
Jabuti CE: A Tool for Specifying Smart Contracts in the Domain of
Enterprise Application Integration

Mailson Teles-Borges1 a, Jose Bocanegra2 b, Eldair F. Dornelles1 c, Sandro Sawicki1 d,
Antonia M. Reina-Quintero3 e, Carlos Molina-Jimenez4 f, Fabricia Roos-Frantz1 g

and Rafael Z. Frantz1 h

1Unijui University, Ijuı́, RS, Brazil
2Universidad de los Andes, Bogotá, Colombia

3University of Seville, Seville, Spain
4Department of Computer Science and Technology, University of Cambridge, U.K.

Keywords: Blockchain, Domain-Specific Languages, Enterprise Application Integration, Jabuti DSL, Language Server
Protocol, Smart Contracts.

Abstract: Some decentralised applications (such as blockchains) take advantage of the services that smart contracts
provide. Currently, each blockchain platform is tightly coupled to a particular contract language; for example,
Ethereum supports Serpent and Solidity, while Hyperledger prefers Go. To ease contract reuse, contracts
can be specified in platform-independent languages and automatically translated into the languages of the
target platforms. With this approach, the task is reduced to the specification of the contract in the language
statements. This can be tedious and error-prone unless the language is accompanied by supportive tools.
This paper presents Jabuti CE, a model-driven tool that assists users of Jabuti DSL in specifying platform-
independent contracts for Enterprise Application Integration. We have implemented Jabuti CE as an extension
for Visual Studio Code.

1 INTRODUCTION

A smart contract is a software artefact designed to
verify and execute transactions. It is normally writ-
ten in a contract language such as Solidity and Go,
and is deployed on a blockchain (Khan et al., 2021).
Usually, software engineers write a contract manu-
ally in the run-time language; however, this approach
suffers from two serious drawbacks: firstly, the con-
tract is not reusable because platforms are tightly cou-
pled to a particular contract language, for example,
Ethereum supports Serpent and Solidity while Hyper-
ledger prefers Go; secondly, the contract is likely to

a https://orcid.org/0000-0001-7674-854X
b https://orcid.org/0000-0002-8342-7346
c https://orcid.org/0000-0001-6585-3432
d https://orcid.org/0000-0002-7960-0775
e https://orcid.org/0000-0003-3698-6302
f https://orcid.org/0000-0002-3617-8287
g https://orcid.org/0000-0001-9514-6560
h https://orcid.org/0000-0003-3740-7560

be buggy and vulnerable (Durieux et al., 2020) be-
cause current contract languages are not easy or intu-
itive to use; and they include too many language de-
tails (e.g., variables, pointers, data structures) that dis-
tract the programmer from the semantics of the con-
tract. To avoid these problems, the programmer can
use programming environments that include tools to
specify a contract in a platform-independent language
and to automatically translate it into the language of
the target platform. The implementation of these tools
requires a great deal of programming skills; therefore,
they are not widely available.

To cover this gap, the main contribution of this ar-
ticle is the Jabuti DSL Contract Editor (Jabuti CE) 1.
We have implemented it as an extension of Visual Stu-
dio Code (VSCode) to assist Jabuti DSL programmers
at contract editing time. Jabuti DSL (Dornelles et al.,
2022) is a Domain Specific Language for writing

1More details of the tool and the Appendix to this arti-
cle are available at https://github.com/gca-research-group/
jabuti-dsl-language-vscode

Teles-Borges, M., Bocanegra, J., Dornelles, E., Sawicki, S., Reina-Quintero, A., Molina-Jimenez, C., Roos-Frantz, F. and Frantz, R.
Jabuti CE: A Tool for Specifying Smart Contracts in the Domain of Enterprise Application Integration.
DOI: 10.5220/0012413300003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 195-202
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

195

platform-independent contracts for enterprise appli-
cation integration (EAI). Among other features, Jabuti
CE can detect syntax errors and suggest solutions.

The paper is structured as follows: in Section 2
we present the core concepts; Section 3 describes the
tool development flow; related work is discussed in
Section 4; finally, in Section 5 we present results and
outline ongoing and future work.

