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Abstract: Due to the growing number of surveillance cameras and rapid technological advancement, facial recognition
algorithms have been widely applied. However, their performance decreases in challenging environments,
such as those involving surveillance cameras with low-resolution images. To address this problem, in this
paper, we introduce SRDG, a super-resolution approach supported by two state-of-the-art methods: diffusion
models and classifier guidance. The diffusion process reconstructs the image, and the classifier refines the
image reconstruction based on a set of facial attributes. This combination of models is capable of working
with images with a very limited resolution (8×8 and 16×16), being suitable for surveillance scenarios where
subjects are typically distant from the camera. The experimental validation of the proposed approach shows
that super-resolution images exhibit enhanced details and improved visual quality. More importantly, when
using our super-resolution algorithm, the facial discriminability of images is improved compared to state-of-
the-art super-resolution approaches, resulting in a significant increase in face recognition accuracy. To the best
of our knowledge, this is the first time classifier guidance has been applied to refine super-resolution results of
images from surveillance cameras. Source code is available at https://github.com/marcelowds/SRDG.

1 INTRODUCTION

Super-resolution (SR) refers to the process of trans-
forming a low-resolution (LR) degraded image into
a higher resolution and less noisy image, aiming to
enhance the visual information contained in the LR
image (Abiantun et al., 2019).

For surveillance environments and real-world sce-
narios, the performance of super-resolution (SR) and
face recognition (FR) algorithms, such as AdaFace
(Kim et al., 2022b) and ArcFace (Deng et al., 2019),
falls drastically. The numerous challenges posed by
factors such as pose, variations in lighting conditions,
occlusions and other pertinent issues are the main
contributors to this decline (Zhu et al., 2016).

The use of soft biometrics, such as gender, facial
marks, age, and other characteristics, has the potential
to improve facial recognition and super-resolution re-
sults (Lee et al., 2018; Li et al., 2020; Yu et al., 2018;
Yu et al., 2020; Lu et al., 2018). Considering that
soft biometrics are available in many cases, this ad-
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ditional information is used in this work to augment
the performance of SR algorithms. More specifically,
we will use soft biometrics to simultaneously improve
the quality of super-resolved images and the accuracy
of face recognition methods.

Recently, numerous works that use diffusion mod-
els have emerged (as detailed in the surveys (Yang
et al., 2022; Cao et al., 2022; Croitoru et al., 2022; Li
et al., 2023)). These models employ the concept of
perturbing data with different noise scales and train a
neural network to predict the noise of the data. Once
the neural network is trained, it becomes possible to
perform reverse diffusion, removing noise and gener-
ating a specific data type.

An additional tool usually employed in diffusion
models is classifier guidance, which utilizes the gra-
dient of an attribute classifier combined with the score
function (i.e., the gradient of the log probability den-
sity with respect to data) of a diffusion model to orient
the reverse diffusion process (Nichol and Dhariwal,
2021). This guidance allows the output to be directed
to a pre-defined class (Song et al., 2021).

Based on these ideas, this paper addresses the
challenges that SR and facial recognition algorithms
face in surveillance environments. By combining the
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Figure 1: (a) Illustration of the conventional super-
resolution algorithm based on stochastic differential equa-
tions SDE-SR (Santos et al., 2022). (b) Our method: The
classifier guidance approach is used to include complemen-
tary attributes for generating more detailed super-resolution
images. With higher-quality images, face recognition can
be performed more accurately.

data generation capabilities of diffusion models (San-
tos et al., 2022; Ho et al., 2020) with classifier guid-
ance (Dhariwal and Nichol, 2021) (see Figure 1), we
seek to enhance the quality of extremely LR images
(8×8 and 16×16) obtained from surveillance cameras
in unconstrained scenarios.

The main contribution of our work lies in employ-
ing soft biometrics as a source of information for the
attribute classifier to guide the reverse diffusion pro-
cess. The effectiveness of the method is assessed in
the Quis-Campi dataset(Neves et al., 2018), which
comprises realistic data from surveillance scenarios.
The proposed approach yielded superior qualitative
and quantitative results, as demonstrated by the visual
quality of the images and by the metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM). Additionally, our methodology
excelled in face recognition metrics, such as Area Un-
der the Curve (AUC) (1:1 verification protocol) and
accuracy (1:N identification protocol).

