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Abstract: The Nurse Scheduling Problem (NSP) is a combinatorial optimization problem that creates weekly scheduling
solutions for nurses. These solutions must satisfy constraints for the workload coverage requirements while
optimizing one or more objectives related to hospital costs or nurses’ preferences. Although exact methods
may be used to solve the NSP and return the optimal solution, they usually come with an exponential time
cost. Therefore, approximate methods may be considered as they offer a good trade-off between the quality of
the solution and the running time. In this context, we propose a solving method based on Genetic Algorithms
(GAs) to solve the NSP. To evaluate the efficiency of our proposed method, we conducted experiments on
various NSP instances. Further, we compared the quality of the returned solutions against solutions obtained
from exact methods and metaheuristics. The experimental results reveal that our proposed method can fairly
compete with B&B in terms of the quality of the solution while delivering the solutions in much faster running
times.

1 INTRODUCTION

The Nurse Scheduling Problem (NSP) is among
the challenging NP-Hard combinatorial optimization
problems in healthcare. The aim is to create weekly
schedules that satisfy the workload constraints and si-
multaneously optimize some objectives. Various ap-
proaches were proposed to solve the NSP using ex-
act and approximate methods. While exact methods
guarantee the return of the optimal solution, they usu-
ally suffer from expensive running time costs. For
this reason, researchers often look for alternatives to
reduce this time complexity by exploring metaheuris-
tics. The latter typically trade the quality of the solu-
tions for better running times. In this context, we pro-
pose a new method based on the Genetic Algorithm
(GA) to solve the NSP. To assess the performance
of our proposed method, we adopted the NSP for-
mulation from (Sadeghilalimi et al., 2023) and con-
ducted multiple experiments using a set of NSP in-
stances. Furthermore, we compared the obtained re-
sults against exact and metaheuristics. For the ex-
act method, we used the Branch & Bound (B&B)
algorithm from (Ben Said and Mouhoub, 2022) that
relies on constraint propagation techniques (Dechter
and Cohen, 2003) as a pre-processing step to remove
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locally inconsistent values. The latter step allows the
reduction of the search space size before the execu-
tion of B&B. For the metaheuristics, we used variants
of the Whale Optimization Algorithm (WOA) and
Stochastic Local Search (SLS) (Sadeghilalimi et al.,
2023). Note that the WOA variants correspond to
different types of mutations we have considered for
the exploration phase to ensure more diversification
in the search and overcome local minima. We have
adopted the same variants for our GA-based method.
The SLS-based method starts by finding an initial so-
lution using a depth-first search (DFS) technique and
then attempts to tune it further to improve the solu-
tion’s quality while maintaining feasibility. Similar
to B&B, SLS uses constraint propagation to optimize
the backtrack search. The experimental results are
very promising as they reveal the efficiency of our
proposed GA-based technique in providing a reason-
able trade-off between the quality of the solution re-
turned and the running time compared to the above-
mentioned methods. Although B&B and DFS use
constraint propagation before the search, the results
show they still suffer from their expensive exponen-
tial time costs.
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2 RELATED WORKS

In (Ben Said et al., 2021), the authors proposed an
implicit approach to solve the NSP relying on Ma-
chine Learning (ML) algorithms to learn the frequent
patterns and associations among past scheduling solu-
tions. Although the proposed ML methods may gen-
erate solutions almost instantly, they come with a de-
gree of uncertainty since the constraints and objec-
tives are implicitly learned and represented through
the learned patterns (e.g. association rules, trained
ML models). In (Ben Said and Mouhoub, 2022),
the authors proposed an explicit approach to solve
the NSP using the Weighted Constraints Satisfaction
Problem (WCSP) formalism (Larrosa, 2002; Bidar
and Mouhoub, 2023; Lee and Leung, 2009) to over-
come the uncertainty challenges. The authors formu-
lated the NSP as a WCSP model and further solved it
using B&B (we use this B&B algorithm as a compara-
tive method for our proposed GA variants in the scope
of this paper). B&B was also used in (Baskaran et al.,
2014) to solve the NSP, and as discussed in (Woeg-
inger, 2003), the challenge with exact algorithms like
B&B is that they suffer from their exponential time
cost, particularly when solving large-size problem in-
stances.

