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Abstract: Conditional random fields (CRF) are widely used for sequence labeling such as Named Entity Recognition
(NER) problems. Most CRFs, in Natural Language Processing (NLP) tasks, model the dependencies between
predicted labels without any consideration for the syntactic specificity of the document. Unfortunately, these
approaches are not flexible enough to consider grammatically rich documents like patents. Additionally, the
position and the grammatical class of the words may influence the text’s understanding. Therefore, in this
paper, we introduce SynCRF which considers grammatical information to compute pairwise potentials. Syn-
CRF is applied to TRIZ (Theory of Inventive Problem Solving), which offers a comprehensive set of tools to
analyze and solve problems. TRIZ aims to provide users with inventive solutions given technical contradiction
parameters. SynCRF is applied to mine these parameters from patent documents. Experiments on a labeled
real-world dataset of patents show that SynCRF outperforms state-of-the-art and baseline approaches.

1 INTRODUCTION

Sequence tagging encompasses a large variety of
tasks, e.g., Named Entity Recognition (NER) and
Part-Of-Speech (POS) tagging, to cite a few. Se-
quence tagging is often used in Natural Language
Processing (NLP) and information retrieval.

Named Entity Recognition processes have much
to gain from modeling the relations between predic-
tions. Traditionally, an encoder is used to build a
contextual representation of the tokens in the input
document (Saha et al., 2018). A classification of the
tokens is then performed. Unfortunately, even if en-
coders can capture contextual information of a token,
they fail to encapsulate formal constraints on the pre-
dicted sequence of labels. Conditional Random Fields
(CRF (Lafferty et al., 2001)) are widely used to model
the relations between the predictions, via pairwise po-
tentials, and thus improve the consistency of the pre-
dicted tag sequence.

In this paper, we investigate the potential of an ar-
chitecture combining an encoder and a CRF (i.e. a
Neural Random Field (Peng et al., 2009)) for Named
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Entity Recognition task. Unfortunately, CRFs do not
take into account the grammatical structure of sen-
tences to increase the relevance of the predicted tags
sequence. We propose a new CRF architecture, called
SynCRF, which aims at integrating syntactic informa-
tion in the prediction mechanism. The pairwise po-
tentials are, thus, predicted from the structure of each
sentence.

SynCRF is applied in a TRIZ theory-based prob-
lem (Altshuller, 1984). TRIZ offers a package of
practical techniques, which helps to analyze exist-
ing products and situations, extract root problems, re-
veal potential opportunities for evolution, and gener-
ate new solution concepts in a systematic way. TRIZ
differs from other innovation theories by considering
each problem as a contradiction between two param-
eters. For instance, in the aircraft industry, increas-
ing the volume of the fuselage negatively impacts the
total weight which hampers the lift-off ability. Such
formulation is a typical TRIZ contradiction between
the volume parameter and the weight parameter. The
purpose of this theory of innovation is to build analo-
gies between different domains via contradictions and
inventive principles (Altshuller, 1984) that are general
formulations of solutions (segmentation, prior action,
...). The contradictions between parameters are for-
mulations of problems that are independent of the do-
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main and the inventive principles are formulations of
solutions that also are independent of the domain. In
the case of the volume/weight contradiction of the air-
craft fuselage one can exploit TRIZ inventive princi-
ple 40 (Composite materials), for instance, and pro-
pose to change from an aluminum to a composite-type
fuselage to lighten the structure.

We aim at applying SynCRF to extract these pa-
rameters from patents. Patents are a wealth of in-
formation about inventions but still require experts to
understand the described solutions. To allow the auto-
matic processing of problems within the TRIZ frame-
work, a system must be able to understand the content
of scientific or technical documents. Understanding
a patent in the sense of TRIZ means mining the pa-
rameters of the contradiction(s) that these patents are
solving. The Encoder-LSTM-CRFs are a well-known
and commonly used architecture (Chiu and Nichols,
2016). This architecture aims to add sequentiality to
the encoder representations. However, the purpose of
this paper is different. It aims to model contextual de-
pendencies between the labels by generating pairwise
potentials from syntactic and semantic information.
The contributions of this paper are: (i) a new CRF
structure, that encapsulates two variants SynCRF-pos
and SynCRF-context and takes into account the syn-
tactic information to compute pairwise potentials be-
tween labels; (ii) a TRIZ-based application to bet-
ter understand patents’ contents with TRIZ parameter
mining; (iii) exhaustive experiments on TRIZ param-
eter mining with a manually built real-world dataset.

