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Abstract: The recent introduction of Generative Adversarial Networks has showcased impressive capabilities in pro-
ducing images that closely resemble genuine ones. As a consequence, concerns have arisen within both the
academic and industrial communities regarding the difficulty of distinguishing between counterfeit and au-
thentic images. This matter carries significant importance since images play a crucial role in various fields,
such as biomedical image recognition and bioimaging classification. In this paper, we propose a method to
discriminate retinal fundus images generated by a Generative Adversarial Network. Following the generation
of the bioimages, we employ machine learning to understand whether it is possible to differentiate between
real and synthetic retinal fundus images. We consider a Deep Convolutional Generative Adversarial Network,
a specific type of Generative Adversarial Network, for retinal fundus image generation. The experimental
analysis reveals that even though the generated images are visually indistinguishable from genuine ones, an
F-Measure equal to 0.97 is obtained in the discrimination between real and synthetic images. Anyway, this is
symptomatic that there are several retinal fundus images that are not classified as such and are thus considered
authentic retinal fundus images.

1 INTRODUCTION AND
RELATED WORK

Generative Adversarial Networks (GANs) are a type
of neural network (Cimitile et al., 2017; Bacci et al.,
2018; Mercaldo and Santone, 2020; Mercaldo et al.,
2016) employed in unsupervised machine learning.
They consist of two opposing components: a gener-
ator network responsible for creating synthetic data
and a discriminator network designed to differenti-
ate between authentic and fabricated instances. These
components engage in a competitive process, with the
discriminator trying to spot synthetic data while the
generator endeavors to deceive the discriminator by
producing realistic examples. Through this adversar-
ial interaction, the GAN model learns to generate data
that closely resembles the training dataset. This ca-
pability has various applications, including predicting
future data or generating images, once the network
has been trained on a specific dataset(Goodfellow
et al., 2020).

One key advantage of GANs is their ability to

generate high-quality synthetic data. The collabora-
tive nature of the generator and discriminator enables
the generator to learn from the feedback provided by
the discriminator, resulting in the production of syn-
thetic data that closely resembles real data. Further-
more, GANs often exhibit speed and efficiency ben-
efits compared to traditional methods. By leveraging
parallelization techniques, GANs use parallel neural
networks for computational tasks, enabling faster pro-
cessing. GANs also excel in generating diverse types
of data, including images, videos, audio, and text,
thanks to their inherent adaptability, as they are built
upon neural networks that can be easily customized
to handle different data types. In contrast, traditional
methods often require specific techniques tailored to
each data type, making GANs a more flexible solu-
tion.

Numerous research papers have delved into the
use of GANs in biomedical contexts (Huang et al.,
2022; Zhou et al., 2021; Huang et al., 2023; Huang
et al., 2021), serving various purposes. For exam-
ple, Orlando et al. (Orlando et al., 2018) proposed
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the generation of retinal fundus images with lesions,
while Fu and colleagues (Fu et al., 2018) introduced
retinal fundus image augmentation. Differently from
these papers, the objective of this paper is to investi-
gate whether GANs can be employed to generate reti-
nal fundus images that are indistinguishable from au-
thentic ones, constituting the primary contribution of
this paper.

As a matter of fact, in this paper, we introduce
an approach aimed at evaluating the potential impact
of GANs on retinal fundus image classification tasks.
Specifically, we employ a Deep Convolutional GAN
(DCGAN) to generate a set of images using a dataset
of retinal fundus images.

While GANs have been considered for various
purposes in the biomedical field, such as retinal ves-
sel segmentation and liver lesion classification, our
focus is on generating synthetic images that are in-
distinguishable from real ones and evading dedicated
classifiers. Our results demonstrate that as the num-
ber of training epochs increases, the synthetic images
become progressively more realistic and are better at
evading detection by the classifiers.

The paper is organized as follows: in Section 2 we
provide a description of the method we designed and
implemented to assess the DCGAN ability to generate
indistinguishable retinal fundus images. The experi-
mental results are presented in Section 3, followed by
a discussion about future directions in the last section.