This paper is structured in the following manner:
Section 2 includes the related work, Section 3 intro-
duces the proposed method, and Section 4 outlines
our experiments and the corresponding results. The
conclusions of the paper are outlined in Section 5.

2 RELATED WORK

One important precursor work in diffusion models
was (Sohl-Dickstein et al., 2015), where consider-
ations from non-equilibrium thermodynamics were
used to generate images. From then on, two other
models of importance were the Denoising Diffusion
Probabilistic Models (DDPMs) (Ho et al., 2020) and
Score-Based Generative Models (SGMs). In (Song
et al., 2021), DDPM and SGD are generalized for
continuous time steps and noise levels employing a
Stochastic Differential Equation (SDE), giving rise to
the models VP (Variation Preserving) and VE (Varia-
tion Exploding), respectively.

Diffusion models can be applied to data gener-
ation across diverse domains such as generation of
audio (Chen et al., 2020), graphs (Niu et al., 2020)
and shapes (Cai et al., 2020) as well as for image
synthesis (Ho et al., 2020; Song and Ermon, 2019;
Song et al., 2021). For the image synthesis task, dif-
fusion models provide more satisfactory image qual-
ity and training stability compared to Generative Ad-
versarial Networks (GANs) (Dhariwal and Nichol,
2021). Among other applications, domain translation
can also be combined with diffusion models for text-
to-image translation (Saharia et al., 2022).

Inspired by the DDPM diffusion model, SR3 (Sa-
haria et al., 2021) transforms images with pure noise
in SR images by conditioning a neural network on
an LR input through a Markov chain. (Li et al.,
2022) proposed SRDiff, which utilizes the same idea
of SR3, but the difference is that the residual SR im-
age is estimated, and the final SR image is obtained
by adding the predicted SR residue to the original im-
age upscaled. (Gao et al., 2023) is an improvement
of SR3 and can perform SR with a continuous scale
factor. The work (Santos et al., 2022) develops SDE-
SR, which also performs SR using diffusion models
but employing a SDE.

Despite the several advantages of diffusion mod-
els, such as data quality and training stability (unlike
GANs), a weakness of these models is their high exe-
cution time. The works (Song et al., 2020; Jolicoeur-
Martineau et al., 2021; Vahdat et al., 2021) have been
dedicated to increase the efficiency of diffusion mod-
els while improving the quality of the resulting sam-
ples. (Meng et al., 2023) performs diffusion in spe-
cific tasks using as few as 2−4 denoising steps.

Diffusion models can also be used as conditional
generators. (Dhariwal and Nichol, 2021) describes a
method for using gradients from a classifier to guide
a diffusion model during sampling. This conditional
generator method will be used in this work.
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3 PROPOSED METHOD

Despite the low quality of data acquired in surveil-
lance scenarios, specific attributes, such as gender, the
use of eyeglasses, beard, and others, can sometimes
be determined, see Figure 2. In this manner, these ad-
ditional pieces of information can be utilized to per-
form SR and facial recognition. Next we show how
the stochastic differential equations-based SR tech-
nique can be further improved to perform SR by in-
corporating complementary attributes. We will refer
to our method as SRDG (Super-Resolution with Dif-
fusion Guidance).

Figure 2: An image captured by a surveillance camera en-
ables an expert to gather key attributes such as gender, the
presence of a beard, eyeglasses, and other characteristics
during a forensic analysis.

In (Song et al., 2021), diffusion models are mod-
eled as a continuous diffusion process {x(t)}T

t=0 by
the Itô SDE

dx = f(x, t)dt +g(t)dw, (1)
where f(x, t) is the drift coefficient, g(t) is a diffusion
coefficient, and w is a Wiener process. For more de-
tails about Itô SDE and Wiener process, see (Kloeden
and Platen, 2011; Särkkä and Solin, 2019). In (Ander-
son, 1982), it was shown that it is possible to reverse
the diffusion process (Eq. 1) using another diffusion
process given by

dx = [f(x, t)−g(t)2
∇x log pt(x)]dt +g(t)dw̄, (2)

where dw̄ is a Wiener process running backwards in
time.

