unwanted Software (MAL-
WARE), pages 1–8. IEEE.

Kapersky (2023). Android mobile security threats. https://
www.kaspersky.com/resource-center/threats/mobile.
Accessed: July 2023.

Kovacs, ByEduard (2023). New samsung message guard
protects mobile devices against zero- click exploits.
https://www.securityweek.com/new-samsung-messa
ge-guard-protects-mobile-devices-against-zero-click
-exploits/. Accessed: July 2023.

Liu, Y., Tantithamthavorn, C., Li, L., and Liu, Y. (2022a).
Deep learning for android malware defenses: a sys-
tematic literature review. ACM Computing Surveys,
55(8):1–36.

Liu, Y., Tantithamthavorn, C., Li, L., and Liu, Y. (2022b).
Explainable ai for android malware detection: To-
wards understanding why the models perform so well?
In 2022 IEEE 33rd International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 169–
180. IEEE.

Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi,
D., and Ghorbani, A. A. (2020). Dynamic an-
droid malware category classification using semi-
supervised deep learning. In 2020 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 515–
522. IEEE.

Miranda, T. C., Gimenez, P.-F., Lalande, J.-F., Tong, V.
V. T., and Wilke, P. (2022). Debiasing android mal-
ware datasets: How can i trust your results if your
dataset is biased? IEEE Transactions on Information
Forensics and Security, 17:2182–2197.

monkey (2023). https://developer.android.com/studio/test/
other-testing-tools/monkey. Accessed: July 2023.

Nisi, D., Bianchi, A., and Fratantonio, Y. (2019). Exploring
{Syscall-Based} semantics reconstruction of android
applications. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID
2019), pages 517–531.

Pan, Y., Ge, X., Fang, C., and Fan, Y. (2020). A systematic
literature review of android malware detection using
static analysis. IEEE Access, 8:116363–116379.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and
Cavallaro, L. (2019). {TESSERACT}: Eliminat-
ing experimental bias in malware classification across
space and time. In 28th USENIX Security Symposium
(USENIX Security 19), pages 729–746.

Razgallah, A. and Khoury, R. (2021). Behavioral classifi-
cation of android applications using system calls. In
2021 28th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 43–52. IEEE.

Razgallah, A., Khoury, R., Hallé, S., and Khanmohammadi,
K. (2021). A survey of malware detection in android
apps: Recommendations and perspectives for future
research. Computer Science Review, 39:100358.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1135–1144.

Romdhana, A., Merlo, A., Ceccato, M., and Tonella,
P. (2022). Deep reinforcement learning for black-
box testing of android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(4):1–29.

Saneeha Khalid, F. B. H. (2022). Evaluating dynamic anal-
ysis features for android malware categorization. In
Proceedings of the International Wireless Communi-
cations and Mobile Computin (IWCMC).

scikit-learn (2023). https://scikit- learn.org/stable/. Ac-
cessed: Oct 2023.

Statista (2023). Global mobile os market share 2023. https:
//www.statista.com/statistics/272698/global-market-s
hare-held-by-mobile-operating-systems-since-2009/.
Accessed: July 2023.

strace (2023). https://man7.org/linux/man-pages/man1/stra
ce.1.html. Accessed: July 2023.

syscalls(2)–Linux manual page (2023). https://man7.org
/linux/man-pages/man2/syscalls.2.html. Accessed:
Nov 2023.

Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. (2015).
Copperdroid: Automatic reconstruction of android
malware behaviors. In Ndss, pages 1–15.

VirusShare (2023). https://virusshare.com/. Accessed: Nov
2023.

VirusTotal (2023). Virustotal - home. https://www.virustot
al.com/gui/home/upload. Accessed: August 2023.

Visani, G., Bagli, E., Chesani, F., Poluzzi, A., and Ca-
puzzo, D. (2022). Statistical stability indices for lime:
Obtaining reliable explanations for machine learning
models. Journal of the Operational Research Society,
73(1):91–101.

Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., and
Lyu, M. R. (2021). Why an android app is classified
as malware: Toward malware classification interpreta-
tion. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(2):1–29.

Yan, P. and Yan, Z. (2018). A survey on dynamic mo-
bile malware detection. Software Quality Journal,
26(3):891–919.

Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q.,
Javaid, A., and Yang, X. (2022). An early detection
of android malware using system calls based machine
learning model. In Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Se-
curity, pages 1–9.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

202