Other related work relied on evolutionary methods
based on metaheuristics to solve the NSP (Jan et al.,
2000; Gutjahr and Rauner, 2007; Wu et al., 2013; Ja-
fari and Salmasi, 2015; Rajeswari et al., 2017). These
methods usually use random search to elicit candi-
date solutions while balancing between exploration
and exploitation to escape local minima/maxima. The
latter is an alternative to exact methods due to the time
complexity challenge. However, returning the opti-
mal solution is not guaranteed.

Hybrid methods that combine multiple algorithms
were also explored to solve the NSP (Burke et al.,
2001). For instance, in (Zhang et al., 2011), the au-
thors proposed a hybrid method combining GAs and
Variable Neighborhood Search (VNS). The GA was
used to solve sub-problems and return initial feasible
solutions that are consequently fed into the VNS to
improve them. Experimental results show that the
proposed method can return feasible solutions and
therefore can be used effectively in solving other re-
source allocation problems.

3 PROBLEM FORMULATION

In the following we provide the Mixed-integer pro-
gramming (MILP) formulation of the NSP. In addi-
tion, we also present the NSP modeling as a WCSP.

The WCSP formulation is used by the B&B algorithm
(Ben Said and Mouhoub, 2022) that we have consid-
ered in the comparative experiments reported in Sec-
tion 6.

3.1 MILP Formulation

Table 1 lists the decision variables and all the required
parameters needed for our formulation of the NSP.
Basically, the main goal is to assign nurses to daily
shifts1 such that a set of constraints are met (follow-
ing hospital personnel policies) while an overall cost
is minimized.

Constraints

1. Minimum and Maximum Number of Nurses
per Shift. The following constraint expresses
the minimum and maximum assigned number of
nurses per shift j during day k.

Q jk ≤ ∑
i

xi jk ≤ S jk (1)

2. Maximum Number of Shifts for a Given Nurse
During the Schedule. The following constraint
sets the maximum number of shifts wi, for a given
nurse i during the schedule.

∑
j
∑
k

xi jk ≤ wi (2)

3. Maximum Number of Consecutive Shifts. The
following constraint sets the maximum number of
consecutive shifts L for a given nurse i during the
schedule.

d
∑
k
(xi3k + xi1(k+1 mod d))≤ L (3)

4. Maximum Number of Night Shifts. Each nurse
i should not work more than ni night shifts in the
schedule.

∑
k

xi jk ≤ ni j = 3 (4)

Objective: Hospital Costs to Minimize

min(∑
i

∑
j
∑
k

ci j · xi jk) (5)

1We assume that all shifts have the same number of
hours.
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Table 1: Parameters of the NSP.

Parameters Description
n Number of nurses
i Nurse index

Morning shift ( j = 1)
j A given shift: Evening shift ( j = 2)

Night shift ( j = 3)
d The number of days in the schedule
ci j The cost of nurse i working in shift j for any day

1, if nurse i works in shift j on day k,
xi jk The decision variable:

0, otherwise
Q jk Minimum nurses needed for shift j in day k
S jk Maximum number of nurses required for shift j in day k
wi Maximum number of shifts during the schedule for nurse i
L Maximum consecutive shifts that are allowed (a consecutive shift cor-

responds to j = 3 for a day k, followed by j = 1 for day k+1, mod d)
ni Maximum night shifts during the schedule for nurse i

3.2 WCSP Formulation

The CSP is a powerful framework for modeling and
solving combinatorial problems (Dechter and Cohen,
2003). Modeling a given problem using the CSP
consists in formulating it in terms of a set of vari-
ables X = {x1, . . . ,xi, . . . ,xn}, where each variable xi
is defined on a non-empty domain of possible val-
ues dom(xi; and a set of constraints C = {c1, ...,ck}
restricting variables’ assignment combinations. The
goal of solving a CSP is to find a consistent assign-
ment of values to all the variables from their domains
such that all the constraints are satisfied. The WCSP
(Larrosa, 2002; Bidar and Mouhoub, 2023; Lee and
Leung, 2009) is an extension of the CSP which con-
siders violation costs related to soft constraints or
weights associated with variable domain values. In
addition to finding a solution that satisfies all the con-
straints, the target of a WCSP is to optimize the solu-
tion’s total cost.

