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With the significant advancements of deep learning (DL) and convolutional neural networks (CNNs), many
complex systems in the field of computer vision (CV) have been effectively solved with promising perfor-
mance, even equivalent to human capabilities. Images sophistically perturbed in order to cause accurately
trained deep learning systems to misclassify have emerged as a significant challenge and major concern in
application domains requiring high reliability. These samples are referred to as adversarial examples. Many
studies apply white-box attack methods to create these adversarial images. However, white-box attacks might
be impractical in real-world applications. In this paper, a cascade methodology is deployed in which the Copy-
cat algorithm is utilized to replicate the behavior of a black-box model (known as an original model) by using
a substitute model. The substitute model is employed to generate white-box perturbations, which are then
used to evaluate the black-box models. The experiments are conducted with benchmark datasets as MNIST
and CIFAR10 and a facial recognition system as a real use-case. The results show impressive outcomes, as
the majority of the adversarial samples generated can significantly reduce the overall accuracy and reliability
of facial recognition systems up to over 80%.

1 INTRODUCTION

Deep neural networks (DNN5), a branch of artificial
intelligence (Al), have achieved remarkable achieve-
ments in recent years. DNNs have been applied in
various fields such as object detection, object recog-
nition, object classification, speech recognition, and
natural language processing (NLP) (Bouwmans et al.,
2019). Thanks to sophisticated architectural designs,
powerful hardware capabilities, and abundant data
sources, DNNs have demonstrated superior effective-
ness compared to traditional methods. For examples,
in image classification, convolutional neural networks
(CNNs) can classify images with challenging con-
texts equivalent to humans (Jiao et al., 2019).
However, many studies have also pointed out that
DNN-based intelligent systems also pose security
risks (Serban et al., 2020). Specifically, for object
classification/recognition, simply adding a sufficient
amount of noise to an image can compel the model
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to produce incorrect results. These images contain-
ing such noise are commonly referred to as adver-
sarial images. Many researches have focused on ex-
ploring and evaluating the robustness of DNN models
through generated crafted samples, thereby, propos-
ing defense mechanisms.

Research into the robustness of DNNs has pre-
dominantly centered on investigating the white-box
approach (Serban et al., 2020). This approach as-
sumes complete control and access to DNNs, facili-
tating the analysis of their performance. Through the
use of the back-propagation method, which computes
gradients of the output concerning the input of DNNSs,
it becomes feasible to determine the influence of alter-
ing pixel values on the loss function and the predicted
image labels, as observed in image classification sce-
narios. However, the majority of practical systems do
not expose their internal configurations as architec-
ture and weights. This leads the attacks to become
unfeasible.
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A Cascade Methodology to Evaluate Black-Box Recognition Systems Based on a Copycat Algorithm

In this study, we explore the black-box attack sce-
nario. This type of attack implies that the user can
access the input and output of a DNN but not its inter-
nal models. Therefore, it is not reasonable to create
white-box perturbations through back propagation.
However, by using the Copycat algorithm(Correia-
Silva et al., 2018) to generate a substitute model, the
research has demonstrated that the perturbations cre-
ated by this substitute model can be used to launch
attacks that reduce the overall accuracy of the black-
box model.

Our contributions of the paper are listed as:

* A new approach employing the cascade method-
ology for black-box attack methods is introduced.
It allows to create the white-box perturbations to
evaluate the black-box model without requiring
any information from the original model.

» Experiments will be conducted to evaluate the ef-
fectiveness of the proposed methods on standard
datasets and the proposed dataset.

The remainder of the paper is put in order as fol-
lows. Section 2 gives a brief overview of the adversar-
ial attacks in literature. Section 3 details the proposed
approach. The performance evaluation is discussed in
section 4. Finally, section 5 concludes the paper and
presents perspectives.

2 RELATED WORKS

2.1 Adversarial Attacks Based on
White-Box Approaches

It is assumed that the white-box attacks to DNN's hap-
pen with a clear and precise knowledge of the tar-
geted models. It means that model architectures and
weights are opened to attackers. One of the base-
line methods is the Fast gradient sign method (FGSM)
(Goodfellow et al., 2014). It employs the sign of the
gradient based on the back propagation in the white-
box deep neural model in order to propose a minimum
level of adversarial perturbation. The perturbation is
embedded into an input image to generate an adver-
sarial image. Given a model F with a loss function
L(F,x,y), x is an input image while y is the label of
the input. The new adversarial image x* = x + 6 with
& can computed as Eq. 1.