2 BACKGROUND

In this section, we will first explain how the data ex-
change process works in the context of Enterprise
Application Integration, and then we will present the
Jabuti constructors.

2.1 Enterprise Application Integration

Enterprise Application Integration (EAI) is the branch
of software engineering that deals with the integra-
tion process that allows different applications to ex-
change information with each other (Soomro and
Awan, 2012). Communication between these applica-
tions and the integration process occurs through ports,
which are implementations of protocols such as smtp,
sftp, http, amqp, among others. These ports can be
unidirectional or bidirectional (Dornelles et al., 2022;
Parahyba et al., 2022). When the port is unidirec-
tional, messages flow in a single direction. Unidi-
rectional ports can be classified into two categories:
Entry and Exit.

Entry. It is the data entry port in the integration pro-
cess and allows two operations:

• Push. Adds application data to the integration
process;

• Read. Reads data from the integration process
and adds it to the application.

Exit. It is the data exit port in the integration process
and allows two operations:

• Poll. Reads data provided by the integration
process;

• Write. Writes data in the integration process.

In bidirectional ports, the flow of messages travels in
two opposite directions through two types of ports:
Solicitor and Responder. These ports have only two
types of operations request and response. Ports of
type Solicitor perform operations of type request al-
lowing the application to request data or services from
the integration process. Ports of type Responder per-
form operations of type response that return the re-
quested data.

2.2 Jabuti DSL

In the context of EAI, the rules of the communication
contract (or agreement) through the ports between the
application and the integration process can be repre-
sented using smart contracts. Smart contracts are self-
executing digital representations of traditional con-
tracts, defining rights, obligations, prohibitions, and
penalties for the parties involved (Dornelles et al.,
2022).

Jabuti is a model-driven language for smart con-
tracts in the field of EAI that helps to write platform–
independent contracts. These contracts can be trans-
lated automatically into general-purpose (e.g. Java,
C, Go) or cross-domain languages (e.g. Solidity) that
are specific to blockchains. Jabuti comprises the fol-
lowing concepts:

Contract. It is the main constructor and defines the
scope of the contract. It defines the two partic-
ipants, the start and end dates, and one or more
clauses, terms, and events.

Dates. Defines the validity period of the contract
with the start and end dates.

Party. Represents the two contracting parties,
namely, the integration process and the applica-
tion under integration.

Clause. Specifies the responsible party (rolePlayer)
and the conditions (terms) for executing an op-
eration. Operactions can be push, read, poll,
write, request, and response. There are 3 types
of clauses:

• Right. The rolePlayer has the right to execute
the clause or not.

• Obligation. The execution of the clause is
mandatory.

• Prohibition. Specifies clauses that prohibit con-
tract execution.

Terms. defines the service-level rules and business
rules that must be met by the contracting parties.

To help to understand our approach better, we present
a real scenario in which integration rules can be rep-
resented using Jabuti DSL. In the scenario an e-
commerce hires a payment service that will be re-
sponsible for processing payments for orders created
by consumers. The e-commerce will request a new
transaction from the payment service that receives
and will return a corresponding identifier in response.
Then, the payment service will send notifications to
the e-commerce informing it of status changes that
have occurred.

Figure 1 illustrates this process and some rules
stipulated through a representation via BPMN. We

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

196

E-
co

m
m

er
ce

ap
pl

ica
tio

n

Sends payment
data

In
te

gr
at

io
n

Pr
oc

es
s

Are there more than
100 payment

requests?

Are there any payment
requests that exceed the
value of 100 thousand

monetary units?

Were there more
than 5 API requests
in the last minute?

Yes No

No No

Yes

Pa
ym

en
t S

er
vic

e

Process the
payment

Did the processing
take less than 2

seconds?
Responds with
transaction idYes

No

Yes

Figure 1: BPMN diagram of the integration process between e-commerce and payment service.

can observe the rules that establish the duties of each
party involved: the e-commerce application can ac-
cess the integration process a maximum of 5 times
per minute; each request may contain a maximum of
100 transactions; each transaction will have a maxi-
mum value of one hundred thousand monetary units;
the payments service will have up to 2 seconds to pro-
cess and return a response. Listing 1 shows these rules
written with Jabuti DSL.

