
Multi-Agent Path Finding: Policies Instead of Plans

Jakub Mestek a and Roman Barták b

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Keywords: Multi-Agent Path Finding, Non-Deterministic Environment, Policies.

Abstract: The task of Multi-Agent Path Finding (MAPF) problem is to find collision-free plans for a set of agents moving
from their starting locations to their destinations. In the classical variant of MAPF, a plan for an agent is a
sequence of actions. In this paper, we suggest a novel approach to solving this problem in a non-deterministic
environment – constructing a solution in the form of policies (one for each agent). The policy prescribes the
agent which action it should take in a given situation described by a location and a timestep.

1 INTRODUCTION

Multi-Agent Pathfinding is a problem of constructing
collision-free plans for a group of agents. The prob-
lem has many applications in various areas, including
automated warehouses, aircraft taxiing on airfields,
optimal crossroads controlling, and units navigation
in video games.

Classical MAPF instance (Stern et al., 2019) con-
sists of a graph G = (V,E) and a set of agents A. For
each agent a ∈ A, its source and destination (goal)
vertices are given. We denoted them as s(a) and
g(a), respectively. Time is discretized into unit-long
timesteps. During every timestep, each agent can ei-
ther move to an adjacent vertex or stay in its current
vertex. A plan for an agent is a sequence of actions
that leads the agent from its source to its destination.
A solution of the MAPF instance is then a set of plans
for individual agents. The main requirement for a
solution is the nonexistence of conflicts (collisions)
during execution. We use the common three types of
conflicts which are vertex, edge, and swapping con-
flict (Stern et al., 2019). A vertex conflict is a situa-
tion when two agents are located in the same vertex
at the same timestep. An edge or swapping conflict
happens when two agents travel the same edge at the
same timestep in the same or opposite direction, re-
spectively.

In many real-world environments, agents are not
able to follow the plans precisely – they might get de-
layed or even perform a wrong action (e.g., do not

a https://orcid.org/0009-0003-8765-5092
b https://orcid.org/0000-0002-6717-8175

turn) (Barták et al., 2019), (Li et al., 2021a). There-
fore, some kind of robustness is required – a (minor)
deviation from the plan should not cause a collision
with another agent.

This paper introduces a new method of achieving
robustness via looking for a solution in the form of a
policy that allows the agent to take different actions
based on the current time. This approach enables a
delayed agent both to avoid a location that is already
occupied and to use a shorter path that has become
free (due to arriving later than expected).

1.1 Related Work

Probably the simplest form of non-determinism in
an environment is the possibility of agents being de-
layed. Such delay might then cause a collision, even
though the original solution is conflict-free. There-
fore, the problem of finding a robust solution has been
already quite extensively studied.

Atzmon et al. (Atzmon et al., 2018) formalized
the concept of delay as an insertion of unexpected
wait action into the agent’s plan and introduced the
notion of k-robustness. A solution of the MAPF prob-
lem is k-robust if any set of at most k delays (for
each agent) does not cause a collision. The approach
is quite successful in avoiding collisions ((Atzmon
et al., 2018), (Barták et al., 2019)). However, the main
drawback is the prolongation of agents’ plans – the
condition basically requires each vertex to be free for
at least k timesteps before another agent is allowed to
enter it.

Nekvinda and Barták (Nekvinda and Barták,
2021) suggested achieving k-robustness by using al-

Mestek, J. and Barták, R.
Multi-Agent Path Finding: Policies Instead of Plans.
DOI: 10.5220/0012397200003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 1, pages 95-104
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

95

ternative plans, instead of just time-separating the
agents (i.e., adding wait actions). Plan with alterna-
tives has a tree-like structure with one main branch –
the original classical plan – and several other branches
(alternatives) rooting from the main branch. Dur-
ing execution, each agent starts by following its main
plan. In case of experiencing a delay (big enough
to cause a collision), an agent might be detoured to
one of the alternative branches. Mainly due to com-
putability reasons, their method only provides alter-
natives for the main plan, not alternatives for alterna-
tives. Furthermore, no collisions are guaranteed only
among pairs of agents both following the main plan
and among pairs of agents, where one follows its main
plan and the second one its alternative plan. There is
no guarantee for agents who both follow an alterna-
tive plan.