2 RELATED WORKS

In this section, we review approaches that were pro-
posed to mine information from patents (TRIZ and
not TRIZ-based approaches). We also focus on
Named Entity Recognition applications solved with
the use of both deep learning and Conditional Ran-
dom Fields approaches.

Patents are structured documents with more or
less constant sections such as abstract, description,
claims. Unfortunately, patent wording of sentences
differs from classical documents such as articles due
to the legal nature of patents. Prior art search is a re-
current task in the field as it it necessary to verify that
a patent is describing an actual invention (Cetintas
and Si, 2012). However, prior art search as imple-
mented in these approaches do not provide informa-
tion for understanding the purpose of the invention as
they are based on terms frequency in the documents.

CRFs are often used in sequence labeling tasks
like Named Entity Recognition (NER) (Lample et al.,

2016). CRFs are also used in slot filling tasks
(Saha et al., 2018) to build structured knowledge
bases usable for semantic-based information retrieval.
They are exploited in vision applications as well, for
instance, for semantic segmentation (Zheng et al.,
2015).

CRFs model the dependencies between labels and
between input data and labels. Nevertheless, the abil-
ity of deep neural networks to encode information is
higher. Therefore, Neural Random Fields were in-
troduced. A CRF is placed on top of a deep neu-
ral network to take advantage of the high-quality ex-
tracted features (Peng et al., 2009). For text mining,
CRF are usually used with recurrent networks: Long
Short Term Memory (LSTM) networks or Gated Re-
current Unit (GRU) networks (Cho et al., ). Recur-
rent networks (Hochreiter and Schmidhuber, 1997)
are known to be efficient for language processing as
they allow information to be transmitted throughout
the encoding of a sequence via a memory vector.

With the arrival of pre-trained encoders, which
perform better than recurrent neural networks in NLP
tasks, the trend (Li et al., 2020) is to associate a pre-
trained encoder (BERT (Devlin et al., 2018), XLNet
(Yang et al., 2019), etc.) with a CRF. An architecture
with a pre-trained encoder and a CRF is chosen in this
paper. Pre-trained encoders perform better in down-
stream tasks with little labeled data as is the case for
the TRIZ used case detailed in Section 5.

A limitation of the classical CRF is the lack of
flexibility on the pairwise potentials. The transition
matrix is unique regardless of the grammatical struc-
ture of the sequence under study. Approaches were
developed in vision applications to generate pair-
wise potentials from Convolutional Neural Networks
(Vemulapalli et al., 2016) but no approaches tackled
the integration of syntactic information in pairwise
potentials for text mining. Nevertheless, for a NER
task, the position and the grammatical class of the
words have an influence on the labels.

3 CONDITIONAL RANDOM
FIELD

A Conditional Random Field (CRF) (Lafferty et al.,
2001) is a statistical model dedicated to the modeling
of dependencies between neighboring variables (Chu
et al., 2016). In classification tasks, the CRF model
computes the conditional probabilities P(Yk|X) with
Yk the labels and X the observations. A linear chain
CRF is used in this study. Each label depends on the
current observation as well as on the preceding and
the following labels (Markov property).
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Assuming Y and X corresponding respectively to
a sequence of l labels and their corresponding se-
quence of l observations. The computation of P(Y |X)
is computed from each label and observation of the
sequence (considering that the labels are predicted in-
dependently of one another at first) with the following
formula:

P(Y |X) =
l−1

∏
k=0

P(Yk|Xk)

=
l−1

∏
k=0

exp(U(Xk,Yk))

Z(Xk)

=
exp(∑l−1

k=0 U(Xk,Yk)

Z(X)

(1)

with Z(X), the partition function, i.e. the normal-
ization factor computed from the sum of all possible
numerators (for each possible labels sequence) and
U(Xk,Yk) the unary potential referring to the likeli-
hood that label Yk is assigned given an observation Xk.
P(Yk|Xk) is modeled with a normalized exponential as
in a classical softmax output of a neural network.