Although Jabuti DSL has an optimised syntax for
writing smart contracts, using it without the support
of an editor or a tool that can validate the written
contract, provide suggestions, or differentiate the con-
structors present is a challenge.

3 TOOL OVERVIEW

In the implementation of Jabuti CE, we have opted
for extending VSCode, an emerging technology that
has some advanced features such as language sup-
port, user interface, extension ecosystem, and perfor-
mance. The implementation of Jabuti CE involves
the steps shown in Figure 2: (i) grammar specifi-
cation; (ii) implementation of the editor’s function-
alities; (iii) development of plugin for communica-
tion with the editor; (iv) building and deployment of
the extension in the VSCode marketplace. We detail
these steps in the subsequent subsections.

3.1 Specifying the Grammar

For the selection of the library responsible for specify-
ing the grammar, we have taken into account three cri-
teria: low learning curve, maintainability, and avail-
ability of development support tools. A low learning
curve requires both the availability of documentation
and the structure of the grammar language (e.g. if
it is simple enough to be understood). Maintainabil-
ity means simple procedures to upgrade, identify, and
fix bugs. Finally, the availability of development sup-
port tools implies the existence of plugins or editors to
write the grammar and tools to identify errors during
the development stage.

We have chosen the ANTLR library (Parr, 2023)
because it meets the above requirements. For in-
stance, it has plugins for the main editors or IDEs;
the generated code is human-readable; it is well doc-
umented and provides examples; in addition, it in-
cludes capabilities to convert the grammar into other
languages (e.g. Typescript, Java, C#, Php among oth-
ers).

In Listing 2 we provide an excerpt of the specifi-
cation of the grammar of Jabuti DSL 2. Lines 4 to 8
represent the token declaration (the smallest semantic
units of the language); Line 13 shows the rule dec-
laration for contract. Note that tokens are written in

2The entire grammar of the language can
be seen at https://github.com/gca-research-group/
jabuti-dsl-language-vscode

Jabuti CE: A Tool for Specifying Smart Contracts in the Domain of Enterprise Application Integration

197

1 contract PaymentService {
2 dates {
3 beginDate = 2023-09-25 21:21:42
4 dueDate = 2023-09-26 21:21:42
5 }
6

7 parties {
8 application = "E-commerce"
9 process = "Payment Service"

10 }
11

12 variables {
13 payments = "$.data.length()"
14 value = "$.data.[*].value"
15 }
16

17 clauses {
18 right requestPayment {
19 rolePlayer = application
20 operation = request
21

22 terms {
23 MaxNumberOfOperation(5 per

↪→ Minute),
24 MessageContent(payments <= 100)

↪→ ,
25 MessageContent(value <= 100000)
26 }
27 }
28

29 obligation responsePayment {
30 rolePlayer = process
31 operation = response
32

33 terms {
34 Timeout(2)
35 }
36 }
37 }
38 }

Listing 1: Contract for the payment integration process
written in Jabuti DSL.

Specifying the grammar
Implementing the

functionalities

Developing the plugin
Building and deploying

the tool

Figure 2: Tool development flow.

Pascal case and non-terminal symbols in Camel case.
The colon (:) at line 14 is a separator that separates
the rule name from its implementation. Lines 15-19
show the expression that represents the contract.

A contract starts with the keyword Contract fol-
lowed by its name, which is controlled by the vari-
ableName rule. A variable name must start with a let-
ter followed by zero or more letters and numbers. The
name of the contract is followed by the OpenBrace

token ({). The rules are then specified for variables,
dates, parties, and clauses. These rules are enclosed in
parentheses and separated by pipe (|) to indicate that
any of them can be inserted after OpenBrace in no
particular order. Finally, at line 19, the declaration
ends with the token CloseBrace (}) and a question
mark (?). The ’?’ symbol represents that the forego-
ing expression is optional; therefore, an empty Jabuti
DSL file will be taken as valid.