Another approach to combat unexpected delays
is p-robustness (Atzmon et al., 2020) which aims to
find a solution that will be executed successfully (i.e.,
without collisions) with a probability at least p.

Shahar et al. (Shahar et al., 2021) worked with
a different model of delays, called MAPF with Time
Uncertainty (MAPF-TU). In a MAPF-TU instance, an
interval of possible duration (in timesteps) is assigned
to each action (edge in the graph). The real duration
of the action during execution is then a number from
the interval. The task of MAPF-TU is to find a safe
solution. A solution is safe if it guarantees no col-
lisions during execution for any possible set of real
action durations.

2 PRELIMINARIES

2.1 Conflict Based Search

Conflict Based Search (CBS), introduced by (Sharon
et al., 2012), is one of the most widely-used algo-
rithms for solving MAPF. CBS is a two-level algo-
rithm. The upper level solves coordination of agents,
while the lower level searches for plans (shortest
paths) for each agent individually. This modularity
makes CBS easily modifiable for different variants of
MAPF, including ours. In this section, we describe
the basic variant of CBS in detail.

Firstly, let us define some basic notions. A con-
flict of agents ai and a j who should be (given current
solution) simultaneously in a timestep t located in a
vertex v is denoted by (ai,a j, t,v). A constraint for
an agent ai is a tuple (ai,v, t) denoting that the agent
is prohibited from being in vertex v in timestep t. A
solution (set of plans) is consistent with a given set of
constraints C if all plans respect given constraints. A

solution is valid if there are no conflicts among agents.
The idea of CBS is as follows. We maintain a set

of constraints, initially empty. We find the cheapest
consistent solution and check it for validity. If there is
any conflict, the conflict is resolved by adding a con-
straint that prevents that conflict. We iterate this step
until a valid solution is found. A conflict (ai,a j, t,v)
can be resolved by adding one of the constraints
(ai,v, t) or (a j,v, t). In order to obtain an optimal solu-
tion, we need to explore both options. Ultimately, this
leads to the so-called Constraint Tree. Optimization is
handled by the higher level of CBS that searches the
Constraint Tree using best-first search which ensures
finding an optimal solution.

The task of the low-level algorithm is to compute
a consistent solution in each step. This can be done
individually for each agent – basically, it is a shortest-
path problem, that just has to avoid the prohibited
states.

Over recent years, CBS has received several im-
provements that make it a state-of-the-art algorithm
for classical MAPF, such as Conflict Avoidance Ta-
ble (CAT) (Sharon et al., 2012), Priority Conflict (PC)
and Conflict Bypassing (Li et al., 2019), or Corridor
Reasoning (Li et al., 2021b).

2.2 Markov Decision Process

Markov Decision Process is a sequential decision pro-
cess in a non-deterministic (stochastic) environment.
Following Sutton and Barto (Sutton and Barto, 2018),
MDP is a tuple (S,A,R, p). S denotes a finite set of
states, including starting state s0, A a finite set of ac-
tions, R is a set of possible rewards and a function
p : S×R× S×A→ [0,1] describes dynamics of the
system – the value p(s′,r|s,a) is the probability of
getting to state s′ and obtaining reward r when the
agent executes action a in state s. Therefore, p is re-
quired to satisfy the following property:

∑
s′∈S

∑
r∈R

p(s′,r|s,a) = 1, for all s ∈ S,a ∈ A.

In other words, for each choice of s and a, p specifies
a probability distribution over {(s′,r)}.

A solution to the MDP is a policy π : S→ A, i.e.,
a function that for each state s recommends an action
π(s) that the agent should perform in that state.