& =¢xsgn(ViL(F,x,y)) (1)

The objective of this process is to force the CNN
to classify x* into other classes y’ with y' # y and
(y = argmax(F(x*))). Thus, x* is created with a

small value of 8. This guarantees that the changes
cannot be distinguished by human (Nguyen et al.,
2022).

Jacobian-based Saliency Map (JSMA) (Papernot
et al., 2016b) focuses on modifying the pixels of an
input image to create an adversarial example. It uti-
lizes the concept of saliency maps, which highlight
the most important pixels in influencing the model’s
decision. For each input image x, through the model
function F, it generates the corresponding label with
F(x) =y using any CNNs. The goal of the JSMA al-
gorithm is also to create an adversarial image x* based
on the a Jacobian-based saliency map that is very sim-
ilar to x in order to misclassify the target label, such
that F(x*) =y’ # y. The JISMA algorithm is based on
a greedy search algorithm to find pairs of image pix-
els through the saliency map in order to modify these
pixel pairs until the resulting image can cause mis-
classification by a CNN model. This is also a weak-
ness of this algorithm as it is difficult to implement
it on high resolution images due to the large search
space.

DeepFool (Moosavi-Dezfooli et al., 2016) em-
ploys the attack strategy of using the minimum level
of noise to introduce into the input image in order to
cause misclassification. To achieve this, DeepFool
calculates the distance of the data point to the deci-
sion boundary of the classifier. The data point is then
replaced in such a way that the distance changes until
the data point is misclassified.

Carlini & Wagner (CW) (Carlini and Wagner,
2017) is also an optimization-based method used to
generate adversarial examples that can fool DNNs.
As other white-box approach, it aims to find the mini-
mum perturbation required to misclassify an input im-
age while ensuring the perturbations are impercepti-
ble. CW is as a gradient-descent based method. How-
ever, it differs from other methods where they have
only tried to estimate the minimum level of noises em-
bedded into input images. CW defines an objective
function that incorporates two components: the first
component encourages the perturbation to be small
to ensure imperceptibility; and the second component
encourages the misclassification of the image.

2.2 Adversarial Attacks Based on
Black-Box Approaches

Black-box approaches to attacking (DNNs) refer to
methods that aim to exploit vulnerabilities in the
model without accessing its internal architecture or
parameters. These approaches rely on the model’s
input-output behavior and make limited or no as-
sumptions about its internal workings. Here are some
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Figure 1: Our proposed system with four main steps.

common black-box attack methods.

Transferability and substitute models use the
transferability of adversarial images. The images gen-
erated for one model can often fool another model
trained on a similar task. The attacker generates ad-
versarial examples using a substitute model with a
known architecture and uses them to attack the tar-
get model (Moosavi-Dezfooli et al., 2017a; Moosavi-
Dezfooli et al., 2017b; Papernot et al., 2016a; Paper-
not et al., 2017).

Query-Based Attacks make queries to the target
model to gain information about its decision bound-
aries or gradients. The attacker crafts adversarial
examples by perturbing the input and observing the
model’s responses. This information is then used to
generate effective adversarial examples (Liu et al.,
2016).

Zeroth-Order Optimization: In this approach, the
attacker does not have access to gradients or other in-
ternal information of the target model. Instead, they
rely on the model’s input-output behavior and use
optimization algorithms to find adversarial examples
(Chen et al., 2017).

Black-box attacks are particularly challenging as
they operate without complete knowledge of the tar-
get model. Attackers have to rely on limited informa-
tion and make intelligent decisions to craft adversarial
examples that can fool the model. These approaches
mimic real-world scenarios where the attacker has
limited access to the target model’s internal details,
making them practical and applicable in various sce-
narios.

Our research focuses on the use of substitute mod-
els. We leverage the advantages of the Copycat model
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(Correia-Silva et al., 2018) in replicating informa-
tion about the behavior and knowledge of black-box
models. After successfully performing the replication
process and evaluating its effectiveness, we employ
the replicated model as a white-box substitute model.
Through this substitute model, we generate white-box
adversarial perturbations using the back propagation.