If the dependency between two successive labels
kth and k+1th is established, then a linking term could
be added to P(Y |X) and therefore could be written as
follows:

P(Y |X) =
l−1

∏
k=0

exp(U(Xk,Yk))exp(T (Yk+1,Yk))

Z(Xk)

=
exp(∑l−1

k=0 U(Xk,Yk)+∑
l−2
k=0 T (Yk−1,Yk))

Z(X)
(2)

with T (Yk−1,Yk) the transition potential between label
Yk−1 and label Yk which is called the pairwise poten-
tial. The pairwise potential T (Yk−1,Yk) refers to the
likelihood of Yk label being followed by Yk+1. Pair-
wise potentials are usually stored in a matrix called
transition matrix. When the CRF is associated to a
neural encoder (Saha et al., 2018), the unary poten-
tials U(Xk,Yk) are given by the last layer of the neural
encoder. The purpose is then find a label sequence Y
which maximizes P(Y |X) with respect to the parame-
ters of the neural network and to the pairwise poten-
tials which are learnt as well.

4 SynCRF: SYNTACTIC
CONDITIONAL RANDOM
FIELD

We tackle the problem of the independence of the
pairwise potentials from the grammatical structure.

Our approach, SynCRF, is proposed in several mecha-
nisms allowing us to adapt the transition matrix to the
syntactic structure of the studied sentences. We intro-
duce two different architectures. The first one, called
SynCRF-pos, is based on the parts of speech and the
other one, SynCRF-context, takes into account all the
information extracted by the encoder to compute pair-
wise potentials.

4.1 SynCRF-pos: Part of Speech-Based
Syntactic CRF

SynCRF-pos, shown in Fig.1, consists of two main
parts: the encoding of parts of speech and the gen-
eration of pairwise potentials contained in the CRF’s
transition matrix. An encoding matrix E is introduced
to make the transition between parts of speech and
a numerical vector containing the information on the
syntactic structure of the sentence. Sequences of five
parts of speech are encoded (to simplify Fig.1, only
three tags are considered). We, therefore, make the
assumption that the label of a token is only influ-
enced by the two preceding and following tokens. The
one-hot-vectors, associated with the part of speech
tags, allow selecting in E the parameters contained
in the encoded vector Vemb. A Hadamard product is
performed between the tags’ one-hot matrix (one-hot
vector for each of the POS tags concatenated rela-
tively to their position in the tag sequence (0,1,2,3,4)
and the encoding matrix E):

Vemb = ∑
j
∑

i
E�δiδ

T
j=tagi

(3)

with i the position in the tag sequence (from 0 to 2
if three tags are used for instance), j the index of the
POS class (u, v, w in Fig. 1) and tagi the POS class of
ith tag. Vemb is then upsampled via a fully-connected
layer of neurons to give V ′emb:

V ′emb = FC(Vemb). (4)

V ′emb is then used as an input for a neural network
allowing the generation of these pairwise potentials.
Several types of neural networks are implemented and
compared in this approach: a fully-connected 2-layer
network and two recurrent GRU-type networks. The
fully-connected network directly integrates the syn-
tactic information contained in the encoded vector
into a new transition matrix. On the other hand, the
goal of the recurrent networks is to integrate a longer-
term memory of the CRF and to emulate potentials
that are not only dependent on the previous label but
also on the preceding ones. Two configurations of re-
current networks are implemented. The first one aims
at giving more weight to the last label than to the pre-
vious ones. V ′emb is thus aggregated to the memory

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

892



Input text

... enable a better ...

 Cu    Cv    Cw

POS-Tagger

Encoding matrix
E

Tags 
positions

E0u

E1v

E2w

Num. POS tag

E0u

E1v

E2w

FC
Layer

Embedded POS vector  
V'emb

POS encoding

Vemb

MLP / RNN
Pairwise 

potentials

Figure 1: SynCRF-pos architecture for POS-adapted pairwise potentials generation.

vector (i.e. the hidden units, Vhidden) before generat-
ing the transition potentials using a fully-connected
layer. The memory vector is then updated using V ′emb:

Pi, j = FC(Vhidden,V ′emb) (5)

Vhidden = GRUupdate(V ′emb) (6)

with Pi, j the pairwise potentials, FC a fully-connected
neuron layer, Vhidden the GRU’s hidden units and
GRUupdate the hidden units’ update function.

In the second configuration, the memory vector is
first updated with V ′emb and then the pairwise poten-
tials are computed from the new memory vector as
follows:

Vhidden = GRUupdate(V ′emb) (7)
Pi, j = FC(Vhidden). (8)

The part-of-speech tags are generated using the
python library spacy. Having an extreme quality on
the part of speech does not seem to be a determining
factor in the functioning of the method. The emphasis
is therefore placed on the speed of tagging.