2 THE METHOD

In this section, we outline the proposed approach,
which encompasses two primary objectives i.e., creat-
ing synthetic retinal fundus images and distinguishing
these synthetic images from authentic ones obtained
from real-world retinal fundus images.

The initial phase of our method involves the de-
velopment and utilization of a DCGAN for the gener-
ation of synthetic retinal fundus images. This step is
illustrated in Figure 1.

In every GAN architecture, there is at least one
generator (referred to as ”Generator” in Figure 1) and
one discriminator (referred to as ”Discriminator” in
Figure 1). These two components engage in a com-
petitive process where the generator strives to en-
hance its ability to produce images that closely match
the distribution of the training data, taking cues from
the feedback provided by the discriminator.

Hence, the training of a GAN is a critical pro-
cess that involves two neural networks (Mercaldo and
Santone, 2020; Canfora et al., 2015a; Canfora et al.,
2015b; Canfora et al., 2013; Canfora et al., 2015c), a

generator (”Generator” in Figure 1) and a discrimina-
tor (”Discriminator” in Figure 1), engaged in a com-
petitive endeavor to enhance their performance. In the
following, we provide an overview of the GAN train-
ing process:

1. Initialization: Initially, both the generator and dis-
criminator networks are initialized with random
weights.

2. Objective: The generator’s goal is to create syn-
thetic data that is virtually indistinguishable from
real data, while the discriminator’s objective is to
accurately classify real data as real and generated
data as synthetic.

3. Training Loop:

(a) Generator Training (”Generator” in Figure 1):
• The generator takes random noise as input and

generates synthetic data.
• This generated data is mixed with real data, if

available, to create a training batch.
• The generator’s output is then passed through

the discriminator, and the loss is calculated
based on how effectively the discriminator
was deceived (i.e., how well the generated
data is classified as real).

• The generator’s weights are updated using
gradient descent to minimize this loss, thereby
improving its ability to generate more realistic
data.

(b) Discriminator Training (”Discriminator” in
Figure 1):

• The discriminator takes both real and gener-
ated data as input and classifies them as real
or synthetic.

• The loss for the discriminator is determined
based on its accuracy in classifying real and
generated data.

• The discriminator’s weights are updated to
minimize this loss, making it better at distin-
guishing real from generated data.

4. Adversarial Training: The core concept in GANs
is adversarial training, where the generator and
discriminator iteratively enhance their perfor-
mance by competing against each other. As the
training progresses, the generator becomes more
proficient at producing realistic data, and the dis-
criminator becomes more adept at distinguishing
real from synthetic data.

5. Convergence: Training continues for a predeter-
mined number of epochs or until a convergence
criterion is met. Convergence is achieved when
the generator generates data so realistic that the
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Figure 1: The step related to the synthetic retinal fundus images generation.

discriminator cannot reliably differentiate it from
real data.

6. Evaluation: After training, the generator can be
employed to produce synthetic data, and the dis-
criminator can be used to evaluate the authenticity
of data samples.

The DCGAN architecture introduced the integration
of Convolutional Neural Networks (CNNs) in both
the discriminator and generator components.

DCGAN provides a set of architectural guidelines
aimed at enhancing the stability of the training pro-
cess(Radford et al., 2015):

1. Replacing pooling layers with strided convolu-
tions in the discriminator and fractional-strided
convolutions in the generator.

2. Incorporating batch normalization (batchnorm) in
both the generator and discriminator.

3. Avoiding fully connected hidden layers in deeper
architectures.

4. Applying ReLU activation for all generator lay-
ers, except the output layer, which uses Tanh acti-
vation.

5. Employing LeakyReLU activation in all discrimi-
nator layers.

Strided convolutions refer to convolutional layers
with a stride of 2, used for downsampling in the dis-
criminator. Conversely, fractional-strided convolu-
tions (or Conv2DTranspose layers) utilize a stride of
2 for upsampling in the generator.

In the context of DCGAN, batch normalization
(batchnorm) is employed in both the generator and
discriminator to improve the stability of GAN train-
ing. Batchnorm normalizes the input layer by adjust-
ing it to have a mean of zero and a variance of one.
Typically, it is applied after the hidden layer and be-
fore the activation layer.