1 grammar JabutiGrammar;
2

3 // Tokens
4 Contract: ’contract’;
5 Dates: ’dates’;
6 BeginDate: ’beginDate’;
7 DueDate: ’dueDate’;
8 Parties: ’parties’;
9

10 ...
11

12 // Lexer
13 contract
14 :
15 (
16 Contract variableName OpenBrace
17 (variables|dates|parties|clauses)*
18 CloseBrace
19)?
20 ;
21

22 clauses
23 :
24 Clauses
25 OpenBrace
26 (right|prohibition|obligation)+
27 CloseBrace
28 ;
29 ...

Listing 2: Excerpt of Jabuti DSL grammar.

3.2 Language Server Protocol

For the implementation of the editor’s functionalities
(code completion, error validation, outline definition,
among others), we have selected the Language Server
Protocol (LSP) (Microsoft, 2023), a client-server pro-
tocol developed by Microsoft in 2016. As IDEs sup-
port different languages, LSP emerged as a way to
separate and decouple the functionality of these edi-
tors, allowing the reuse of the implementation in dif-
ferent places.

We take advantage of three LSP features: versa-
tility, interoperability, and bidirectional communica-
tion (Bünder, 2019). Firstly, versatility allows the
server to be implemented in any language. Sec-
ondly, interoperability allows a single implementa-
tion to serve several editors/IDEs as long as they sup-

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

198

port the protocol. Finally, bidirectional communica-
tion enables the editor/IDE to send information to the
server, and vice versa. From the LSP specification, it
is worth highlighting the following features:

1. Code completion: identifies the cursor position
and suggests what the next typed token would be.

2. Goto definition: when selecting a keyword, it al-
lows navigation to the origin of this keyword, al-
lowing the user to easily obtain its definition.

3. Symbol definition: enables the development of a
tree for quick access to method and variable defi-
nitions in the editor.

4. Hover: add descriptive text to language keywords.

As a protocol, LSP only defines a specification of how
communication between both the client and the server
should occur, but without providing an implementa-
tion. It can be done in any language that includes
the libraries needed. As Jabuti CE was developed
in TypeScript, we chose vscode-languageserver, a li-
brary provided by Microsoft (Microsoft, 2023) that
is also written in TypeScript. This library provides a
simplified API that facilitates server implementation
with methods such as onCompletion, onHover, on-
DocumentSymbol and onDefinition. These methods
are abstractions that represent the features defined in
the protocol.

3.3 Plugin

The communication between VSCode and the LSP
server requires the development of a plugin. This plu-
gin can be developed with Yeoman (Yeoman, 2023)
(a tool for scaffolding apps), which creates a minimal
tool structure. In addition to communication with the
server, Yeoman also adds some extra features to the
language, such as syntax highlighting.

For communication with the LSP server, we need
to define the connection parameters. As this server
is also written in TypeScript, it will be transpiled
into Javascript and packaged together with the ex-
tension. This structure means that we do not need a
physical server to host the application and we do not
need to develop monitoring systems for this server.
To define syntax highlighting, it is possible to use
TextMate (Macromates, 2023), an editor for macOS,
whose grammar is recognised by VSCode.

3.4 Deploy

To publish Jabuti CE on the VSCode marketplace,
three steps are required: transpilation, compression,
and publication.

The transpilation step is necessary because both
the extension and the LSP server are written in Type-
Script, and both need to be converted to JavaScript
code. Although this task can be performed through
TypeScript itself, this action is not recommended
since the size of the final tool tends to be very large.
The Microsoft recommendation is to use a packaging
tool such as esbuild or webpack. We selected esbuild
as it requires fewer configurations. We detected that
when Jabuti CE was compiled with pure TypeScript,
the final size of the tool was approximately 15MB. On
the contrary, esbuild produces a tool of approximately
800KB only.