3 PROPOSED APPROACH

3.1 Introduction

In context of using substitute models, we are con-
structing a proposal system as depicted in Figure 1.
The system can be divided into three parts. The first
part involves training and evaluating the target model.
Naturally, this process is independent and confiden-
tial. The second part involves utilizing the Copy-
cat technique to copy the target model. Finally, the
substitute model is used to create adversarial images
based on white-box attacks. These adversarial images
are then applied in reverse to evaluate the accuracy
and reliability of the black-box model. In the follow-
ing sections, we will go deeper into specific parts for
further discussion.

3.2 Training and Evaluating the Target
Black-Box Model

During the training phase, we construct the scenarios
of the target model. The confidential data used to train
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the model consists of images and labels. This corre-
sponds to steps 1 and 2 in Figure 1. After the training
process is completed, the accuracy and reliability of
the black-box model will be evaluated in step 3 using
the test dataset D1.

3.3 Copying the Target Black-Box
Model

To carry out the process of copying the target model,
some challenges that need to be addressed are: (1)
selecting an appropriate substitute model architecture
without any knowledge of the internal structure of the
black-box target model; (2) generating suitable syn-
thetic data through queries to the black-box model.
This dataset will then be used to train the substitute
model, aiming to provide the substitute model with
knowledge and behavior similar to the target model
as much as possible. Unlike the studies (Tramer et al.,
2016) that focused on copying machine learning (ML)
models such as decision trees, logistic regression, and
Support Vector Machine (SVM) (Shi et al., 2017) that
trained a classification model to copy text classifica-
tion models as Naive Bayes and SVM; authors (Pa-
pernot et al., 2016a) that used deep learning (DL)
models to copy ML models such as SVM and K-
nearest Neighbor (kNN); authors in (Papernot et al.,
2017) that utilized DNNs to copy DNNs models but
with small datasets like MNIST or GTSRB. In this
research, we approach the task of copying CNNs for
more complex classification problems with real-case
datasets. To achieve this at minimal cost, we have
adopted the approach of the Copycat method as pro-
posed in (Correia-Silva et al., 2018). It should be
noted that in this scenario, the training and testing
processes of the substitute model are conducted by
the attacker. It could be divided into two main parts
(A, B) as discussed below.

A - Generating Fake Data

The fake dataset is a completely different dataset from
the one used to train the original model. This dataset
can consist of images from the same problem do-
main as the original model, or it can be generated
from random natural images. In the first case, it is
assumed that the attacker has access to images from
the same problem domain (PD) that was used to train
the original model. In the second case, it is assumed
that the attacker has access to large publicly available
datasets, which can include random natural images
or images that do not belong to the problem domain
of the original image dataset used to train the model
(known as non problem domain - NPD).

(
[Orlgmal training dataset Fake dataset

To get stolen
labels

Training

| Copycat model J
\ \-/
7)

Evaluation Evaluation

Test Data

Figure 2: The copy process of the target black-box model.

To create the fake dataset, the attacker uses the
original model itself to automatically label these
datasets by querying images through the inference
process of the model. The labels generated by the
original model in this process are called stolen labels.
The expected labeled fake dataset captures the gen-
eral knowledge of the original model, allowing an-
other models to be retrained and achieve performance
close to the original model. In practical applications,
it is not simple to obtain images from a specific do-
main. Therefore, the dataset within the same domain
as the original dataset is usually smaller, while the
dataset outside the original dataset is larger as it can
be freely obtained from various sources, as presented
in Figure 2.

B - Training the Copycat Model

After obtaining the fake dataset, the training of the
Copycat model is initiated. At the beginning, the at-
tacker selects an architecture for the Copycat model.
It is worth noting here that the attacker is not aware
of the architecture of the target model. However,
this does not hinder the knowledge transfer to another
model.