4.2 SynCRF-context: Context-Based
Syntactic CRF

The use of a CRF on top of an encoder enables taking
advantage of the contextual representations of tokens
at the output of the encoder (Fig.2). Masked language
models, due to their training, integrate rich syntac-
tic information. It is, therefore, worth investigating
generating the pairwise potentials of the Conditional
Random Field from these contextual representations
instead of using a part of speech tagging process. Ad-
ditionally, parts of speech tagging process adds com-
putational complexity. A neural network computes
the potentials given the representations. Three dif-
ferent configurations are implemented for this neural
network. A 1-layer and 2-layers fully connected neu-
ral networks are tested along with a recurrent neural
network. A 1-cell GRU network is used. The pur-
pose of this last configuration is building a direct link
between the generated pairwise potentials to improve

Figure 2: SynCRF-context architecture.

consistency in label sequences. The token represen-
tation Vrep is fed into fully connected layer FC0 to
compute V ′rep (Eq.9). V ′rep along with the recurrent
network hidden units Vhidden are then fed into a fully
connected layer FC1 to give the output pairwise po-
tentials (Eq.10). The hidden units are finally updated
using the input representation Vrep (Eq.11). The mem-
ory cell is therefore used to keep track of the input
representations sequence while the feed-forward net-
works FC0 and FC1 are extracting the relevant fea-
tures to predict the pairwise potentials as follows:

V ′rep = FC0(Vrep) (9)

Pi, j = FC1(V ′rep,Vhidden) (10)

Vhidden = GRUupdate(Vrep). (11)

The generation of ”contextual” potentials is thus
made possible by adding a minimum of parameters
while remaining end-to-end trainable.

SynCRF: Syntax-Based Conditional Random Field for TRIZ Parameter Minings
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5 TRIZ PARAMETER MINING

5.1 TRIZ Theory: Basics

In TRIZ theory, problems are formulated as a contra-
diction between two parameters to ease their resolu-
tion and enhance the chances of finding an innova-
tive solution. These two parameters are called eval-
uation parameters. A contradiction in the sense of
TRIZ means that when one of the evaluation param-
eters is improved through an action on another pa-
rameter of the system (action parameter), the other
evaluation parameter is degraded. For example, in
patent US6938300B2: When the stroller 1 moves over
a lawn or uneven road surfaces, it is necessary for
the stroller wheels to have a large diameter so as to
ensure the comfort of the baby. However, if each of
the front wheel assemblies 11 has two large-diameter
front wheels 13, the total volume and weight of the
stroller 1 will increase significantly so that it is diffi-
cult to push the stroller 1. By increasing the diam-
eter of the wheels the comfort is improved but the
ability to push the stroller is degraded and vice-versa.
Comfort and ability to push are Evaluation Parame-
ters (EP). The wheels diameter is an Action Parameter
(AP).

In TRIZ theory, the resolution of problems based
on contradictions is achieved through the ”TRIZ ma-
trix”. This matrix is designed to link the contradic-
tions and the solutions. The Trizian solutions are
the 40 inventive principles defined by Altshuller (Alt-
shuller, 1984) (Segmentation, Periodic Action, Inter-
mediary, etc...). This matrix has as many boxes as
there are possible contradictions between the TRIZ
parameters (39 parameters, so 39*39 boxes). These
39 parameters are, in theory, able to describe any
problem from any domain. This matrix, therefore, ap-
plies to all known technical domains. In each box are
indicated the inventive principles to be used to solve
this type of contradiction. For example, for a contra-
diction between the parameters ”Volume of a moving
object” and ”Weight of a moving object”, the inven-
tive principles proposed by this matrix are (”Taking
out”, ”Copying”, ”Pneumatics and hydraulics” and
”Composites”). In the example of the aircraft, pro-
vided in the introduction, the ”Composites” principle
could indeed be applied to solve the contradiction be-
tween the weight and the volume.