More formally, a WCSP is defined by the tuple
(X ,D,C,K), where X , D, and C are variables,
domains, and constraints respectively. K is the
largest numerical cost value for for a given variable
assignment.

Variables: X = {X1, ...,Xn}, the set of nurses.
Domain: D is the set of shift patterns.
Constraints: C = {const1, ...,const4}

To elicit the NSP constraints, we rely on func-
tion A(i, j,k,s) that returns 1 if Nurse i is assigned
shift pattern j, and j covers shift s on day k, or 0 oth-
erwise. Note that constraint const1 is a global con-

straint that involves all the variables and constraints
const2,const3,const4 are unary constraints. For the
WCSP formulation, we rely on the following param-
eters and indices to elicit the constraints.
Parameters and Indices:

n = Number of nurses
m = Number of possible shift patterns
ci j = Cost of assigning nurse i the shift pattern j
qsk = Minimum nurses needed for shift s
in day k
psk = Maximum number of nurses required
for shift s in day k
hi = Maximum number of shifts for nurse i during
the schedule
y = Maximum number of consecutive shifts
(night shift followed by a morning shift)
bi = Maximum number of night shifts for
nurse i during the schedule
i = {1, ..,n}: nurse index
j = {1, ...,m}: index of the weekly shift pattern
k = {1, ..,7}: day index
s = {1, ..,3}: shift index within a given day
z = {1, ..,21}: index of shifts in a shift pattern

Constraints:
1. Minimum and Maximum Number of Nurses

per Shift: const1

psk ≤
n

∑
i=1

A(Xi, ji,k,s)≥ qsk ∀k,∀s,a ji ∈ D (6)
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2. Maximum Number of Shifts for a Given Nurse
During the Schedule: const2

7

∑
k=1

3

∑
s=1

A(Xi, ji,k,s)≤ hi ∀Xi,a ji ∈ D (7)

3. Maximum Number of Consecutive Shifts
(Night Shifts Followed by Morning Shifts):
const3

6

∑
k=1

A(Xi, ji,k,3)+A(Xi, ji,k+1,1)≤ y ∀Xi,a ji ∈ D

(8)

4. Maximum Number of Night Shifts: const4
7

∑
k=1

A(Xi, ji,k,3)≤ bi ∀Xi,a ji ∈ D (9)

Soft Constraint:
fi : a ji ∈ D → ci ji (10)

Objective: Hospital Costs to Minimize

Minimize(
n

∑
i=1

ci ji) a ji ∈ D (11)

4 PROPOSED SOLVING
APPROACH

Our proposed method first enforces the satisfaction of
all constraints. Then, the obtained consistent outputs
are given to the GA algorithm to search for the opti-
mal solutions.

More precisely, after generating a random popula-
tion of potential solutions (schedules), the first part
of the solving method consists in enforcing satisfi-
ability by eliminating any detected constraint viola-
tion. After conducting a preliminary work, we came
to the conclusion that constraints should be satisfied
using the following order. First, constraint 4, which
is related to the maximum number of night shifts, is
satisfied. Then constraint 3, followed by constraint 2
are enforced. Finally, constraint 1, which is the most
challenging constraint, is satisfied. To solve each of
the above constraints, the algorithm first detects the
variables involved in the constraint violations. Then,
some of these variables are randomly selected, and
their values are flipped in order to satisfy the re-
lated constraint. After enforcing the constraints as
described earlier, the GA operators are applied on the
feasible solutions to find the optimal one. In this con-
text, the one-point crossover is first applied on some
selected chromosomes. Then, mutation is conducted
to ensure some diversity. Constraint satisfiability is

enforced on the offsprings after each of these two op-
erations. Figures 1 and 2 illustrate the crossover and
mutation operations, respectively. In our example, we
have 5 nurses working over 7 days. Like for the WOA
(Sadeghilalimi et al., 2023), we consider the follow-
ing variants for the mutation operator.