The output of the Copycat model is adjusted to
match the data domain of the target model, which
means the number of outputs must be processed to
align with the number handled by the target model.
It also emphasizes the importance of prioritizing the
use of pretrained models that were trained on large
datasets like ImageNet and are close to the domain of
the target model. Finally, the training process of the
Copycat model involves fine-tuning using smoothing
techniques with the fake data generated in the pre-
vious step. The training process will stop until the
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Copycat model can approximately perform with the
target model.

3.4 Generating Adversarial Images

When the copying process is complete, we use this
substitute model to craft adversarial samples. The
substitute model is a white-box model. Therefore,
we have full access to use it for crafting white-box
samples. In this study, we only employ digital per-
turbations. Previous approaches have discussed lit-
tle about the impact of these perturbations on real-
world applications. The digital implementations are
exploited based on the back propagation including
FGSA, JSMA, DeepFool, and CW.

3.5 Evaluation

The goal of this process is to assess the impact of
the adversarial samples generated from section 3.4 on
black-box models. For clarity, we remind here that
the generation of these adversarial images is entirely
reliant on training and constructing substitute models
without any intervention into the original models.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setups
4.1.1 Datasets

In order to evaluate our approach, we employ here two
popular datasets MNIST (LeCun, 1998), CIFAR10
(Krizhevsky et al., 2009), and our own dataset in face
recognition application with a description of Table 1.

Table 1: Dataset description.

Table 2: Model architectures.

Layer Type MNIST Model | CIFAR Model
Convolution + ReLU 3x3x32 3x3x64
Convolution + ReLU 3x3x32 3x3x64

Max Pooling 2x2 2x2

Convolution + ReLU 3x3x64 3x3x128
Convolution + ReLU 3x3x64 3x3x128
Max Pooling 2x2 2x2
Fully Connected + ReLU 200 256
Fully Connected + ReLU 200 256
Softmax 10 10

After completing the training process with two
black-box models, we use the LeNet5 model to copy
these models. Their hyper parameters are selected in
Table 3.

- On the MINIST model we employ two strate-
gies: (1) with the data of the PD from the MINIST,
(2) with the data of the NPD from the CIFAR10.

- On the CIFARI0 model we we employ two
strategies: (1) with the data of the PD from the CI-
FAR10, (2) with the data of the NPD from the Ima-
geNet.

Table 3: Model hyper parameters.

MNIST Model | CIFAR Model
Epochs 15 50
Batch size 128 128
Learning rate le-3 le-3
Input image size 32x32x1 32x32x3
Optimization Adam Adam

Dataset Labels | Training images | Testing images
MNIST 10 60,000 50,000
CIFAR10 10 10,000 10,000
Our dataset 4 3,000 600

4.1.2 Copying the Black-Box Model with the
Benchmark Datasets

To evaluate the attack process based on the Copy-
cat approach, we utilized the CNN network model
proposed in the research (Carlini and Wagner, 2017).
Furthermore, we experimented with two training sce-
narios on the MNIST and CIFAR10 datasets using
this model. This results in two cases of model cor-
responding to each dataset. These models are consid-
ered as the black-box models. The model architec-
tures are presented in Table 2.
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4.1.3 Copying the Black-Box Model Our Dataset

We conducted a further experiment with this ap-
proach based on real data collected from facial recog-
nition systems. In the our context, we assume the
ResNet152 model (He et al., 2016) as the black-box
model for the facial recognition. As the same proto-
col with the benchmark datasets. We have employed
the VGG19 (Simonyan and Zisserman, 2014) to copy
the black-box model with here two scenarios: (1) with
the data of the PD from the our dataset, and (2) with
the data of the NPD from the ImageNet. The hyper
parameters have been chosen as outlined in Table 4.

Table 4: Model hyperparameters.

VGG19 with the PD | VGG19 with the NPD
Epochs 50 50
Batch size 32 32
Learning rate le-3 le-3
Input image size 224x224x3 224x224x3
Optimization Adam Adam

All experiments were implemented using Pytorch
framework! with GPU NVIDIA GeForce RTX 3060,
12GB RAM.

Uhttps://pytorch.org/docs/stable/index.html
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Figure 3: The average accuracy on the test set based on the
level of noise injection in the MNIST with the PD.
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Figure 4: The average accuracy on the test set based on the
level of noise injection in the MNIST with the NPD.