DCGAN incorporates four primary activation
functions: sigmoid, tanh, ReLU, and LeakyReLU.

Sigmoid is used in the final layer of the DCGAN
discriminator since it performs binary classification,
providing an output of 0 (indicating synthetic) or 1
(indicating real).

Tanh is similar to sigmoid but scales the output to
the range [-1, 1], making it suitable for the generator’s
final layer. Therefore, input data for training should
be preprocessed to fit within the range of [-1, 1].

ReLU (Rectified Linear Activation) returns 0 for
negative input values and the input value for non-
negative inputs. In the DCGAN generator, ReLU is
employed for all layers except the output layer, which
uses tanh.

LeakyReLU is an extension of ReLU that intro-
duces a small negative slope (controlled by a constant,
typically set to 0.2) for negative input values. In DC-
GAN, LeakyReLU activation is used in all discrimi-
nator layers, except for the final layer.

The training process involves the concurrent train-
ing of both the generator and discriminator networks.

Initial data preparation for training the DCGAN
is necessary. Since the generator is not intended for
classification, there is no need to split the dataset into
training, validation, and testing sets. The generator
requires input images in the format (60000, 28, 28),
indicating there are 60,000 grayscale training images
with dimensions of 28 × 28. The loaded data already
adheres to the shape (60000, 28, 28) as it is grayscale.

To ensure compatibility with the generator’s final
layer activation using tanh, input images are normal-
ized to the range of [-1, 1].

The primary goal of the generator is to produce re-
alistic images and deceive the discriminator into per-
ceiving them as real.

The generator takes random noise as input and
generates an image closely resembling the training
images. Since the objective is to generate grayscale
images with a size of 28 × 28, the model architecture
needs to ensure the generator’s output has a shape of
28 × 28 × 1.

To achieve this, the generator performs the follow-
ing operations:
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• Conversion of the 1D random noise (latent vector)
to a 3D format using the Reshape layer.

• Iterative upsampling of the noise through the
Keras Conv2DTranspose layers to match the de-
sired output image size. In this case, the goal is to
generate grayscale images with a size of 28 × 28.

The generator consists of key layers serving as its
building blocks:

1. Dense (fully connected) layer: primarily used for
reshaping and flattening the noise vector.

2. Conv2DTranspose: employed for upsampling the
image during the generation process.

3. BatchNormalization: applied to stabilize the
training process. It is positioned after the convo-
lutional layer and before the activation function.

In the generator, ReLU activation is used for all layers
except the output layer, which utilizes tanh activation.

For building the generator model, the Keras Se-
quential API is utilized. The process begins with the
creation of a Dense layer to reshape the input into a
3D format, with the input shape specified in this layer.

Subsequently, BatchNormalization and ReLU lay-
ers are added to the generator model. Afterward,
the previous layer is reshaped from 1D to 3D, and
two upsampling operations are carried out using
Conv2DTranspose layers with a stride of 2. These
operations increase the size from 7 × 7 to 14 × 14
and ultimately to 28 × 28.

Following each Conv2DTranspose layer, a Batch-
Normalization layer is included, followed by a ReLU
layer.

Finally, a Conv2D layer with a tanh activation
function is included as the output layer.

Next, we delve into the implementation of the dis-
criminator model.

The discriminator functions as a binary classifier
that distinguishes whether an image is real or syn-
thetic. Its primary objective is to accurately clas-
sify the provided images. However, there are a
few notable distinctions between a discriminator and
a conventional classifier: in the discriminator, the
LeakyReLU activation function is employed and the
discriminator confronts two categories of input im-
ages: real images from the training dataset, labeled
as 1, and synthetic images generated by the generator,
labeled as 0.

It is essential to note that the discriminator net-
work is typically designed to be simpler or smaller
compared to the generator. This is because the dis-
criminator has a relatively easier task than the genera-
tor. In fact, if the discriminator becomes too powerful,
it can impede the progress of the generator.

To construct the discriminator model, we have de-
signed a function that takes input in the form of im-
ages, which can be either real images sourced from
the training dataset or synthetic images generated by
the generator. These images have dimensions of 28
× 28 × 1, and the function takes these dimensions
(width, height, and depth) as arguments.