Similar to (Santos et al., 2022), here we consider x
as the images to be denoised and y as the LR images.
A neural network sθ(x,y, t) conditioned on x, y, t is
used to approximate ∇x log pt(x). This is performed
by optimizing the loss function (Vincent, 2011)

min
θ

Et∼U[0,T ]Ex0∼p(x0)Ex(t)∼pt (x(t)|x(0)
[
λ(t)

×∥sθ(x(t),y, t)−∇x(t) log p(x(t)|x(0))∥2
2
]
, (3)

In this work, we consider pt(x|c) on the reverse pro-
cess as dependent on x and conditioned to the class c
to which the image belongs. In this case, using Bayes’
rule, we have

∇x log pt(x|c) = ∇x log pt(x)+∇x log pt(c|x). (4)

But ∇x log pt(x) is already approximated by sθ(x,y, t)
and pt(c|x) is a time dependent classifier C. There-
fore, the reverse process given by Equation 2 becomes

dx =
[
f(x, t)−g(t)2 (sθ(x,y, t)+h∇x logC(c|x))

]
dt

+g(t)dw̄.
(5)

Hence, with a classifier C(c|x) trained on noisy im-
ages, it is possible to condition the image generation
of the reverse process. Details about the dataset uti-
lized to train the classifier, its architecture and train-
ing parameters are given in Subsections 4.1 and 4.2.
Note that, as the reverse process is already condi-
tioned by the LR image y, and as we are interested in
a refinement of the SR images, the class c and image
y must be coherent, since classifier-guided diffusion
sampling can be interpreted as attempting to confuse
an image classifier with a gradient-based adversarial
attack (Ho and Salimans, 2022). So if LR face image
y has eyeglasses, class c must also have the glasses
attribute defined as True. Similar to other works, the
classifier’s gradient will be scaled by a constant fac-
tor h > 1, which is responsible for generating high-
quality and less diverse images (Kim et al., 2022a;
Ho and Salimans, 2022; Dhariwal and Nichol, 2021).

We are also following the VE (Variation Explod-
ing) configuration defined in (Song et al., 2021) and
(Santos et al., 2022). In this case, f(x, t) and g(t) are
given respectively by

f(x, t) = 0, g(t) =

√
dσ2(t)

dt
. (6)

Here we will use the same σ(t) defined in (Song and
Ermon, 2019) and given by σ(t) = σmin(σmax/σmin)

t .
To perform the training we must have p(x(t)|x(0)) to
compute the loss function (Equation 3). The mean
and covariance of p(xt |x0) are given by (Kloeden and
Platen, 2011; Song et al., 2021)

µµµ(t) = x(0), ΣΣΣ(t) = [σ2(t)−σ
2(0)]I, (7)

so the term ∇x log p(x(t)|x(0)) can be analytically
computed in Equation 3. Once we have trained the
neural network sθ(x,y, t) and the classifier C(c|x), it
is possible to obtain SR images by performing the re-
verse diffusion process. In other words, starting with
a pure noisy image xT at t = T , we solve Equation 5
using Euler’s method, and we obtain, at t = 0, the SR
image x0 in a predefined class c.
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4 EXPERIMENTS AND RESULTS

4.1 Datasets

In this study, three distinct datasets were employed:
(i) FFHQ (Karras et al., 2019) for training the SR
model, (ii) CelebA (Liu et al., 2015) for classifier
training, and (iii) Quis-Campi (Neves et al., 2018)
for method validation and fine-tuning of the SR base
model (SR model without classifier guidance).

Regarding the Quis-Campi dataset, 90 identities
were considered for the method validation. For each
identity, we used a mugshot frontal acquired in a con-
trolled environment as a gallery image and five probe
images from a surveillance camera. The remaining
probe images where a face was visible were used to
fine-tune the SR method.

4.2 Architectures and Training

Similar to other diffusion models, the network archi-
tecture of the main SR model is based on the U-net ar-
chitecture (Ho et al., 2020) but adapted to receive the
LR image y, concatenated with the image to be de-
noised xt . Following (Song et al., 2021) and (Santos
et al., 2022), we set the parameters of σ(t) equals to
σmin = 0.01 and σmax = 348. For the model training,
Adam optimizer was used with a warm-up of 5000
steps and a learning rate of 2×10−4.

The training process of the SR base model (i.e.,
the SR model without the classifier) included two key
stages. Initially, high-resolution (HR) images from
the FFHQ dataset were utilized. To mimic LR scenar-
ios, the images were downscaled by factors of 8× and
16×, generating pairs of LR and HR images. The al-
gorithm was then trained across 106 steps using these
paired images. Subsequently, the SR base model un-
derwent fine-tuning through an additional 105 training
steps using images from the Quis-Campi dataset. For
SR image generation, the total number of time steps
was set in 2000.