4.2 Results and Discussions

4.2.1 Black-Box Models Trained on the MNIST
and CIFAR10 Datasets

In this experiment, a process of generating the Copy-
cat models from a black-box model is evaluated. The
original model (known as the black-box model) ob-
tained 98.13% of accuracy on the MNIST dataset
while the Copycat model was 98.08% of accuracy on
PD and 90.61% on the NPD. In contrast, the copy pro-
cess showed a poorer performance on the CIFAR10
dataset. The black-box accuracy was 81.23% while
the Copycat model accuracy just reached 65.55% and
55.87% on the PD and NPD respectively, as shown in
Table 5.

Table 5: The top 1 accuracy of the trained models with the
black-box model and the Copycat model with the PD and
NPD.

Models MNIST | CIFARIO
The black-box model (CW) 98.13% | 81.23%
The Copycat model - LeNet5 with PD | 98.08% | 65.55%
The Copycat model - LeNet5 with NPD | 90.61% | 55.87%

The main objective here is to create substitute
models in such a way that these models possess
knowledge similar to or closely resembling the target
model. As the results, these substitute models will be
utilized to generate various white-box perturbations

Average accuracy on the test set according to the level of noise injection
— FGSM DeepFool ~ —— Carlini & Wagner ~—— JSMA

Average accuracy
o o © o o
S8 o & @

o
)
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Figure 5: The average accuracy on the test set based on the
level of noise injection in the CIFAR10 with the PD.

as explained above as the FGSM, Deepfool, CW, and
JSMA approaches. These forms of perturbations will
be applied to input images to craft adversarial images.
These adversarial images will then be employed to as-
sess the robustness of the black-box model across the
test datasets. Figure 3 illustrates the achieved results.
With test data from the MNIST dataset, the PD Copy-
cat model generates various corresponding perturba-
tions at different thresholds. All 3 types of pertur-
bations of the FGSM, CW, and Deepfool approaches
demonstrate relatively similar attack capabilities in
reducing the overall average accuracy of the black-
box model. When the noise level is around 70%, the
model almost entirely misclassifies the results with
FGSM and CW while Deepfool decreases the model
accuracy by only 90% despite applying noise to the
entire dataset. In contrast, the JSMA shows the weak-
est attack effectiveness in reducing the model’s ac-
curacy. It achieves a maximum reduction of slightly
over 30%.

With the Copycat-NPD model on the MNIST
dataset, the trend of reducing the accuracy of the orig-
inal model corresponding to the perturbations has a
small difference to the PD model. The CW is better
than the FGSM with a small gap. However, with the
JSMA, it still shows a poor performance. The sig-
nificant decrease in the attack capability to lower the
model’s accuracy reaches only around 10% for the
highest noise ratio, illustrated in Figure 4.

With the CIFARI10 dataset, the impact of the
various perturbations created is similar for both the
Copycat-PD and Copycat-NPD models. However, the
FGSM and the CW exhibit a stronger attack capa-
bility compared to the other two types of perturba-
tions. With only 20% noise introduced into the test
images, they can significantly reduce the overall ac-
curacy of the model down to about 22%, presented
in Figures 5 and 6. Meanwhile, the attack poten-
tial of the JSMA appears to have reached saturation.
Specifically, based on observations from both Fig-
ures 5 and 6, despite the substantial increase in noise
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Figure 7: The effects of the FGSM, Deepfool, CW, and JSMA noise on the input images at various thresholds.
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Figure 6: The average accuracy on the test set based on the
level of noise injection in the CIFAR10 with NPD.

levels, the impact on the model remains largely un-
changed compared to the 15% threshold of noise.

In order to gain a better understanding of how the
noise impacts the input images, Figure 7 visualizes
these effects graphically. It is easily noticeable that
the images are significantly affected by these types of
noise. For noise thresholds greater than 40%, almost
all input images are heavily distorted. This is not fea-
sible in real-world scenarios due to the high probabil-
ity of being detected by the naked eye. Therefore, de-
pending on specific applications, appropriate thresh-
olds will be chosen. In the context of this study’s
observations with the MNIST and CIFAR10 datasets,
20% of noise threshold seems fitting with the CI-
FAR10 and 40% of noise threshold have to fix with
the MNIST. This is because, at this point, the average
model accuracy across the data domain is reduced to
approximately 60% with the CIFAR10, while the vi-
sual representation of the images experiences small
changes. Additionally, selecting an appropriate noise
threshold also reduces the burden of the noise training
process.
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4.2.2 Black-Box Model Trained on the Our
Given Datasets

To evaluate real-world systems, a facial recognition
system is used. We employ a relatively large black-
box model, ResNet152 (He et al., 2016). To fit into
our testing scenarios, we have treated it as a black-
box model without any interventions into the original
model.

