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Abstract:  One of the main reasons for cancer-related fatalities worldwide is lung cancer. Early diagnosis is essential 
for enhancing patient outcomes and lowering mortality rates. Deep learning-based approaches have recently 
demonstrated promising outcomes in medical image analysis applications, such as lung cancer identification. 
In order to improve lung cancer detection, this research suggests a unique method that combines a dual-kernel 
convolutional neural network (DKC) with dual-feature fusion using the Histogram of oriented gradients 
(HOG) and local binary patterns (LBP). Convolutional neural networks are good at extracting and detecting 
features. CNN features are built using low-level features from the first convolution layer, which might only 
partially capture some local features and lead to the loss of some crucial details like edges and contours. HOG 
is quite good at describing the shape of objects. LBP can record local structure and information about spatial 
texture. The distribution of edge directions or local gradients in intensity can provide a good definition of an 
object's shape and local appearance. The lung image is loaded with bone, air, blood, water and other 
substances and appears noisy in the lung image. As a result, in this research, we favor the HOG and LBP 
feature fusion for lung cancer detection. 

1 INTRODUCTION 

The prognosis of patients who have lung cancer can 
be significantly improved by early identification, 
which is a primary global health concern. The manual 
analysis of medical pictures used in traditional lung 
cancer screening procedures can be time-consuming 
and prone to human error. Therefore, it is crucial to 
create automated and reliable lung cancer detection 
technologies. In recent times, the convergence of 
computer vision and medical imaging has become a 
promising frontier in the pursuit of diagnostic tools 
that are both more accurate and efficient(Han et al., 
2019; Liang et al., 2023). Within this realm, the 
amalgamation of dual kernel techniques, along with 
the integration of various features like Histogram of 
Oriented Gradients (HOG) and Local Binary Patterns 
(LBP), has demonstrated significant promise in 
elevating the sensitivity and specificity of systems 
designed for detecting lung cancer. In this study, we 
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introduce a dual-kernel CNN-based method for 
improving lung cancer detection by combining HOG 
and LBP characteristics.  

Cancer is characterized by the uncontrolled 
growth of cells in the body, with lung cancer 
specifically involving the formation of malignant 
cells within the lungs. Especially in developing 
nations, it stands out as the most prevalent cancer 
among both men and women and the second most 
frequently diagnosed disease. The main contributors 
to lung cancer are believed to be smoking, exposure 
to air pollution, and insufficient nutrition. Globally, 
the number of lung cancer cases and deaths has 
considerably grown (Bade & Cruz, 2020). Annually, 
the American Cancer Society provides estimates for 
new cancer cases and deaths in the United States by 
compiling the latest data on population-based cancer 
occurrences and outcomes. This information is 
derived from incidence data gathered by central 
cancer registries and mortality data collected by the 
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National Center for Health Statistics. For the year 
2023, it is projected that there will be 1,958,310 new 
cancer cases and 609,820 cancer-related deaths in the 
United States (Siegel, Miller, Wagle, & Jemal, 2023). 
As scientists explore the complexities of medical 
imaging, the need for advanced algorithms capable of 
discerning meaningful patterns from intricate datasets 
has surged(Ma, Wan, Hao, Cai, & Liu, 2023). The 
dual-kernel approach, a robust concept in machine 
learning, entails utilizing multiple kernels to capture 
varied facets of data representation. This paper 
centers on the utilization of the dual-kernel 
methodology within the realm of lung cancer 
detection, seeking to harness the complementary 
information inherent in different feature spaces. 

A critical element of our proposed approach 
revolves around merging two distinct texture 
descriptors, namely HOG and LBP. The HOG 
descriptor excels at capturing the spatial arrangement 
of pixel intensities, emphasizing gradient information 
crucial for delineating structural nuances in medical 
images. Conversely, LBP, renowned for its ability to 
encode local texture patterns, contributes a 
supplementary layer of information, enhancing the 
overall feature representation. 

The rationale behind this fusion strategy is 
grounded in the notion that different imaging 
modalities may highlight diverse aspects of the 
underlying pathology. By combining the strengths of 
HOG and LBP within a dual kernel framework, our 
goal is to construct a more comprehensive and 
discriminative feature set, thereby bolstering the 
robustness of our lung cancer detection system. 

Additionally, the diagnosis is typically made at an 
advanced stage, when there is no longer hope for 
treatment (Soerjomataram et al., 2023). In order to 
enhance overall survival, detect lung cancer in its 
earliest stages while successful therapies are still 
viable, and lower side effects associated with 
systemic treatments, it is vital to develop novel 
diagnostic techniques that boost the accuracy of early 
diagnosis (Shah, Malik, Muhammad, Alourani, & 
Butt, 2023). Examining computed tomography (CT) 
images is one of the crucial steps in the pre-diagnosis 
of lung cancer. The pre-diagnosis process that follows 
X-ray or Computed Tomography (CT) scanning takes 
the radiologist a lot of time and energy. Additionally, 
this scanning procedure calls for a very high level of 
focus and proficiency. In particular, if interpretation 
is heavily reliant on prior expertise, less experienced 
radiologists have extremely variable detection rates, 
which accelerates the speed of false positive detection 
(S. Shen, Han, Aberle, Bui, & Hsu, 2019). 