During the reconstruction phase, the diffusion
guidance is performed with the Densenet classifier
(Huang et al., 2017), adapted to incorporate the time
variable, which correlates with the noise level present
in the image. The training took place for 50 epochs,
with a learning rate of 10−3, a batch size of 4, and uti-
lizing AdamW optimizer. The scaling factor for the
classifier gradient was configured to be h = 50.

The accuracy of the classifier is dependent on
the diffusion time. Figure 3 shows the accuracy
of the classifier as a function of time for three at-
tributes: gender, beard and eyeglasses. As can be
seen, the classifier achieves accuracy higher than 88%

for shorter time intervals. However, as the time in-
creases, the accuracy rapidly declines due to the pre-
dominant noise in the image.
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Figure 3: Classifier accuracy as a function of time for the
attributes gender, beard and eyeglasses.

4.3 Feature Extraction

To construct a feature vector, a 512-dimensional de-
scriptor was extracted from images using the ResNet
backbone (He et al., 2016) with the modifications per-
formed by (Kim et al., 2022b) and pre-trained on
CASIA-WebFace (Yi et al., 2014). For the face recog-
nition task, we relied on AdaFace (Kim et al., 2022b),
and image descriptors were compared using the co-
sine similarity metric.

4.4 Experiments

Before the generation of SR images, the attributes are
determined through forensic analysis, although they
can also be obtained using the classifier trained with
LR images.

In order to assess the significance of soft attributes
in both SR and facial recognition, we evaluated our
approach on 8×8 and 16×16 images and used an up-
sampling factor of 16× and 8× to obtain 128×128
super-resolved images, respectively.

In the recognition task, the super-resolved im-
ages are matched against the gallery images, whereas
within the scope of the SR task, the recovered images
are compared with the original probe images. Our
method is compared against the methods SR3 (Sa-
haria et al., 2021), IDM (Gao et al., 2023), and the
baseline SDE-SR (Santos et al., 2022).

4.5 Results

Given the scarcity of SR algorithms that perform 16×
upsampling, our comparison for this scale is solely
conducted with the SR3 and SDE-SR algorithms,
which were retrained for 16× upsampling. The quan-
titative results of the SR process are presented in Ta-
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Figure 4: 8× super-resolution results with the use of soft biometrics.

ble 1, highlighting the superior performance of our
algorithm across PSNR and SSIM metrics. In ad-
dition, Table 2 reports the performance of a state-
of-the-art face recognition algorithm when provided
with original LR and SR images. The results show a
significant difference in face recognition performance
when SR techniques are used in surveillance scenar-
ios, which justifies using these algorithms. Regarding
the comparison between SR strategies, our approach
surpasses the remaining methods, evidencing the ad-
vantages of the classifier guidance process.

Figures 4 and 5 show qualitative results of 8× and
16× SR algorithms, respectivelly. As can be seen,
our approach can recover even the finest details as
eyeglasses contours and retain the discriminant visual
features of the face, explaining the quantitative im-
provements across all face recognition metrics.

Table 1: PSNR and SSIM results for the Quis-Campi
dataset with upscaling factor of 8× and 16×.

PSNR ↑ SSIM ↑
SR Method 8× 16× 8× 16×

SR3 30.71 23.57 0.86 0.65
IDM 26.25 - 0.78 -

SDE-SR 30.34 24.26 0.84 0.69
SRDG (Ours) 32.46 27.49 0.88 0.81

4.6 Ablation Study

Here, our method is compared with the SDE-SR base-
line. Tests on our algorithm were conducted using
only one attribute (gender), and also three attributes
(gender, beard and eyeglasses). For each of these
cases, the models with and without fine-tuning were
tested.

Table 3 shows the ablation study performed to val-
idate the use of soft biometrics on SRDG (upsampling
factors of 8× and 16×), applied to face recognition
tasks. As can be seen, higher values for the AUC met-
ric are obtained with our method, i.e., when attributes
are used (one or three), and this holds for both the case
with fine-tuning and the case without fine-tuning.