The construction of the discriminator model in-
volves a sequence of layers, including Conv2D,
BatchNormalization, LeakyReLU layers used twice
for downsampling, a Flatten layer, and the application
of dropout. In the final layer, we apply the sigmoid ac-
tivation function to produce a single value for binary
classification.

Loss computation plays a pivotal role in the train-
ing of both the generator and discriminator models
in the DCGAN, as well as in any GAN architecture.
Specifically, for the DCGAN under consideration, we
employ a modified minimax loss and utilize the bi-
nary cross-entropy (BCE) loss function.

This involves calculating two separate losses: one
for the discriminator and another for the generator.
The Discriminator Loss is computed separately for
the two sets of images (real and synthetic) that the
discriminator evaluates, and the individual losses are
then combined to yield the overall discriminator loss.

As for the generator loss, we aim to train the gen-
erator to maximize the probability of the discrimi-
nator incorrectly classifying the synthetic images as
real. This approach employs the modified minimax
loss.

For both the generator and discriminator models,
we employ the Adam optimizer with a learning rate
of 0.0002. Additionally, we utilize the Binary Cross-
Entropy loss function for both the discriminator and
generator.

The training process encompasses a total of 50
epochs.

After generating images using the DCGAN, the fi-
nal step of our proposed method, illustrated in Figure
2, focuses on constructing models dedicated to dis-
criminating between real and synthetic retina images.

In the proposed method, as illustrated in Figure
2, the second phase entails the creation of a model
for distinguishing between generated and real images.
This requires the availability of two distinct datasets.
The first dataset comprises authentic retinal fundus
images from the real world, while the second dataset
consists of images produced by the DGCAN, also vi-
sualized in Figure 2. It is worth noting that the authen-
tic real-world images used in the initial phase of the
proposed method are the same images utilized here.

From these two sets of images, denoted as ”Gen-
erated Images” and ”Real Images” in Figure 2, a col-
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Figure 2: The step related to the synthetic retinal fundus images detection.

lection of numerical features is extracted, depicted as
”Feature Extraction” in Figure 2. Specifically, the pa-
per’s experiments utilize the Simple Color Histogram
Filter(Vijayan et al., 2023) for this purpose. This filter
computes a histogram that represents the frequency of
pixels in each image. Consequently, this filter gener-
ates 64 numerical features from each image.

After obtaining the feature set from both the gen-
erated and real images, these features are employed as
inputs for a supervised machine learning algorithm,
denoted as ”Machine Learning Algorithm” in Figure
2. The objective is to construct a model capable of
determining whether an image belongs to a synthetic
or a real category.

Through the training of the machine learning al-
gorithm with the extracted features, it acquires an un-
derstanding of the patterns and relationships between
the features and the authenticity of the images. This
enables the model to classify new images as either
synthetic or real based on the acquired knowledge, as
indicated by ”Machine Learning Model” in Figure 2.
The algorithm’s training process involves providing it
with labeled examples of images, along with their cor-
responding classification (synthetic or real), allowing
the model to learn the decision boundaries between
the two classes. Once the model is trained, it can be
utilized to predict the authenticity of unseen images,
as depicted by ”Synthetic Detection” in Figure 2.

The effectiveness of the classifier is assessed by
examining whether there is a significant distinction
between the synthetic and original images. In con-
trast, if the machine learning models are unable to dif-
ferentiate between the synthetic and original images,
it suggests that the generated images closely resemble
the originals.

To explore the evolution of image generation at
various stages of GAN training, a model is con-
structed for each epoch (for a total of 50 models).
This approach provides insights into whether the gen-
erated images become progressively more similar to
the original images.

3 EXPERIMENTAL ANALYSIS

In the following, we present and elaborate on the out-
comes of the conducted experimental analysis.

The primary objective of the experiment is to
assess the potential impact of GANs on machine
learning-based classification of retinal fundus images.
To achieve this, we harnessed a DCGAN to generate
a series of synthetic retinal fundus images. Subse-
quently, we trained a classifier with the aim of dis-
tinguishing between real-world retinal fundus images
and their artificially generated counterparts.