Compression is the process of packing the gen-
erated files in the format used by VSCode, which is
’.vsix’. This can be done through the Visual Studio
Code Extension Manager (vsce), a command line in-
terface for compressing, managing, and publishing
extensions. With the compression process, the ex-
tension for Jabuti CE was even smaller, 300KB only.
Finally, the publication takes place manually by in-
stalling the generated .vsix file, or from the vsce cli, or
through the administrative panel available in Azure,
where the marketplace is hosted3.

3.5 Editor

Figure 3 shows some of the features of the tool:

1. Label 1 shows the contextual menu that is ac-
cessed by right-clicking on the .jabuti file and in
it we can see the two options for transformation:
Transform to Ethereum (Solidity) and Transform
to Hyperledger (Golang).

2. Label 2 shows the left side menu called Outline
that has a tree with the attributes and functions
present in the contract under edition.

3. Label 3 highlights the description provided to
users when the mouse hovers over a keyword such
as contract, variable, or date. In addition to the
description, if the word represents a block or func-
tion, an implementation example is displayed, or
if the word represents an attribute, the possible
values are displayed.

4. Label 4 shows how the errors are displayed in the
editor. In this concrete example, we can see how

3The published extension can be downloaded from
https://marketplace.visualstudio.com/items?itemName=
gca-unijui.jabuti-language

Jabuti CE: A Tool for Specifying Smart Contracts in the Domain of Enterprise Application Integration

199

Figure 3: Jabuti CE environment.

rolePlayer is underlined by a red line. Note also
that a hover over the error displays a message de-
scribing the possible cause.

5. Label 5 shows an example of the completion sug-
gestions that are activated when the user presses
the CTRL and Space keys simultaneously.

In addition to the features mentioned above, Jabuti CE
provides other ones:

1. When the user presses CTRL and space to start a
new contract in an empty file, two different sug-
gestions are given to complete the description of
the contract: one of them contains a simplified
version of a Jabuti DSL contract and the other
contains a more complete version.

2. If a semantic mistake is made, such as adding two
beginDate attributes, an error is displayed, under-
lining the additional attribute in red.

3.6 Transformation

Transformation involves the translation of the Jabuti
DSL code to the target language (e.g. Solidity,
Node.JS, Go, among others). Initially, we will pro-
vide the transformation option for both the Ethereum
blockchain through Solidity, as well as Hyperledger
with Golang. The first step is to map the DSL data
structures to the target language: variables, dates, and
parties will be mapped to private attributes, clauses
will be mapped to methods, and the terms of these
clauses will be mapped to conditions in the respective
methods.

Next, we execute the following steps: (i) develop-
ment of the template for the target language as shown
in Listing 3; (ii) conversion of the selected contract
into an Abstract Syntax Tree (AST); (iii) and exe-
cution of the conversion method so that the AST is
submitted to the template, replacing the template vari-
ables with the AST values. This action occurs through
ejs (Ejs, 2023), a template engine for Javascript.

The implementation of the transformation is still
in progress; however, a first version is already avail-
able in the extension. To access it, right-click the
.jabuti file and then click on one of the follow-
ing two options in the contextual menu: Transform
to Ethereum (Solidity) or Transform to Hyperledger
(Golang).

4 RELATED WORK

The works analyzed in this section present DSLs
or methods for representing smart contracts through
more abstract structures. They also provide some
means of transforming these structures into exe-
cutable languages on blockchains such as Solidity.
However, we can observe that there is no work that
meets the specifications aimed at EAI.

iContractML (Hamdaqa et al., 2020),
CML (Wohrer and Zdun, 2020) and SPESC (Chen
et al., 2021; He et al., 2018) are DSLs that provide
support for modelling and writing smart contracts
on multiple blockchain platforms in a high-level and
abstract syntax. iContractML and SPESC propose

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

200

1 export const SOLIDITY_TEMPLATE = ‘// SPDX-License-Identifier: MIT
2 pragma solidity ˆ0.8.0;
3

4 contract <%= contractName %> {
5 // Create the attributes
6 <% variables.forEach(variable => { %>
7 \n\tstring public <%= variable.name %>;
8 <%}) %>
9

10 constructor() {
11 // Initialize the attributes
12 <% variables.forEach((variable, index) => { %>
13 \n\t\t<%= variable.name %> = "<%= variable.value %>";
14 <% }) %>
15 }
16

17 // others implementations
18 }
19 ‘;

Listing 3: Excerpt of Solidity template.

a tool that handles both writing and transforming
for the target blockchain. On the other hand, CML
presents a specification for writing and transforming
contracts.