Concerning recognition accuracy, the highest val-
ues without fine-tuning are obtained with our method.
However, upon fine-tuning, the impact of attributes is
more relevant only for an upsampling factor of 8×.
For more reliable results from SDE-SR and SRDG,
methods to minimize the distortion of the person’s
identity are necessary during the image reconstruction
since SR algorithms are ill-posed problems (Baker
and Kanade, 2002).

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

430



HR LR SR3 SDE-SR SRDG (Ours)

Figure 5: 16× super-resolution results with the use of soft biometrics.

5 CONCLUSIONS AND FUTURE
WORK

Conventional SR techniques based on SDEs depend
exclusively on the score function for creating a SR im-
age through reverse diffusion. In contrast, this work
introduces a SR method that relies on complementary
attributes to enhance the quality of super-resolved im-
ages. Our approach employs the gradient of an at-
tribute classifier to guide the reverse process. During
the reconstruction process, our method can not only
recover discernible features such as facial traits but
also subtle characteristics that improve the discrim-
inability for face recognition. A significant advantage
of using classifier guidance is that the SR model does
not need to be retrained, which provides practicality
to the method.

The efficacy of our approach in restoring uncom-
monly recovered structures and local features by SR
algorithms has been demonstrated by the evaluation
of the proposed approach with respect to image qual-
ity and face recognition metrics.

Regarding image quality, our approach is capa-
ble of recovering finer details from extremely low-

resolution images (8×8 or 16×16), which has been
confirmed by improvement in quantitative (PSNR and
SSIM) and qualitative (visually) results over compet-
ing SR approaches.

The experiments on the Quis-Campi dataset ev-
idence a significant improvement in the recognition
performance when using the super-resolved images
produced by our approach, indicating that our algo-
rithm has the potential for working in surveillance
scenarios where the data resolution is typically very
small.

Given that the initial attributes are extracted from
LR images, uncertainties in their predictions may
propagate to SR images, resulting in inaccurate out-
comes. Therefore, employing SRDG in scenarios
with low-accuracy attribute predictions should be
avoided. Furthermore, SR images suffer from bias
issues due to the ill-posedness of SR methods. Con-
sequently, although our method provides superior re-
sults for face recognition, it can only be applied in
real situations after these bias problems are resolved.
In future works, a method must be developed to min-
imize distortions in the person’s identity when work-
ing with diffusion models.
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Table 2: The 1:1 verification and 1:N identification (Rank-1, Rank-5 and Rank-10) results from 8× and 16× super-resolution
for Quis-Campi dataset with AdaFace FR model. The superscript † stands for fine-tuned.

AUC Rank-1 (%) Rank-5 (%) Rank-10 (%)
SR Method 8× 16× 8× 16× 8× 16× 8× 16×

LR 0.816 0.610 23.78 5.11 46.89 16.44 58.67 24.44
SR3 0.914 0.702 45.78 7.78 69.56 23.11 79.77 34.44
IDM 0.885 - 28.22 - 56.44 - 70.00 -

SDE-SR 0.917 0.697 50.00 9.33 72.67 24.00 81.56 36.67
SRDG (Ours) 0.920 0.696 49.33 10.00 73.11 25.56 82.00 36.00

SDE-SR† 0.922 0.812 57.78 26.00 76.22 50.44 83.56 63.78
SRDG† (Ours) 0.929 0.818 57.11 24.67 79.11 48.44 85.56 64.44

Table 3: Ablation study for the 1:1 verification and 1:N identification (Rank-1, Rank-5 and Rank-10) results from 8× and
16× super-resolution for Quis-Campi dataset with AdaFace FR model. The superscript † stands for fine-tuned (FT).

AUC Rank-1 (%) Rank-5 (%) Rank-10 (%)
FT # Attrs SR Method 8× 16× 8× 16× 8× 16× 8× 16×

- SDE-SR 0.917 0.697 50.00 9.33 72.67 24.00 81.56 36.67
1 SRDG (Ours) 0.918 0.701 50.00 10.44 72.22 24.44 81.78 36.22
3 SRDG (Ours) 0.920 0.696 49.33 10.00 73.11 25.56 82.00 36.00
- SDE-SR† 0.922 0.812 57.78 26.00 76.22 50.44 83.56 63.78
1 SRDG† (Ours) 0.926 0.814 58.00 23.78 77.11 49.11 82.67 63.56
3 SRDG† (Ours) 0.929 0.818 57.11 24.67 79.11 48.44 85.56 64.44
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