The key focus of this investigation is to evaluate
whether the exploited classifier could effectively dif-
ferentiate between authentic and synthetic retinal fun-
dus images. Given that the DCGAN generates a new
dataset of retinal fundus images with each training
epoch, we monitor the performance of the classifier
throughout the training process. The objective was
to determine whether the classifier’s ability to distin-
guish between real-world and synthetic images would
decline as the training advanced and the generated im-
ages presumably became more similar to real retinal
fundus images.

By closely tracking the performance of the classi-
fier, we could gauge their success in correctly identi-
fying real images and distinguishing them from syn-
thetic ones. A decrease in performance as training
epochs increased would suggest that the classifiers
encountered difficulties in distinguishing between au-
thentic and synthetic retinal fundus images.

In summary, the experiment sought to assess the
potential threat that GANs might pose to machine
learning-based retinal fundus image classification by
examining the classifiers’ capacity to differentiate be-
tween real-world and artificially generated images as
the GAN training unfolded.

For experimental purposes, we resort to the Reti-
naMNIST dataset, a publicly available dataset for re-
search purposes1, which is based on the DeepDRiD
challenge. This dataset comprises 1,600 retinal fun-

1https://medmnist.com/

Detecting Retinal Fundus Image Synthesis by Means of Generative Adversarial Network

475



Figure 3: Different examples of synthetic retinal fundus images generated at different epochs, compared with the real images.

dus images related to the 5-level grading of diabetic
retinopathy severity. The source images were cen-
trally cropped and resized to dimensions of 3 × 28
× 28(Yang et al., 2021; Yang et al., 2023).

In the experimental analysis, the DCGAN under-
went training for a total of 50 epochs. Each epoch re-
quired approximately 25 seconds to complete, lever-
aging the computational capabilities of an NVIDIA
T4 Tensor Core GPU. During each epoch, the DC-
GAN generated a batch of 1000 synthetic retinal fun-
dus images.

In Figure 3, we provide a visual representation of
a set of images generated by the DCGAN at different
epochs, alongside the original input images utilized
for the DCGAN in the generation of synthetic retinal
fundus images.

Analyzing the images presented in Figure 3, we
focus on two distinct original input images, denoted
as ”Real Image Sample #1” and ”Real Image Sample
#2.” It is evident that at epoch #1, the DCGAN gen-
erated images that essentially resembled noise, which
aligns with the expected behavior. However, as we
progress to the 25th epoch, the synthetic images de-
rived from both ”Sample #1” and ”Sample #2” start
to exhibit a closer resemblance to the real images. By
the time we reach the 50th epoch, the images notice-
ably resemble the authentic ones.

To evaluate the performance of the classifier, we
took into consideration several key metrics, including
Precision, Recall, and F-Measure.

As a classifier, the J48 algorithm (Bhargava et al.,
2013; Canfora et al., 2014) is utilized to construct a
model with the objective of distinguishing between
counterfeit and authentic retinal fundus images.

To construct the model, a composite dataset was
employed, comprising real-world retinal fundus im-
ages and synthetic ones generated by the DCGAN for
a specific epoch. This signifies that, for each epoch,
we considered a dataset that encompassed both gen-
uine retinal fundus images sourced from real-world
applications and synthetic retinal fundus images gen-
erated by the DCGAN.

We adopted a strategy of building a model exploit-
ing synthetic images obtained for various epochs to
assess the performance and efficacy of the classifier in

Table 1: Experimental analysis results for the 1, 25, and 50
epochs obtained with the J48 algorithm.

Epoch Precision Recall F-Measure

1 1 1 1
25 0.970 0.970 0.970
50 0.972 0.971 0.971

distinguishing between authentic and synthetic retinal
fundus images at different stages of the training pro-
cess. This method allowed to observe any variations
in classifier performance as the DCGAN generated
images that were progressively becoming more akin
to real retinal fundus images during the course of the
training epochs.

We opted for a cross-validation approach with a
value of k=10. The experimental analysis results are
presented in Table 1. To conserve space, the results
pertaining to three specific epochs are displayed: the
initial epoch (labeled as 1 in the ”Epoch” column),
the midway epoch (labeled as 25 in the ”Epoch” col-
umn), and the concluding epoch (labeled as 50 in the
”Epoch” column). This selection allows for an exam-
ination of the overall trends.