Marlowe (Lamela Seijas et al., 2020) is a DSL for
specifying financial contracts. Although its language
can be translated to different blockchains, the main
focus is on Cardano. The tool includes a web-based
editor with a rich development environment that al-
lows users to write contracts in Haskell (Haskell,
2023), Blockly (Blockly, 2023) and other languages.

Frantz and Nowostawski (2016) present a study
on the process of converting human-readable infor-
mation, rules, regulations, and laws into machine-
readable code structures. Their work is based on
ADICO (Attributes, Deontic, Aim, Conditions, Or
Else) (Crawford and Ostrom, 1995), a theoretical
model that allows understanding social institutions
and their dynamics by decomposing these concepts
into simple declarations of rules, for example: People
(A) must (D) vote (I) every four years (C), or else they
face a fine (O). The authors also propose model-based
transformation templates written in Scala (Scala,
2023).

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have highlighted the advantages
of using domain-specific languages for writing smart
contracts. A DSL allows to produce platform-
independent code and are accessible to profession-
als from the specific domain with only moderate pro-
gramming skills. We argue that productivity is in-

creased when the programmer is assisted by a pro-
gramming environment that includes a powerful edit-
ing tool. To support our arguments, we have im-
plemented Jabuti CE—an editing tool for specifying
smart contracts for EAI— and released it online to
expose it to public scrutiny. A quick examination will
reveal its salient features; notably, it helps the pro-
grammer to discover errors and suggest solutions. In
addition, it provides predefined snippets, syntax high-
lighting, and code explanation.

Jabuti CE is an ongoing implementation. We
would like to further develop it as an end-to-end
tool capable of both writing and publishing smart
contracts in the EAI context. Next, we will eval-
uate Jabuti CE on writing and transpiling con-
tracts and their integration and execution on different
blockchains. We also plan to conduct an experiment
with users to evaluate the user experience.

The current implementation of Jabuti CE is based
on VSCode and, therefore, requires installation on the
user’s local computer. We are planning an imple-
mentation of a web version that would free the user
from this burden. We would also like to explore the
Monaco editor, the web-enabled editor used by VS-
Code.

ACKNOWLEDGEMENTS

This work was partially supported by the Coordina-
tion for the Brazilian Improvement of Higher Educa-
tion Personnel (CAPES) and the Brazilian National
Council for Scientific and Technological (CNPq)
under the following project grants 309315/2020-
4, 309425/2023-9 and 402915/2023-2 to Rafael Z.

Jabuti CE: A Tool for Specifying Smart Contracts in the Domain of Enterprise Application Integration

201

Frantz. Antonia M. Reina Quintero has been funded
by the following projects: AETHERUS (PID2020-
112540RB-C44), ALBA-US (TED2021-130355B-
C32) AEI/10.13039/501100011033/Unión Europea
NextGenerationEU/PRTR. Carlos Molina has been
funded by UKRI, grant G115169 (CAMB project).
Fabricia Roos-Frantz has been funded by the Re-
search Support Foundation of the State of Rio Grande
do Sul in Brazil (FAPERGS), under grant 19/2551-
0001782-0, and also by the Brazilian National Coun-
cil for Scientific and Technological (CNPq), under
grant 311011/2022-5.

REFERENCES

Blockly (2023). Blockly language. https://developers.
google.com/blockly. Accessed: June 20, 2023.

Bünder, H. (2019). Decoupling language and editor-the
impact of the language server protocol on textual
domain-specific languages. In MODELSWARD, pages
129–140.