• Random Resetting Mutation (RRM). A num-
ber of entries of the NSP potential solution are
randomly selected and their values are randomly
changed. This process is depicted in Figure 2.

• Swap Mutation (SwM). After selecting a pair of
variables, their values are swapped.

• Scramble Mutation (ScM). A subset of contigu-
ous entries are selected from the potential solu-
tion. Then these values are randomly scrambled.

• Inverse Mutation (IM). A subset of contiguous
entries are selected and inverted.

The fitness function corresponds to the NSP objective
defined in Equation 5.

5 B&B, SLS, AND WOA FOR THE
NSP

5.1 B&B

We adapted the B&B algorithm from (Ben Said and
Mouhoub, 2022) to reflect the minimization variant
of the NSP. B&B uses the Depth First Search (DFS)
strategy to explore all candidate solutions and relies
on the Upper Bound (UB) and Lower Bound (LB) pa-
rameters for pruning the non-optimal and infeasible
solutions. In this context, the UB is used to record
the cost of the best solution found during the search,
and the LB is used to overestimate the quality of the
solutions that may be obtained at any given node.
The latter may be seen as a forward-checking tech-
nique; if the estimated LB is greater than the cur-
rent UB, then there will be no need to continue ex-
ploring the current decision because it would defi-
nitely not lead to a better solution. Note that the
LB is estimated by computing the real costs of al-
ready explored nodes in a given sub-branch plus the
minimum costs of shift patterns that could possibly
be assigned to the remaining variables/nurses. Al-
though B&B guarantees the solution’s optimality, it
may come with an exponential time cost given the
number of nurses and the domain size to be consid-
ered (O(dn), where d is the domain size and n the
number of nurses). To overcome this limitation, con-
straint propagation (Dechter and Cohen, 2003) is used
to reduce the search space and consequently minimize
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Figure 1: An example of the crossover operation.

Figure 2: An example of the RRM Mutation.

the B&B execution time. Constraint propagation is
also conducted as a pre-processing step before the ex-
ecution of B&B to reduce the variable domain sizes
by removing locally inconsistent values that violate
unary, binary, and k-ary constraints. Enforcing con-
straint propagation may result in two different sce-
narios; the first one consists in proving the inconsis-
tency of the problem in the case of removing all the
values from a given variable domain (no solution ex-
ists). The second scenario corresponds to removing
some of the values and obtaining a reduced-size do-
main which will requires less effort from the B&B al-
gorithm to search for the optimal solution. We apply
Node consistency (NC) (Larrosa, 2002) through the
unary constraints 2, 3, and 4 (in Section 3), and we
call B&B + NC, the search method using NC as a pre-
processing phase before running B&B. Furthermore,
we apply the Generalized Arc Consistency (GAC) al-
gorithm (Lecoutre and Szymanek, 2006; Cheng and
Yap, 2010) through global constraint 1 (in Section 3)
to eliminate inconsistent domain values that are not
part of any feasible solution, and we call, B&B + NC
+ GAC, the method using both NC and GAC as a pre-
processing step before running B& B.

5.2 SLS

We consider SLS variants: SLS, DFS+SLS, and DFS
+ NC + GAC + SLS. These variants work by obtain-
ing an initial solution and then trying to enhance it by
sequentially looking for a better value substitution for
each variable while maintaining the solution’s feasi-
bility. The difference between the three variants is the
method used to get the initial solution. For SLS, the
initial solution is obtained using a random search. In
DFS+SLS, the initial solution is found after running
a Depth-First-Search (DFS) and finding the first fea-
sible solution. Finally, for DFS + NC + GAC + SLS,
the initial solution is found following a DFS search
after enforcing constraint propagation (NC and GAC)
as a preprocessing step to eliminate inconsistent do-
main values and tackle the exponential time cost that
may come from DFS.