Despite the inherent variations in sentence word-
ing due to the variety of patent drafters, these parame-
ters (EP or AP) are, nevertheless, regularly located in
sentences with similar syntactic structures. For exam-
ple: ”The use of tools or machines to install these bar-
riers increases the complexity and cost of the installa-

tion process beyond that”: nominal group (AP) + verb
+ nominal group (EP). It is, therefore, interesting to
study the contribution of syntactic information in the
TRIZ parameter mining process. At the same time,
the parameters are regularly formed by several words
(such as ”cost of the installation process”). It is im-
portant to create a dependency between the predicted
labels. These assumption incites to integrate syntactic
information into a CRF to better model the dependen-
cies between labels (pairwise potentials) through our
SynCRF approach.

5.2 Dataset and Training

Pre-trained encoders are designed to work well in do-
mains suffering from data deficiency. TRIZ domain
and patent analysis are especially concerned by the
lack of labeled data as the labeling process is tedious
and can only be performed by experts. A dataset of
1100 labeled patents was created and made available1.
It contains about 9000 labeled TRIZ parameters from
abstracts, state-of-the-art, and claims parts of patents.
Patents come from the United States Patent Trade-
mark Office (USPTO). They were selected to cover
all known technical domains (using CPC-IPC classi-
fication). An example of a labeled sentence is given
below:

”Thus, the size of the barrier must be closely
matched to the size of the orifice to ensure that there
are no gaps between the carrier and the panel mem-
ber.”
The size of the barrier is labeled as an action param-
eter (AP) while no gaps between the carrier and the
panel member is labeled as an evaluation parameter
(EP). The dataset was annotated by four engineers
from industry field. In the annotation instructions, the
parameters were defined as follows: an evaluation pa-
rameter is a parameter that measures the performance
of a system, an action parameter is a parameter that
can be modified and that influences one or more eval-
uation parameters. Verbs referring to changes in pa-
rameters (increase, decrease, etc.) are not included in
the annotations. Two types of EP, EP+ and EP-, are
defined to reflect either the positive or negative evolu-
tion of a parameter, or its positive or negative aspect
(for example, a cost will fundamentally be a negative
parameter). However, in this work, we do not con-
sider the evolution of evaluation parameters and EP+
and EP- are aggregated in a single class EP. EPs are
most often nominal groups (volume, power output,
etc.) but verbal expressions can be annotated if no
noun or nominal group allows to correctly describe

1The dataset can be downloaded here.
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the parameter. For example, ”prevent fluid from en-
tering the engine” will be annotated as it refers to seal-
ing without the possibility of annotating a nominal
group referring more directly to ”sealing”. SynCRF
is trained using gradient back-propagation. The ad-
ditional fully connected layers on top of the encoder
and the CRF are fully trained on the patent dataset
while the pre-trained encoder is fine-tuned with a de-
creasing learning rate to avoid overfitting. The base
learning rate is set to 3e-5 for the encoder and 1e-3 for
the decoding part (Conditional Random Field or Fully
connected layer for the Baseline model. The decoder
has a higher learning rate as it has to be learned from
scratch. A step learning rate decay is implemented.
After the first epoch, the encoder learning rate is de-
creased to 6e-6 and then 3e-6 after the second epoch.
Adam optimizer is used with a batch size of 16. The
training is performed on an RTX2080Ti2.

6 EXPERIMENTS AND RESULTS

Classification metrics are used to evaluate the models
(Precision, Recall, F1-score). The accuracy is con-
sidered as not relevant to compare the models for this
task. 4-fold cross-validation is performed.

Berdyugina et al. (Berdyugina and Cavallucci,
2020) is the only state-of-the-art approach to tackle
parameter mining. This approach is based on a cause-
effect framework. As the Action Parameters can in-
fluence the Evaluation Parameters, they are seen as
causes of a change in an EP. The EPs are, there-
fore, seen as effects. It was trained on a cause-effect
dataset. To be able to compare with models using
our data and measure the impact of our new syn-
tactic CRF we, therefore, introduce XLNet. XLNet
(Yang et al., 2019) pre-trained encoders is used in
SynCRF. We add a simple classification layer with a
fully-connected layer on top of the encoders to mine
parameters.

SynCRF is a neural random field (neural encoder
with CRF). Thus we also consider neural random
fields to have a fairer comparison with SynCRF. A
CRF (Lafferty et al., 2001) is placed on top of both
of these neural encoders to build XLNet-CRF (Chai
et al., 2022).