Low-dose helical Computed Tomography 
(LDCT) (Fang Lei, 2019) (Fedewa et al., 2021) is 
currently being used as a method for lung cancer 
screening (Jonas et al., 2021). To increase the 
diagnostic accuracy for the classification of lung 
cancer detection, several efforts are being made to 
develop computer-assisted diagnosis and detection 
systems. The development of computer-aided 
systems was motivated by the requirement for 
trustworthy and impartial analysis. The purpose of 
this research is to identify whether a picture is 
cancerous or not and to extract features for detection 
(Ani Brown Mary & Dejey, 2018). 

The identification, segmentation, and 
classification of benign and malignant pulmonary 
nodules are the core topics of research on deep 
learning-based lung imaging approaches. To enhance 
the performance of deep learning models, researchers 
mainly concentrate on creating new network 
architectures and loss functions. Review papers on 
deep learning approaches have lately been published 
by a number of research groups (Mandal & Vipparthi, 
2021) (Hamedianfar, Mohamedou, Kangas, & 
Vauhkonen, 2022) (Highamcatherine & 
Highamdesmond, 2019). However, deep learning 
techniques have advanced quickly, and every year, 
numerous new approaches and applications appear. 
This study has topics that earlier studies were unable 
to cover. 

Early detection of lung cancer patients can 
considerably improve their prognosis, which is a 
serious global health concern. Traditional lung cancer 
screening methods include the manual examination of 
medical images, which can be time-consuming and 
prone to human error. Therefore, developing 
automated and trustworthy lung cancer detection 
methods is essential. In this article, we combine the 
HOG and LBP feature fusion mechanisms to present 
a dual-kernel CNN-based technique for enhancing 
lung cancer identification. The following is our 
work's primary contribution:  

1. We propose dual paths CNN with different 
receptive fields (dual-kernel). 

2. We propose that HOG and LBP features are 
fused with the output of our dual-kernel CNN to 
supplement the edge, profile information and 
spatial texture information of lung images. 

3. We fix the problem of class imbalance by using 
data augmentation. 

In the subsequent sections, we delve into the 
technical foundations of our methodology, which 
involves dual kernels and the fusion of multiple 
features. We illustrate its potential through 
experimental results and comparative analyses. As we 
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navigate through the intricacies of this innovative 
approach, it becomes evident that the amalgamation 
of diverse features and dual kernel processing not 
only enhances the accuracy of lung cancer detection 
but also provides a more nuanced understanding of 
the disease at the pixel level. To conclude, this paper 
introduces an innovative advancement in medical 
image analysis by highlighting the effectiveness of a 
dual kernel framework combined with the fusion of 
HOG and LBP features for improved lung cancer 
detection. Our study emphasizes the significance of 
harnessing diverse information sources and 
showcases how advanced machine learning 
techniques have the potential to reshape the landscape 
of early cancer diagnosis. 

The remainder of this paper is organized as follows: 
we describe related works in part 2, the method and 
dataset in part 3, next experiment in part 4, ablation 
study in part 5 and finally conclusion in part 6. 

2 RELATED WORK  

Image processing methods have been studied in the 
past to detect lung cancer (Gurcan et al., 2002). The 
field of medical imaging has recently seen the 
adoption of neural networks and deep learning 
techniques (Fakoor, Ladhak, Nazi, & Huber, 2013) 
(Greenspan, Van Ginneken, & Summers, 2016) (D. 
Shen, Wu, & Suk, 2017). In order to categorize and 
diagnose lung cancer using machine learning and 
neural networks, a number of researchers (Cai et al., 
2015) (Al-Absi, Belhaouari, & Sulaiman, 2014) 
(Gupta & Tiwari, 2014) (Penedo, Carreira, Mosquera, 
& Cabello, 1998) (Taher & Sammouda, 2011) 
(Kuruvilla & Gunavathi, 2014) have made an effort. 
Deep learning methods have not been used frequently 
to identify lung cancer. This is due to the dearth of a 
sizable dataset of medical photographs, particularly 
those of lung cancer. Urine samples are used by 
Shimizu et al. (Shimizu et al., 2016) to identify lung 
cancer. 