A substitute model used for replication is the
VGG19 model, with two implementations known as
the PD-VGG19, NPD-VGG19 models, utilizing the
proposed dataset as well as the dataset from ImageNet
respectively, given in Table 6.

Table 6: The top 1 accuracy of the trained models with
the black-box model (ResNet152) and the Copycat model
(VGG19).

Models

Top 1 accuracy (%)

The black-box model (ResNet152)

100%

The Copycat model - VGG19 with the PD

100%

The Copycat model - VGG19 with the NPD

93.75%

The accuracy of the original model using the
ResNet152 architecture reaches 100% on the test
dataset. Similarly, the Copycat model using VGG19
also achieves 100% accuracy on the PD. Meanwhile,
the Copycat model using the NPD has an accuracy
lower by 7%. The two substitute models, after copy-
ing the behavior of the original model, will be em-
ployed to generate adversarial samples. Note that in
this scenario, we do not utilize the JSMA. The reason
is that the JSMA demonstrates poor performance on
the small MNIST and CIFAR10 datasets. Addition-
ally, the JSMA relies on a greedy search approach.
Thus, for images with larger dimensions, this search
becomes impractical in reality.

It can be seen in Figure 8, with the substitute
model using VGG19 on the PD, various types of noise
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Figure 10: The impacts of the CW, Deepfool, and FGSM on the input images are given: (a) demonstrates the effects of
different noise thresholds, and (b) depicts the impact of a 20% noise threshold on various images.
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Figure 8: The average accuracy on the test set based on the
level of noise injection in our dataset with PD.
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Figure 9: The average accuracy on the test set based on the
level of noise injection in our dataset with NPD.

are generated at different thresholds. The created ad-
versarial images are used to evaluate their impact on
the original model, which tends to exhibit relatively
similar trends. Observing the Figure 9, we can wit-
ness that the impact trends of the three types of noise
as the FGSM, DeepFool, and CW are relatively sim-
ilar. However, when the noise ratio is smaller than
50%, the DeepFool has a better effect in reducing the
average accuracy of the model.

In contrast, with the VGG19 model on the NPD
in Figure 9, the DeepFool noise demonstrates a clear

superiority over the other two types of noise. At
a noise ratio of approximately 20%, it has reduced
the average accuracy of the system by about 80%.
Figure 10 visually demonstrates the impact of var-
ious noise types on the facial dataset collected by
our real-world deployed facial recognition applica-
tion. It’s evident that the attacking noises have the
ability to significantly lower the model’s accuracy,
especially those with substantial changes in the in-
put image, such as Deepfool. For noise densities ex-
ceeding 40%, the input images undergo considerable
distortion. Similarly, as in the previously mentioned
case, the proposed optimal noise threshold is around
20%. This threshold enables Deepfool to reduce the
model’s recognition accuracy to 80%, while remain-
ing relatively inconspicuous to the naked eye.

5 CONCLUSIONS AND
PERSPECTIVES

In this study, we take advantage of the Copycat
method to generate substitute models with behaviors
closely resembling the target models, aiming to cre-
ate adversarial images for evaluating black-box mod-
els. Unlike previous black-box attack methods, this
approach can replicate and generate adversarial sam-
ples for both the PD and NPD models. The generated
adversarial samples are employed to attack black-box
models, and the attack effectiveness is demonstrated
to be relatively high using certain types of noise such
as FGSM, CW and DeepFool.

In further research, we will continue to expand
this approach to evaluate models that require high ac-
curacy, such as license plate recognition systems in
security. Another potential direction for research in-

669



VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

volves generating physical samples for attacks, target-
ing the verification of models like facial recognition
systems at airports, terminals, and other locations.
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