5.3 WOA

The WOA that we have adopted (Sadeghilalimi et al.,
2023) is an adaptation of the original (Mirjalili and
Lewis, 2016) for the NSP. WOA is inspired by the
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behavior of humpback whales and can be seen as a
combination of both the moth flame and the grey wolf
techniques (Camacho-Villalón et al., 2022). In WOA,
each whale corresponds to a chromosome as illus-
trated in Figures 1 and 2. Exploration is performed
with random whales movements through RRM, ScM,
SwM, and IM mutations. Exploitation is Achieved by
having each whale X move toward the best whale X∗

through shrinking encircling and spiral motions. In
the case of the NSP, these operators are defined as fol-
lows.

Shrinking Encircling

D = |C ·X∗(t)−X(t)| (12)

X(t +1) = X∗(t)−A ·D (13)

A = 2a · r−a (14)

C = 2 · r (15)

a and r are random parameters in [0,2] and [0,1] re-
spectively. C is set to 1. Equation 13 will then allow
whale X to move closer to X∗ by reducing (according
to A) the number of entries that are different in both
whales (using the Hamming distance).

Spiral Attack

Each whale (represented by X(t)) approaches its prey
(best whale, X∗) by following a spiral curve. b is a
constant and l is a random variable between [-1, 1].

X(t +1) = D · ebl · cos(2πl)+X∗(t) (16)

X(t +1) = X∗(t)−A ·D′
(17)

A = ebl · cos(2πl) (18)

To balance shrinking and spiral attacks, a random
parameter, p, is generated between [0, 1] to choose
between the two attacks as follows.

A =

{
2a · r−a p < 0.5
ebl · cos(2πl) p ≥ 0.5

(19)

6 EXPERIMENTATION

To evaluate the performance of our proposed GA-
based method, we conducted comparative exper-
iments against variants of B&B (Ben Said and
Mouhoub, 2022) and metaheuristics (SLS and WOA)
(Sadeghilalimi et al., 2023). All the algorithms are
implemented in MATLAB software on a computer
with a Intel Core i5-6200U processor at 2.3 GHz and

Table 2: The NSP parameters used in the experiments.

n d Q jk S jk wi L ni
5 7 1 4 5 2 3

10 7 1 7 5 2 3
15 7 1 12 5 2 3
20 7 1 15 5 2 3
30 7 1 25 5 2 3
50 7 1 35 5 2 3
60 7 1 45 5 2 3
80 7 1 65 5 2 3

Table 3: The cost table.

Nurse no. c(i, j)
Shift 1 Shift 2 Shift 3

1 0.81 0.16 0.64
2 0.90 0.79 0.37
3 0.12 0.31 0.81
4 0.91 0.52 0.53
5 0.63 0.16 0.35
6 0.09 0.60 0.93
7 0.27 0.26 0.87
8 0.54 0.65 0.55
9 0.95 0.68 0.62

10 0.96 0.74 0.58
11 0.15 0.45 0.20
12 0.97 0.08 0.30
13 0.95 0.22 0.47
14 0.48 0.91 0.23
15 0.80 0.22 0.84

8 GB of RAM. The NSP instances parameters and
cost functions are depicted in Tables 2 and 3. The pa-
rameters guiding the techniques we used in the exper-
iments are tuned, to their best using Chess Rating Sys-
tem (CRS-Tuning) (Veček et al., 2016). While CRS-
Tuning is comparable to other known tuning methods
such as Revac (Nannen and Eiben, 2007) and F-Race
(Birattari et al., 2002), it has several advantages as re-
ported in (Veček et al., 2016). For WOA, a and r are
randomly selected from [0,1] while l is randomly se-
lected from [−1,+1]. In the case of our proposed GA
method, a one-point crossover is chosen with proba-
bility 0.8, and the roulette wheel method is adopted.
For the mutation, we consider Swap Mutation, Se-
quence Swap Mutation, and Inversion Mutation, re-
spectively with probability 0.1, 0.02, and 0.08.