When the literature is searched, a sizable number 
of research are discovered that help with the quick 
detection of lung cancer. Wang and colleagues (Wang 
et al., 2018) suggested a new CNN-based 
methodology to categorize cancerous or non-
cancerous tissue. In the suggested model, full-slide 
imaging (WSI) is typically one megapixel. Hence, 
considerably smaller picture patches recovered from 
WSI are frequently employed as input. Each 300x300 
pixel image patch from lung adenocarcinoma (ADC) 
WSIs was employed in this 2018 study. The 
suggested model had a success percentage of 89.8%. 

A deep convolutional neural network-based 
pulmonary nodule identification technique is 
proposed by Deng and Chen (DENG & CHEN, 
2019), which ingeniously includes the deep 
supervision of incomplete CNN layers. (S. Chen, 
Han, Lin, Zhao, & Kong, 2020) uses balanced CNN 
with traditional candidate detection to create a 
computer-aided detection (CADe) strategy. A 
convolutional neural network-based automatic 
pulmonary nodule identification and classification 
system with only four convolutional layers is 
proposed by Masud et al. (Masud et al., 2020). 

The DSC (dice coefficient) for nodule segmenta-
tion is 73.6%, according to Tong et al.'s (Tong, Li, 
Chen, Zhang, & Jiang, 2018) proposed pulmonary 
nodule segmentation algorithm, which is based on an 
upgraded U-Net and adds a residual network.  

(Guo et al., 2014) suggests using a convolution 
neural network to create a lung cancer prediction 
system, which resolves the problems with manual 
cancer prediction. During this procedure, CT scan 
images are gathered and processed using a layer of 
neural network that automatically extracts image 
features. These features are then processed using deep 
learning to predict the features associated with cancer 
using a large volume of images. 

The system the authors developed assists in 
decision-making while analysing the patient's CT scan 
report. With the aid of convolution neural networks, 
lung nodules from CT scan pictures were predicted (El-
Baz et al., 2013). In order to effectively classify lung 
cancer-related features as benign and malignant, LIDC 
IDRI database images are gathered and put into the 
stack encoder (SAE), convolution neural network 
(CNN), and deep neural network (DNN). A technique 
developed by the author provides an accuracy of up to 
84.32%. In our work, we introduce dual-kernel CNN, 
which is used for local and global range dependencies 
because most deep learning networks are limited to 
fixed receptive field size; we also propose a feature 
fusion mechanism, which is HOG and LBP, which are 
used for obtaining more comprehensive lung feature 
and improve the ability to describe and identify lung 
cancer image. 

3 METHODS  

3.1 Data Set and Pre-Processing 

We take advantage of the Kaggle Data Science Bowl 
2017 (KDSB, 2017) (Kaggle, 2017) database of 
medical images. The data set includes 2101 images 
that have been labelled with 0 for patients without 
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cancer and 1 for patients with cancer. Digital Imaging 
and Communications in Medicine, or DICOM, is the 
format used for the image. This dataset has a label of 0 
for 70% of the data and a label of 1 for the remaining 
30%. The CT scan for each patient consists of a 
variable number of images (often 100–400; each image 
is a 2-D axial slice) with a resolution of 512x512 
pixels. Nodules in this dataset are not labelled. 

Due to tumours in the lung tissue, the lung image 
consists of unimportant parts that must be removed 
through segmentation. These unimportant parts 
include bone, air, blood, water, and other substances 
that must be excluded due to their effects on data noise 
and nodule learning. The Hounsfield (HU), a unit of 
radio density and representative of CT scan radio 
densities, is the measurement used in CT scans. 
Diverse researchers employ several segmentation 
techniques to weed out irrelevant data, including 
clustering (Rao, Pereira, & Srinivasan, 2016), k-means 
(Gurcan et al., 2002), watershed (Ronneberger, 
Fischer, & Brox, 2015), and thresholding (Alakwaa et 
al., 2017). In our work, we used thresholding with a 
filter value of -600 to our 2D image.  

Initially, the pixel values of each CT scan are 
transformed into Hounsfield Units (HU), a 
quantitative metric used to express the radio density 
of substances in lung CT images. Notably, the lung, 
bone, blood, kidney, and water exhibit radio density, 
values of -500 HU, 700 HU, 0 HU, 30 HU, and 0 HU 
respectively. Following this conversion, each CT 
scan comprises multiple slices, with pixel values 
corresponding to HU and falling within the range of 
[-1024, 3071]. 

 

Table 1: Typical Radio densities in HU of Various 
Substances in a CT scan (Alakwaa, Nassef, & Badr, 2017). 

Substance Radio density(HU) 
Air -1000 
Lung tissue -500 
Water and Blood 0 
Bone 700 

The subsequent step involves the removal of 
specific tissues, a process commonly addressed by 
scholars through methods described above. In our 
study, we opt for thresholding. To accomplish this, a 
Gaussian filter is applied, and pixel values are 
normalized to fit within the [0, 1] range, utilizing a 
threshold of -600. Figure 2 depicts a CT scan slice of 
a patient alongside its segmentation outcome based 
on thresholding. 