As the extraction of TRIZ parameters is seen as
a Named Entity Recognition task with a BIO (Begin-
ning, Inside, Outside) (Ramshaw and Marcus, 1999)
label policy, several transitions are forbidden. In the
case of EP and AP for TRIZ, it is, for instance, im-
possible to go from an evaluation parameter EP-I (In-

2The code to reproduce the results can be downloaded
here.

terior of EP) to an action parameter AP-I (Interior)
since the action parameter should start with a label B
(Begin). Constraints can be manually applied to for-
bid these transitions. The potentials related to the for-
bidden transitions can manually be set to values lower
than 0 in the log space which correspond to zero tran-
sition probabilities. These transitions will, thus, never
appear in the predicted label sequences. To highlight
the impact of the transition constraints, we introduce
a baseline approach which is basically XLNet-CRF
with the constraints called XLNet-CRF-cs.

Table 1 contains the results associated with Syn-
CRF based on XLNet encoding. The SynCRF pre-
fix indicates the newly developed CRF architecture.
SynCRF-pos relates to the models using parts of
speech (shown on Figure 1). mem and mem-o refer
to the variation on the recurrent models described in
4.1. mem is the model described with Eq. 5 and 6
while mem-o refers to Eq. 7 and 8. SynCRF-context
relates to the models using token contextual represen-
tations to generate pairwise potentials (see Figure 2).
The number behind context indicates which configu-
ration described in 4.2 is used. SynCRF-context-mem
relates to the SynCRF-context variant with the mem-
ory cell. The cs suffix indicates that probabilities of
forbidden transitions are manually set to 0.

Table 2 compares the best SynCRF configuration
versus the state of the art and baselines approaches.

6.1 SynCRF-pos Results

E and A suffixes in the metrics in Table 1 refer to
Evaluation Parameters (EP) and to Action Parame-
ters (AP). We can see that adding constraints on the
transitions allows to slightly decrease the loss (from
1% to 2% for SynCRF-pos-mem). It also improves
precision and recall by about 1% for EPs and 3% for
APs. The addition of constraints to SynCRF thus al-
lows constant but relatively limited improvements in
the results.

Concerning the architecture, we highlight the rele-
vance of adding temporal information on the previous
pairwise potentials with a recurrent network. Indeed,
we observe a decrease of about 20% in the loss be-
tween the non-recurrent SynCRF-pos models and the
recurrent SynCRF-pos-mem models. On the metrics,
we observe an increase in precision but a decrease
in the recall, which keeps the F1 score at the same
level. As precision is the most important metric in our
case to avoid undermining bad contradictions the best
SynCRF-pos model seems to be SynCRF-pos-mem-
cs.
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Table 1: SynCRF results with XLNet encoding.
Model Loss TPE PrecE Rec.E F1E Supp.E TPA PrecA Rec.A F1A Supp.A
SynCRF-pos 0.159 4182 50.6 47.6 49.0 8789 424 37.9 25.0 29.9 1692
SynCRF-pos-cs 0.157 4049 50.9 46.1 48.4 8789 410 42.1 24.3 30.4 1692
SynCRF-pos-mem 0.139 4024 51.5 45.9 48.4 8789 319 37.3 18.9 24.9 1692
SynCRF-pos-mem-cs 0.134 4071 51.3 46.3 48.7 8789 369 38.9 21.8 27.8 1692
SynCRF-pos-mem-o 0.291 1045 13.1 11.5 12.2 8789 85 9.2 5.0 6.5 1692
SynCRF-pos-mem-o-cs 0.134 4099 52.8 46.6 49.5 8789 364 39.9 21.5 27.8 1692
SynCRF-context0 0.128 4170 53.2 47.4 50.2 8789 383 49.1 22.6 30.8 1692
SynCRF-context1 0.122 4180 53.4 47.6 50.3 8789 378 43.8 22.4 29.5 1692
SynCRF-context-mem 0.111 4188 52.6 47.7 50.0 8789 407 43.7 24.1 31.0 1692