We have adopted the same population size for both
GAs and WOA. This is justified by the fact that the
function evaluation (fitness computation) cost is the
most expensive part in a nature-inspired technique,
and its related running time is directly affected by the
number of individuals in a population. Table 4 reports
on the experiment results comparing variants of the
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Table 4: Comparative running time and quality of the solution for all the methods.

Method
Number of Nurses

5 10 15 20 30 50 60 80
BS RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s)

GA + RRM 8.87 3.85 16.95 6.77 22.92 8.32 34.74 11.15 49.95 21.95 88.84 150.66 114.38 285.57 156.06 225.70
GA + SwM 9.01 6.31 17.06 6.82 24.58 8.45 35.19 11.57 51.2 22.01 89.12 189.72 114.99 298.75 156.89 331.64
GA + ScM 9.45 6.68 17.20 7.11 25.23 9.22 35.20 11.89 54.70 22.48 89.65 214.43 115.58 312.71 157.69 350.14
GA + IM 9.51 7.03 17.25 8.32 25.64 10.18 35.43 12.89 54.97 22.84 90.15 205.98 116.11 322.44 158.67 358.15

WOA 10.22 1.01 21.29 1.62 33.39 3.03 40.83 2.90 69.93 37.86 106.25 244.34 124.75 2221.78 177.66 3393.23
WOA + RRM 10.82 1.50 21.72 1.46 30.56 1.50 43.09 9.98 65.04 44.33 105.04 412.05 129.19 653.03 170.18 4196.58
WOA + SwM 10.29 0.95 22.81 1.53 32.48 0.97 41.85 14.96 65.28 24.40 103.26 340.61 127.09 1073.41 175.55 959.06
WOA + ScM 9.78 1.73 19.56 0.11 29.51 3.49 40.68 6.01 63.38 42.05 102.01 332.04 123.40 240.24 169.48 1301.61
WOA + IM 10.45 1.85 22.19 0.21 33.01 1.60 41.21 15.41 63.49 4.14 103.78 277.68 127.66 599.18 173.49 2005.55

SLS 11.57 0.69 24.10 0.50 32.99 1.23 47.28 1.12 72.32 1.17 109.49 1.49 142.92 1.97 189.89 2.79
DFS + SLS 14.86 18.90 28.68 164.11 38.91 345.57 43.62 404.75 76.08 1060.31 119.21 3873.79 148.34 4351.57 189.96 6901.90

DFS + NC + GAC + SLS 12.34 5.49 25.81 89.24 32.28 100.16 49.33 246.71 67.98 1394.28 109.96 3830.05 140.86 4781.31 185.54 5813.59
B&B + NC 9.68 1894 18.86 14415 25.55 22689 38.58 28137 52.34 34259 89.35 41459 - - - -

B&B + NC + GAC 9.68 534 18.86 11400 25.55 16211 38.58 23418 52.34 29768 89.35 37108 - - - -

Table 5: Comparative quality of the solution in Best, Average, and Standard deviation.

Method
Number of Nurses

5 10 15 20 30 50 60 80
Best Ave. Dev. Best Ave. Dev. Best Ave. Dev. Best Ave. Dev. Best Ave. Dev. Best Ave. Dev. Best Ave. Dev. Best Ave. Dev.

GA + RRM 8.87 10.12 0.95 16.95 18.12 1.12 22.92 24.01 1.42 34.74 36.21 1.39 49.95 51.54 1.51 88.84 90.27 1.61 114.38 116.30 1.67 156.06 158.39 1.49
GA + SwM 9.01 10.28 1.09 17.06 18.53 1.53 24.58 25.93 1.42 35.19 36.33 1.54 51.2 52.56 0.61 89.12 91.29 1.13 114.99 116.81 1.08 156.89 158.84 1.01
GA + ScM 9.45 10.37 0.73 17.20 18.79 0.64 25.23 26.39 0.59 35.20 36.77 0.46 54.70 56.22 1.23 89.65 93.02 1.75 115.58 117.11 1.32 157.69 159.55 1.18
GA + IM 9.51 10.85 0.69 17.25 18.74 0.64 25.64 27.2 1.08 35.43 37.14 1.82 54.97 56.89 1.49 90.15 93.41 1.81 116.11 118.21 1.82 158.67 161.01 1.48