To enable the utilization of the proposed network, 
we convert the HU values of each slice into UINT8, 
signifying that the initial raw data, ranging from [-
1024, 3071], undergo linear transformation to [0, 
255]. Subsequently, the mask employed for lung 
tissue segmentation is multiplied by these values, 
with substances outside the mask set to 170, 
representing a standard tissue luminance. 

We used the thresholding technique to segment 
the CT scan image. The unnecessary parts of the 
lungs with their typical radio densities of different 
parts of the CT scan are shown in Table 1; as shown 
in Table 1, the pixels near -1000 and greater than -320 
are masked. The resampled image with thresholding 
-600 of sample patients with 3D plotting is shown in 
Figure 2.  

 
Figure 1: Histogram of pixel values in HU (Hounsfield) for patient 601 at 180 slices, patient 801 at 70 slices, and patient 1001 
at slice 120, respectively and with corresponding 2D axial. 
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(a)             (b) 

 
(c)             (d) 

Figure 2: 2(a) resample of a 3D image with 600-pixel value HU uncover the bone segment 2(b) resample of sample patient 
including lung bronchioles 2(c) resample sample patient performing mask with air 2(d) resample sample patient with 
bronchioles included as a terminal mask. 

 
Figure 3: Our proposed dual-kernel with dual-feature fusion model. 

3.2 Dual-Kernel CNN 

Because most researchers only use one receptive field 
within a single path, this affects the nearby pixel and 
high-level information during feature extraction. To 
address this challenge, we propose two dual CNNs 
with different receptive field sizes with dual-feature 
fusion mechanisms. We named our paths as path A 
and path B with receptive field sizes 3x3 and 5x5, 
respectively. The output of path A from the fourth 
convolution layer is concatenated with the first 
convolution layer of the second path. Path A has four 
convolution layers and four max pooling layers. 
Three convolution layers and three maximum pooling 
layers are present in the second path. We only paid 
attention to the indicated kernel sizes and two paths. 

In order to study the problems described. Table 2 
contains the model parameters. Furthermore, in the 
proposed model, we incorporate a feature fusion 
7strategy. Figure 3 shows the network of the proposed 
model. 

3.3 Feature Fusion 

The objective of feature extraction is typically to 
portray the raw data as a condensed set of features that 
more accurately captures its essential characteristics 
and attributes. By doing so, we can lower the original 
input's dimensionality and train pattern recognition 
and classification algorithms using the new features 
as input. In our study, we make use of two types of 
features, HOG and LBP, which we will go through 
individually below. 
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3.3.1 Histogram of Gradients (HOG) 
Feature Fusion 

The HOG description highlights an object's structure 
or shape, distinguishing it from the edge features used 
in photo extraction. While edge features focus solely 
on determining if a pixel is part of an edge, HOG goes 
further by providing information on edge direction. 
This involves extracting gradients and orientations 
(magnitude and direction) of edges, dividing the 
entire image into smaller sections, and determining 
gradients and orientation for each region. 
Subsequently, HOG generates separate histograms 
for each zone. The term "Histogram of Oriented 
Gradients" denotes the histograms produced from 
pixel values' gradients and orientations. In a dense 
grid, the HOG approach  (Dalal & Triggs, 2005) 
evaluates locally normalized histograms of image 
gradient origins, effectively characterizing an object's 
form and local appearance through edge distribution 
or local intensity gradients. This method proves 
valuable in discerning lung characteristics, 
particularly in identifying lung cancer, as it provides 
orientation information about the lung boundary and 
texture details in the surrounding area. The lung, 
containing extraneous elements like air, bone, tissue, 
and water in the low-attenuation region, benefits from 
the nuanced information provided by the HOG 
feature extraction approach. 

The HOG feature extraction method (Dalal & 
Triggs, 2005) evaluates locally normalized 
histograms of picture gradient origins in a dense grid. 
Edge distribution or local intensity gradients can 
efficiently describe an object's form and local 
appearance. The lung is filled with extraneous 
components, including air, bone, tissue, and water 
and appears in a low-attenuation region. Therefore, 
the only information offered is orientation 
information of the lung boundary and texture 
information of the surrounding area. Therefore, in this 
study, we favor the HOG characteristic for 
identifying lung cancer. We show a sample image 
with HOG feature fusion in Figure 4. 
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Figure 4: Sample of Lung image by LBP feature with its Histogram. 
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Figure 5: A sample lung image with HOG feature. 