Looking at Table 1, it is evident that at epoch 1,
the J48 model achieves an F-Measure of 1. By epoch
25, this value drops slightly to 0.970, and at epoch
50, it remains relatively stable at 0.971. This implies
that the performance of the J48 model remains largely
consistent from epoch 25 to epoch 50.

The observed diminishing trend in performance
as the epoch number increases aligns with expecta-
tions. This decline can be attributed to the fact that
the GAN progressively enhances its ability to gen-
erate improved synthetic retinal fundus images with
each successive epoch. However, as indicated by the
results in Table 1, the decrease in performance is min-
imal but still noticeable. Consequently, the series
of retinal fundus images can not be reliably distin-
guished by the classifier.

To gain a more comprehensive understanding
of the classifiers’ performance across the numerous
epochs, Figure 4 illustrates the graphical represen-
tation of the F-Measure trend over the course of 50
epochs. It’s worth noting that the decline in the met-
rics (Precision, Recall, and F-Measure) becomes no-

BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms

476



Figure 4: The Precision, Recall, and F-Measure trend for the 50 epochs.

ticeable around the 20-epoch mark.
Hence, we observe that a slight performance de-

cline persists. While the classifier continues to de-
liver commendable results even with images gener-
ated after 50 epochs, it is still evident that a fraction
of the synthetic images remains indistinguishable for
the classifier.

In summary, the findings from the experimen-
tal analysis indicate that, at present, GANs do not
present a substantial threat from a biomedical point
of view, as the current classifiers are adept at effec-
tively discerning between authentic and synthetic im-
ages. Nonetheless, it is important to acknowledge that
a small fraction of images can still evade detection,
which could potentially evolve into a threat in the fu-
ture, especially in the realm of biomedical image clas-
sification.

4 CONCLUSION AND FUTURE
WORK

Given the lifelike nature of images produced by
GANs, it is imperative to evaluate their potential im-
pact on image recognition systems, especially in the
realm of biomedical image classification. This paper
introduced a method aimed at assessing whether reti-
nal fundus images generated by a DCGAN can be dis-
tinguished from genuine images. To accomplish this,
we employed machine learning to construct a model
capable of discerning between real and synthetic reti-
nal fundus images. The experimental analysis uncov-
ered that all the models achieved an F-Measure ex-
ceeding 0.95, demonstrating their proficiency in rec-
ognizing the majority of synthetic images. Neverthe-
less, it was observed that a subset of retinal fundus
images managed to elude detection by the classifiers

designed for synthetic image identification.
While GANs offer solutions to limited dataset

challenges by generating synthetic data that closely
resembles actual biomedical data, which can assist in
training robust models and excel in producing high-
quality medical images for medical image analysis,
disease diagnosis, and treatment planning, they are
also sensitive to input data quality and may inherit
errors or biases. Adversarial attacks, involving delib-
erate manipulations to disrupt predictions, pose a sig-
nificant threat to the practical application of machine
learning. These attacks encompass evasion attacks,
which manipulate only test data, and poisoning at-
tacks, where the attacker introduces contaminated test
and/or training data. A comprehensive understanding
of adversarial attacks and the development of appro-
priate defenses are essential for upholding the relia-
bility of machine learning applications.

Moreover, it is essential to acknowledge that while
GANs offer significant advantages in biomedical im-
age analysis, their utilization in critical medical ap-
plications necessitates thorough validation and care-
ful consideration of ethical and regulatory concerns.
The quality of generated images and their clinical rel-
evance must undergo a rigorous assessment before
implementing GAN-based solutions in real healthcare
settings.

In future research endeavors, we intend to evaluate
the effectiveness of the proposed approach using dif-
ferent types of GANs and various biomedical images
acquired from diverse sources. Specifically, we aim
to explore alternative types of biomedical images and
assess the performance of various GAN architectures,
such as conditional generative adversarial networks
and cycle-consistent generative adversarial networks,
in comparison to the DCGAN employed in this study.
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