WOA 10.22 11.79 0.76 21.29 22.33 0.88 33.39 35.21 1.45 40.83 42.25 1.77 69.93 71.09 1.31 106.25 109.2 1.75 124.75 126.5 1.4 177.66 179.29 0.91
WOA + RRM 10.82 11.28 0.69 21.72 23.01 1.93 30.56 32.15 1.2 43.09 44.98 1.38 65.04 67.25 1.39 105.04 107.34 2.18 129.19 131.35 1.67 170.18 172.71 1.48
WOA + SwM 10.29 11.89 1.54 22.81 24.51 1.45 32.48 34.33 1.69 41.85 43.39 1.67 65.28 68.01 2.18 103.26 105.21 1.88 127.09 129.92 2.22 175.55 178.18 1.49
WOA + ScM 9.78 11.15 1.4 19.56 21.57 1.27 29.51 31.35 2.13 40.68 42.59 1.69 63.38 65.83 1.86 102.01 105.2 1.12 123.40 125.35 2.58 169.48 171.96 1.46
WOA + IM 10.45 11.87 1.58 22.19 23.94 1.88 33.01 35.13 1.42 41.21 43.84 1.38 63.49 65.42 1.04 103.78 105.86 2.27 127.66 129.63 1.84 173.49 175.83 1.14

SLS 11.57 14.44 1.33 24.10 26.81 1.48 32.99 38.09 2.28 47.28 51.45 2.03 72.32 77.75 2.49 109.49 122.74 4.67 142.92 147.69 3.67 189.89 202.84 6.91

GA and WOA algorithms with B&B and SLS, as de-
scribed previously. The quality of the best solution re-
turned (BS) and the corresponding running time (RT)
were used as comparison criteria. All the results are
averaged over 20 runs. The experiments were con-
ducted on several NSP instances, with the number of
nurses varying from 5 to 80. Given that it is an exact
method, B& B returns the optimal solution for each
problem instance, up to 50 nurses. When the number
of nurses exceeds 50, B & B fails to return the optimal
solution due to its exponential time cost. For these
large instances, GA with RRM is the best method re-
garding the returned solution’s quality. The same re-
mark regarding the exponential time cost can be said
when adding DFS as an initial step for the SLS algo-
rithm. In both B&B and SLS, constraint propagation
does help lower the running time (as a consequence
of reducing the running time). However, this effort
is insufficient to compete with WOA and GA vari-
ants. SLS is the best method in terms of running time.
However, the quality of the solution returned by the
latter is inferior to those returned by variants of GA
and WOA. Given that our experiments are conducted
over 20 runs, we conducted a statistical analysis on
the solution returned by each metaheuristic. We re-
ported the results in Table 5 regarding the quality of
the returned solution.

7 CONCLUSION AND FUTURE
WORK

We have proposed a GA-based method to solve the
NSP. To evaluate the efficiency of our method, we
conducted experiments against exact and approximate
techniques. The obtained results are promising com-
pared to B&B, which suffers from its exponential
time cost and fails in returning solutions for large-size
problem instances.

In the near future, we plan to explore other nature-
inspired techniques (Hmer and Mouhoub, 2016; Ko-
rani and Mouhoub, 2021) including Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995)
and further plan to tackle the dynamic variant of the
NSP problem, which is characterized by the unpre-
dictable occurrence of events such as nurses call-
ing in sick or sudden changes in hospital demand
in particular scenarios (such as emergencies) (Bidar
and Mouhoub, 2022; Mouhoub, 2003). We will also
use variable ordering heuristics (Yong and Mouhoub,
2018) to improve the time efficiency of the B& B al-
gorithm.
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