3.3.2 Local Binary Feature (LBP) 

In biomedical image analysis, two-dimensional 
texture analysis is incredibly crucial. A practical and 
multiresolution method for processing a grayscale 
image is LBP (Ojala, Pietikäinen, & Harwood, 1996). 
It is a rotation-invariant texture descriptor built using 
nonparametric sample discrimination and local 
binary patterns. There are two different sorts of 
distinguishing information for the lung imaging sign: 
(1) edge orientation and grayscale gradient 
information and (2) backdrop texture. The edge 
information of the lung is only auxiliary and generic 
for class differentiation because the lung itself is 
packed with extraneous components like air, bone, 
tissue, water, and other substances. The background 
information of a lung cancer imaging sign is crucial 
for its recognition, making the LBP helpful texture for 
lung cancer diagnosis. 
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where cx  and cy are the coordinates of the center 
pixel, p are circular sampling points, P is the number 
of sampling points or neighborhood pixels, pg is the 

grayscale value of p, cg is the center pixel, and s or 
sign is threshold function. For classification purposes, 
the LBP values are represented as a histogram, as we 
show in Figure 5.  

A variety of applications, including face 
recognition (Ahonen, Hadid, & Pietikainen, 2006) 

and medical picture analysis (Tian, Fu, & Feng, 
2008), have made extensive use of the LBP (Ojala et 
al., 1996), a potent tool for characterizing texture 
properties. The first LBP operator which was first 
presented in (Ojala et al., 1996) by Ojala et al. By 
comparing the points of, for instance, 3×3 
neighboring pixels with respect to the value of the 
central pixel, LBP is a straightforward approach that 
creates binary codes. If the neighboring pixel's value 
is less than the center pixel's, it produces the binary 
code 0. If not, it produces the binary code 1. The LBP 
code is created by multiplying the binary codes by the 
respective weights and adding the results. This value 
is determined using Eq. (1) as follows: 
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Table 2: The parameter of our multi-kernel model. 

Path A 

Layers w. size/
#weight Activation Input 

Conv 3×3/32 ReLu 128×128×1 
Max pool 2×2  32×126×126 
Conv 3×3/32 ReLu 32×125×125 
Max pool 2×2  32×123×123 
Conv 3×3/32 ReLu 32×122×122 
Max pool 2×2  32×120×120 
Conv 3×3/32 ReLu 32×119×119 
Max pool 4×4                  32 ×115×115  

Path B 
Conv          ReLu 128×128×1 
Max pool 2×2  32×124×124 
Conv 5×5/32 ReLu 32×123×123 
Max pool 2×2  32×119×119 
Conv 5×5/32 ReLu 32×118×118 
Max pool 2×2  32×115×115 

4 EXPERIMENTS 

We implement our model by using one of the deep 
learning library tensors flows with Keras backend, 
which supports a graphical processing unit (GPU). 
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This tensor flow backend Keras with GPU speeds up 
the process of a deep learning algorithm. We describe 
the parameters of our model, such as kernel size, 
convolution layer, pooling layer, hidden layer, stride 
and others, in Table 2. The parameter in the table is 
the one in which our model achieves the best 
performance on the validation set. The training 
hyperparameters, including initial momentum, end 
momentum, learning rate, and weight decay, were 
configured as 0.5, 0.8, 0.001, and 0.001, respectively. 
Stride 1 was applied to convolution and max-pool 
layers to maintain per-pixel precision. The filters for 
all layers, except the softmax layer's parameter 
initialized to the label's log, were randomly initialized 
from uniform distributions (-0.005, 0.005). Finally, 
the network's bias was set to zero.We have shown our 
results in Table 3. 

 
Figure 6: Confusion matrix of our model. 

Table 3: Result achieved from our model. 

Accuracy Precision Recall Specificity 

98.2% 98.6% 97.8% 98.5% 

4.1 Performance Evaluation  

Researchers have put up a number of performance 
evaluations for medical image identification. 
Accuracy, recall, and specificity are among the 
metrics that are frequently used. We frequently use 
performance metrics like accuracy (A), recall (R), 
precision (P), and specificity (S) to gauge how well 
our model performs. 

( )
( )

tp tnA tp fp fn tn
+= + + +  (7)

n n pS t t f= +  (8)

p p nR t t f= +  (9)

p p PP t t f= +  (10)

5 ABLATION STUDY 

Our suggested lung cancer detection model, which 
uses a dual-kernel technique with the fusion of two 
different feature types, Histogram of Oriented 
Gradients (HOG) and Local Binary Patterns (LBP), 
conducts an ablation study to examine the influence 
of individual components. Understanding how each 
feature type contributes to the performance of the 
entire model is the primary goal of this study. 

For the purpose of detecting lung cancer, our 
foundational model, known as the dual-kernel with 
dual-feature fusion, combines both HOG and LBP 
features. After that, while maintaining the values of 
all other model elements and hyper parameters, we 
systematically assess how well the model performs 
when one of these feature types is removed. 
Considered are three main experimental conditions: 

The combination of dual kernels and multiple 
features represents our entire model architecture. 