Chen, E., Qin, B., Zhu, Y., Song, W., Wang, S., Chu, C.-
C. W., and Yau, S. S. (2021). Spesc-translator: To-
wards automatically smart legal contract conversion
for blockchain-based auction services. IEEE Transac-
tions on Services Computing, 15(5):3061–3076.

Crawford, S. E. S. and Ostrom, E. (1995). A grammar
of institutions. American Political Science Review,
89(03):582–600.

Dornelles, E. F., Parahyba, F., Frantz, R. Z., Roos-Frantz, F.,
Reina-Quintero, A. M., Molina-Jiménez, C., Bocane-
gra, J., and Sawicki, S. (2022). Advances in a DSL
to specify smart contracts for application integration
processes. In Proc. of XXV Ibero-American Conf. on
Software Engineering, pages 46–60. SBC.

Durieux, T., Ferreira, J. F., Abreu, R., and Cruz, P. (2020).
Empirical review of automated analysis tools on
47,587 ethereum smart contracts. In Proc. ACM/IEEE
42nd Int’l Conf. on Software.

Ejs (2023). Embed javascript templates. https://ejs.co/. Ac-
cessed: June 20, 2023.

Frantz, C. K. and Nowostawski, M. (2016). From in-
stitutions to code: Towards automated generation of
smart contracts. In 2016 IEEE 1st International Work-
shops on Foundations and Applications of Self* Sys-
tems (FAS* W), pages 210–215. IEEE.

Hamdaqa, M., Metz, L. A. P., and Qasse, I. (2020). Icon-
tractml: A domain-specific language for modeling and
deploying smart contracts onto multiple blockchain
platforms. In Proceedings of the 12th System Anal-
ysis and Modelling Conference, pages 34–43.

Haskell (2023). Haskell language. https://www.haskell.
org/. Accessed: June 20, 2023.

He, X., Qin, B., Zhu, Y., Chen, X., and Liu, Y. (2018).
Spesc: A specification language for smart contracts.
In 42nd IEEE Annual computer software and appli-

cations conf. (COMPSAC), volume 1, pages 132–137.
IEEE.

Khan, S. N., Loukil, F., Ghedira-Guegan, C., Benkhelifa,
E., and Bani-Hani, A. (2021). Blockchain smart con-
tracts: Applications, challenges, and future trends.
Peer-to-peer Networking and Applications, 14:2901–
2925.

Lamela Seijas, P., Nemish, A., Smith, D., and Thompson,
S. (2020). Marlowe: implementing and analysing fi-
nancial contracts on blockchain. In Financial Cryp-
tography and Data Security (FC’20). Int’l Workshops,
AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kin-
abalu, Malaysia, Feb 14, Revised Selected Papers 24,
pages 496–511. Springer.

Macromates (2023). TextMate Manual - Snippets. Web-
page. Accessed: June 20, 2023.

Microsoft (2023). Language Server Protocol (LSP) Speci-
fication. Website. Accessed on June 15, 2023.

Microsoft (2023). Microsoft/vscode-languageserver-node.
GitHub Repository. Accessed: June 20, 2023.

Parahyba, F., Dornelles, E. F., Roos Frantz, F., Frantz, R. Z.,
Molina Jiménez, C., Reina Quintero, A. M., Bocane-
gra, J., and Sawicki, S. (2022). On the need to use
smart contracts in enterprise application integration.
In CIbSE 2022: XXV Ibero-American Conference on
Software Engineering (2022), pp. 203-217. Sociedade
Brasileira de Computação.

Parr, T. (2023). Antlr: Another tool for language recogni-
tion. Website. Accessed on June 15, 2023.

Scala (2023). Scala language. https://www.scala-lang.org/.
Accessed: June 20, 2023.

Soomro, T. R. and Awan, A. H. (2012). Challenges and
future of enterprise application integration. Interna-
tional Journal of Computer Applications, 42(7):42–
45.

Wohrer, M. and Zdun, U. (2020). From domain-specific
language to code: Smart contracts and the application
of design patterns. IEEE Software, 37(5):37–42.

Yeoman (2023). Yeoman. https://yeoman.io/. Accessed:
June 20, 2023.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

202