Table 2: Comparison of SynCRF with the state of the art.
Model Loss TPE PrecE Rec.E F1E Supp.E TPA PrecA Rec.A F1A Supp.A
BERT(Devlin et al., 2018) 0.423 3769 31.6 43.3 36.5 8717 210 18.5 12.7 14.8 1651
BERT-CRF(Sun et al., 2022) 0.393 3876 37.8 44.5 40.9 8717 284 26.7 17.2 20.6 1651
BERT-CRF-cs 0.137 3939 48.5 45.2 46.8 8717 286 45.1 17.3 24.7 1651
XLNet(Yang et al., 2019) 0.399 4148 38.0 47.2 42.1 8789 318 26.1 18.8 21.7 1692
XLNet-CRF(Chai et al., 2022) 0.348 4222 43.7 48.1 45.8 8789 315 31.2 18.6 23.2 1692
XLNet-CRF-cs 0.140 3819 48.7 43.6 45.9 8789 264 42.3 15.6 21.6 1692
(Berdyugina and Cavallucci, 2020) - 1887 11.0 21.5 14.6 8770 479 2.5 28.9 4.5 1656
XLNet-SynCRF 0.111 4188 52.6 47.7 50.0 8789 407 43.7 24.1 31.0 1692

6.2 SynCRF-context Results

Using the richer tokens’ representations of the en-
coder as a source for the syntactic information shows,
compared to the explicit syntactic information-based
models (SynCRF-pos), a significant improvement in
the results (Table 1). The loss decreases by about
10% between the best SynCRF-pos model and the
best SynCRF-context model. The metrics are also
positively impacted. The accuracy increases by 1%
with XLNet for the EPs and by about 14% for the
APs. The recall is relatively constant so it leads to an
improvement in the F1 score.

The variant with the memory cell appears to be
the best model in terms of loss and AP metrics while
its performance on EP is as consistent as SynCRF-
context0 and SynCRF-context1. SynCRF-context
approaches also show globally better results than
SynCRF-pos in terms of loss and metrics. This syn-
tactic information also minimizes the impact of ar-
bitrary constraints on certain transitions as these are
learned by the network that generates the pairwise
potentials. They outperform all constrained models
without any external action on the pairwise potentials.

6.3 Comparison with the State of the
Art

Table 2 compares SynCRF-context-mem, which is the
best configuration of SynCRF, with the state-of-the-
art approaches and baselines introduced. The contri-
bution of a traditional CRF (XLNet-CRF) in the ex-
traction of TRIZ parameters is visible in the results
with a decrease of about 10% of the loss and of 4-
5% of the F1-score for EP and AP compared to the
encoders alone.

The addition of constraints on forbidden transi-

tions (XLNet-CRF-cs) has a strong positive impact
on the loss value compared to XLNet-CRF models (-
60%) but the impact on the metrics is not constant
depending on the encoder and the parameters’ type.
The precision is the only metric that is always im-
proved by 5 to 10% with the additional constraints
on the CRF. We, therefore, highlight that the inter-
est in a traditional CRF is felt above all when one
is aware of certain forbidden transitions which can
be managed by imposing the values of the associated
pairwise potentials. This impact is also much higher
on a classical CRF than on our SynCRF. Berdyug-
ina et al. (Berdyugina and Cavallucci, 2020) shows
relatively weak performance compared to other mod-
els. The cause-effects framework does seem to fit well
the parameters because the recall is relatively high. It
shows, for instance, the best recall for APs but the
precision is extremely low so it is clear that there are
a lot of false positives with this methodology and we
cannot rely on it to extract contradiction parameters.

SynCRF largely outperforms all these approaches.
Indeed, it shows consistent performance with both en-
coders. The loss is three times slower than encoders
only and encoder+CRF architectures. The improve-
ment on the metrics is massive especially for APs with
a 25% improvement on the F1 score compared to the
best baseline but also for APs with a 7% improvement
on the F1 score. The precision is the most improved
metric for EPs which is exactly what we are looking
for. Thus, we demonstrate that adding syntactic in-
formation to generate pairwise potentials in a Con-
ditional Random Field is very valuable, especially in
tasks where labels are strongly linked to syntax like
in TRIZ contradiction modeling.
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7 CONCLUSION

In this paper, we present an approach called SynCRF
that allows to mine TRIZ parameters from patents.
This approach is part of a solved contradiction min-
ing process whose purpose is a fine-grained under-
standing of the inventions described in patents. Syn-
CRF is built with a deep neural encoder and a Condi-
tional Random Field. It relies on the syntactic struc-
ture of sentences to estimate pairwise potentials and
improve consistency in the predicted label sequences.
SynCRF shows solid improvements over the state of
the art with absolute improvements of 3 to 5% for all
metrics over the best baseline (XLNet-CRF-cs). It is
also highlighted that SynCRF learns more easily the
forbidden transitions and allows for example to im-
prove the precision by more than 20% compared to
the best baseline without constraints on the transitions
(XLNet-CRF).
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