In this configuration, we use a dual-kernel with 
LBP (without HOG) and only LBP features for 
classification, excluding HOG features from the 
model. 

HOG and dual kernels without LBP Here, we use 
HOG features for classification and omit LBP 
features from the model. 

With both HOG and LBP features included, the 
dual-kernel with dual-feature fusion achieves the 
most remarkable accuracy of 98.2%. This 
demonstrates how the dual-kernel technique with 
feature fusion effectively improves the model's 
performance for detecting lung cancer. The accuracy 
of the model falls to 96.7% when HOG features are  
 

Table 4: Contestation of our method with other methods. 

Methods Accuracy Precision Recall Specificity 

DCLCCST (Y. Chen et al., 2022) 94.7% 95.6% 93.9% 95.5%
MLBLCDMIF (Nazir, AlQahtani, Jadoon, & Dahshan, 2023) 97.1% 97.8% 96.4% 97.7%
GLCDGM (Salama, Shokry, & Aly, 2022)  97.6% 98.4% 96.8% 98.3%
DKCDF 98.2% 98.6% 97.8% 98.5%
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removed, and only LBP features are used. This shows 
that HOG characteristics highly influence the model's 
capacity to identify lung cancer. The accuracy decline 
(-1.5%) highlights the significance of HOG elements 
in our model. 

Conversely, the accuracy stays high at 97.1% 
when we do not include LBP characteristics and 
solely use HOG features. Even while this setup 
outperforms employing only LBP characteristics, it 
still falls short of the dual-kernel with dual-feature 
fusion model. This shows that, although to a lesser 
extent than HOG, LBP features help offer additional 
information. Our lung cancer detection model's 
overall accuracy is improved by both the HOG and 
LBP features, according to our ablation study. As 
their removal causes a more significant accuracy loss 
than the omission of LBP features, HOG features, in 
particular, are more crucial to improving model 
performance. The significance of feature fusion and 
the dual-kernel technique in enhancing the 
performance of deep learning models for lung cancer 
detection is therefore highlighted by our research. 

Table 5: Result analysis from ablation experiment. 

Methods Accuracy Precision Recall Specificity

DKCDF 98.2% 98.6% 97.8% 98.5% 

DKC-
HOG 

97.1% 97.8% 96.4% 97.7% 

DKC-
LBP 

96.6% 97.0% 96.4% 96.9% 

 
Figure 7: Accuracy graph from the ablation experiment. 

 
 

6 CONCLUSIONS 

The article presents an innovative approach to lung 
cancer detection by employing a dual-kernel with 
dual-feature fusion method, incorporating Histogram 
of Oriented Gradient and Local Binary Pattern fusion 
techniques. Our assessment using the Kaggle Data 
Science Bowl 2017 (KDSB, 2017) dataset reveals 
superior outcomes when compared to recent 
methodologies, highlighting advancements in 
accuracy, recall, precision, and specificity. To be 
specific, our model demonstrates an enhancement of 
98.2%, 98.6%, 97.8% and 98.5% of accuracy, 
precision, recall and specificity respectively 
achieved. 

These improved findings emphasize the potential 
impact of our approach on enhancing lung cancer 
detection, with implications for early diagnosis and 
treatment strategies. In our forthcoming research, we 
aim to investigate transfer learning methods to further 
refine the accuracy of our proposed model. This 
strategic approach seeks to leverage the insights 
gained from our current model and apply them to new 
data, fostering ongoing enhancements in lung cancer 
detection. 

ACKNOWLEDGEMENTS 

This work is supported by The National Natural 
Science Foundation of China under Grant Numbers 
61671185 and 62071153. 

REFERENCES 

Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face 
description with local binary patterns: Application to 
face recognition. IEEE transactions on pattern analysis 
and machine intelligence, 28(12), 2037-2041.  

Al-Absi, H.R., Belhaouari, S.B., & Sulaiman, S. (2014). A 
computer aided diagnosis system for lung cancer based 
on statistical and machine learning techniques. J. 
Comput., 9(2), 425-431.  

Alakwaa, W., Nassef, M., & Badr, A. (2017). Lung cancer 
detection and classification with 3d convolutional 
neural network (3d-cnn). International Journal of 
Advanced Computer Science and Applications, 8(8).  

Ani Brown Mary, N., & Dejey, D. (2018). Classification of 
coral reef submarine images and videos using a novel z 
with tilted z local binary pattern (z⊕ tzlbp). Wireless 
Personal Communications, 98, 2427-2459.  

Bade, B.C., & Cruz, C.S.D. (2020). Lung cancer 2020: 
Epidemiology, etiology, and prevention. Clinics in 
chest medicine, 41(1), 1-24.  

BIODEVICES 2024 - 17th International Conference on Biomedical Electronics and Devices

62



Cai, Z., Xu, D., Zhang, Q., Zhang, J., Ngai, S.-M., & Shao, 
J. (2015). Classification of lung cancer using ensemble-
based feature selection and machine learning methods. 
Molecular BioSystems, 11(3), 791-800.  

Chen, S., Han, Y., Lin, J., Zhao, X., & Kong, P. (2020). 
Pulmonary nodule detection on chest radiographs using 
balanced convolutional neural network and classic 
candidate detection. Artificial Intelligence in Medicine, 
107, 101881.  

Chen, Y., Feng, J., Liu, J., Pang, B., Cao, D., & Li, C. 
(2022). Detection and classification of lung cancer cells 
using swin transformer. Journal of Cancer Therapy, 
13(7), 464-475.  

Dalal, N., & Triggs, B. (2005). Histograms of oriented 
gradients for human detection. Paper presented at the 
2005 IEEE computer society conference on computer 
vision and pattern recognition (CVPR'05). 

DENG, Z., & CHEN, X. (2019). Pulmonary nodule 
detection algorithm based on deep convolutional neural 
network. Journal of Computer Applications, 39(7), 
2109.  

El-Baz, A., Elnakib, A., El-Ghar, A., Gimel'farb, G., Falk, 
R., & Farag, A. (2013). Automatic detection of 2d and 
3d lung nodules in chest spiral ct scans. International 
journal of biomedical imaging, 2013.  

Fakoor, R., Ladhak, F., Nazi, A., & Huber, M. (2013). 
Using deep learning to enhance cancer diagnosis and 
classification. Paper presented at the Proceedings of the 
international conference on machine learning. 

Fang Lei, B. (2019). Barriers to lung cancer screening with 
low-dose computed tomography. Paper presented at the 
Oncology nursing forum. 

Fedewa, S.A., Kazerooni, E.A., Studts, J.L., Smith, R.A., 
Bandi, P., Sauer, A.G., . . . Silvestri, G.A. (2021). State 
variation in low-dose computed tomography scanning 
for lung cancer screening in the united states. JNCI: 
Journal of the National Cancer Institute, 113(8), 1044-
1052.  

Greenspan, H., Van Ginneken, B., & Summers, R.M. 
(2016). Guest editorial deep learning in medical 
imaging: Overview and future promise of an exciting 
new technique. IEEE transactions on medical imaging, 
35(5), 1153-1159.  

Guo, Y., Feng, Y., Sun, J., Zhang, N., Lin, W., Sa, Y., & 
Wang, P. (2014). Automatic lung tumor segmentation 
on pet/ct images using fuzzy markov random field 
model. Computational and mathematical methods in 
medicine, 2014.  

Gupta, B., & Tiwari, S. (2014). Lung cancer detection using 
curvelet transform and neural network. International 
Journal of Computer Applications, 86(1).  

Gurcan, M.N., Sahiner, B., Petrick, N., Chan, H.P., 
Kazerooni, E.A., Cascade, P.N., & Hadjiiski, L. (2002). 
Lung nodule detection on thoracic computed 
tomography images: Preliminary evaluation of a 
computer‐aided diagnosis system. Medical Physics, 
29(11), 2552-2558.  

Hamedianfar, A., Mohamedou, C., Kangas, A., & 
Vauhkonen, J. (2022). Deep learning for forest 
inventory and planning: A critical review on the remote 

sensing approaches so far and prospects for further 
applications. Forestry, 95(4), 451-465.  

Han, G., Liu, X., Zhang, H., Zheng, G., Soomro, N.Q., 
Wang, M., & Liu, W. (2019). Hybrid resampling and 
multi-feature fusion for automatic recognition of cavity 
imaging sign in lung ct. Future Generation Computer 
Systems, 99, 558-570.  

Highamcatherine, F., & Highamdesmond, J. (2019). Deep 
learning. SIAM Rev, 32, 860-891.  

Jonas, D.E., Reuland, D.S., Reddy, S.M., Nagle, M., Clark, 
S.D., Weber, R.P., . . . Armstrong, C. (2021). Screening 
for lung cancer with low-dose computed tomography: 
Updated evidence report and systematic review for the 
us preventive services task force. Jama, 325(10), 971-
987.  

Kaggle. KDSB (2017). Data Science Bowl 2017 lung 
Cancer Detection (dsb3).  

Kuruvilla, J., & Gunavathi, K. (2014). Lung cancer 
classification using neural networks for ct images. 
Computer methods and programs in biomedicine, 
113(1), 202-209.  

Liang, H., Hu, M., Ma, Y., Yang, L., Chen, J., Lou, L., . . . 
Xiao, Y. (2023). Performance of deep-learning 
solutions on lung nodule malignancy classification: A 
systematic review. Life, 13(9), 1911.  

Ma, L., Wan, C., Hao, K., Cai, A., & Liu, L. (2023). A novel 
fusion algorithm for benign-malignant lung nodule 
classification on ct images. BMC Pulmonary Medicine, 
23(1), 474.  

Mandal, M., & Vipparthi, S.K. (2021). An empirical review 
of deep learning frameworks for change detection: 
Model design, experimental frameworks, challenges 
and research needs. IEEE Transactions on Intelligent 
Transportation Systems, 23(7), 6101-6122.  

Masud, M., Muhammad, G., Hossain, M.S., Alhumyani, H., 
Alshamrani, S.S., Cheikhrouhou, O., & Ibrahim, S. 
(2020). Light deep model for pulmonary nodule 
detection from ct scan images for mobile devices. 
Wireless Communications and Mobile Computing, 
2020, 1-8.  

Nazir, I., AlQahtani, S.A., Jadoon, M.M., & Dahshan, M. 
(2023). Machine learning-based lung cancer detection 
using multiview image registration and fusion. Journal 
of Sensors, 2023.  

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A 
comparative study of texture measures with 
classification based on featured distributions. Pattern 
recognition, 29(1), 51-59.  

Penedo, M.G., Carreira, M.J., Mosquera, A., & Cabello, D. 
(1998). Computer-aided diagnosis: A neural-network-
based approach to lung nodule detection. IEEE 
Transactions on Medical Imaging, 17(6), 872-880.  

Rao, P., Pereira, N.A., & Srinivasan, R. (2016). 
Convolutional neural networks for lung cancer 
screening in computed tomography (ct) scans. Paper 
presented at the 2016 2nd international conference on 
contemporary computing and informatics (IC3I). 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: 
Convolutional networks for biomedical image 
segmentation. Paper presented at the Medical Image 

DKCDF: Dual-Kernel CNN with Dual Feature Fusion for Lung Cancer Detection

63



Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, 
Germany, October 5-9, 2015, Proceedings, Part III 18. 

Salama, W.M., Shokry, A., & Aly, M.H. (2022). A 
generalized framework for lung cancer classification 
based on deep generative models. Multimedia Tools 
and Applications, 81(23), 32705-32722.  

Shah, A.A., Malik, H.A.M., Muhammad, A., Alourani, A., 
& Butt, Z.A. (2023). Deep learning ensemble 2d cnn 
approach towards the detection of lung cancer. 
Scientific Reports, 13(1), 2987.  

Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in 
medical image analysis. Annual review of biomedical 
engineering, 19, 221-248.  

Shen, S., Han, S.X., Aberle, D.R., Bui, A.A., & Hsu, W. 
(2019). An interpretable deep hierarchical semantic 
convolutional neural network for lung nodule 
malignancy classification. Expert systems with 
applications, 128, 84-95.  

Shimizu, R., Yanagawa, S., Monde, Y., Yamagishi, H., 
Hamada, M., Shimizu, T., & Kuroda, T. (2016). Deep 
learning application trial to lung cancer diagnosis for 
medical sensor systems. Paper presented at the 2016 
International SoC Design Conference (ISOCC). 

Siegel, R.L., Miller, K.D., Wagle, N.S., & Jemal, A. (2023). 
Cancer statistics, 2023. CA: a cancer journal for 
clinicians, 73(1), 17-48.  

Soerjomataram, I., Cabasag, C., Bardot, A., Fidler-
Benaoudia, M.M., Miranda-Filho, A., Ferlay, J., . . . 
Znaor, A. (2023). Cancer survival in africa, central and 
south america, and asia (survcan-3): A population-
based benchmarking study in 32 countries. The Lancet 
Oncology, 24(1), 22-32.  

Taher, F., & Sammouda, R. (2011). Lung cancer detection 
by using artificial neural network and fuzzy clustering 
methods. Paper presented at the 2011 IEEE GCC 
conference and exhibition (GCC). 

Tian, G., Fu, H., & Feng, D.D. (2008). Automatic medical 
image categorization and annotation using lbp and 
mpeg-7 edge histograms. Paper presented at the 2008 
international conference on information technology and 
applications in biomedicine. 

Tong, G., Li, Y., Chen, H., Zhang, Q., & Jiang, H. (2018). 
Improved u-net network for pulmonary nodules 
segmentation. Optik, 174, 460-469.  

Wang, S., Chen, A., Yang, L., Cai, L., Xie, Y., Fujimoto, J., 
. . . Xiao, G. (2018). Comprehensive analysis of lung 
cancer pathology images to discover tumor shape and 
boundary features that predict survival outcome. 
Scientific reports, 8(1), 10393.  

 

BIODEVICES 2024 - 17th International Conference on Biomedical Electronics and Devices

64