Quality of a policy π is measured using return –
the cumulative sum of rewards obtained by the agent
in the environment, possibly discounted by a discount
factor γ (real number between 0 and 1). The purpose
of the discount factor is to decrease the effect of dis-
tant actions on the actual value of return and to ensure
that the return is a finite number even in the case of an
infinite horizon.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

96

Due to the stochasticity of the environment, the
return might differ each time the agent runs in the en-
vironment. We define a value function vπ(s) of a state
s under a policy π as the expected return when starting
in s and following π.

The optimal policy π⋆ is then such a policy that
maximizes the value function vπ⋆(s0) of the starting
state s0. The value function of the optimal policy is
called utility, denoted U(s) = vπ⋆(s).

The relation between rewards and value functions
is called the Bellman equation. For the utilities (of
optimal policy), it holds

U(s) = max
a∈A(s)

∑
s′

∑
r

p(s′,r|s,a)
(
r+ γU(s′)

)
, (1)

which we can rewrite using expectation over p to

U(s) = max
a∈A(s)

E s′,r∼P(s,a)
(
r+ γU(s′)

)
. (2)

Using the Bellman equation, we can compute the
optimal policy, for example, by the value iteration al-
gorithm (Howard, 1960).

For details on MDP, see, e.g., Sutton and Barto
(Sutton and Barto, 2018), or Russell and Norvig (Rus-
sell and Norvig, 2010).

3 OUR APPROACH

3.1 Non-Deterministic MAPF

Environment. We use the following model of a
non-deterministic environment, inspired by the model
used in MAPF-TU (Shahar et al., 2021).

The environment is represented in a standard way
as graph G= (V,E). Each edge (u,v), representing an
action available in vertex u, is associated with a set of
possible outcomes {(pi,vi, li)}i. Outcome (pi,vi, li)
means that with probability pi, the agent ends up in
vertex vi, possibly different from v, and the real dura-
tion (length) of the action is li timesteps.

This representation enables us to express both the
stochasticity of real durations of actions (modeling
delays) and non-determinism in real action outcomes
(modeling wrong turn). In the former case, the result-
ing vertex vi is v for all outcomes of (u,v); while in
the latter, resulting vertices of some outcomes are set
to other vertices than v – e.g., other neighbors of u.

Furthermore, as the explicit distribution of possi-
ble action results is given, we can directly compute
(and optimize) the expected length of the given plan.

Collision-Free Solution. A solution of nondeter-
ministic MAPF is a set of policies {πa}. A (single-
agent) policy πa is a function that for current timestep

t and current location v of the agent a outputs an ac-
tion πa(v, t). The solution is required to be collision-
free. In order to formalize this property, we adopt a
notion of safe solution (Shahar et al., 2021). A solu-
tion is called safe if there exists no such combination
of real outcomes of executed actions that would lead
to a vertex, edge, or swapping conflict.

Cost of Solution. Real cost of a single-agent pol-
icy πa is the least timestep t when the agent arrives
at its destination and will never leave it – stay-on-
target scenario (Stern et al., 2019). Because of a non-
deterministic environment, the real cost depends on
the actual trajectory of the agent (actual outcomes of
performed actions) and thus might differ if the policy
is executed multiple times. Therefore we define also
the expected cost of the policy as the expected value
of real cost over all possible agent’s trajectories.

For a complete solution of a given nondetermin-
istic MAPF instance (set of policies), we then define
expected SoC of the solution to be the sum of expected
costs of individual policies.

3.2 DeltaPolicyCBS

We present a DeltaPolicyCBS, an algorithm that finds
a safe optimal (in terms of expected SoC) solution of a
given instance of nondeterministic MAPF. DeltaPol-
icyCBS is a modification of classical Conflict-Based
Search that outputs single agent plans in the form of
policy instead of action sequence.

The most important modification is the lower level
of CBS – instead of the shortest path we need to
output a minimum-expected-cost policy that respects
given constraints. Another necessary modification is
the addition of a procedure that computes potential
presence of an agent under the given policy. The high
level of DeltaPolicyCBS then looks for potential con-
flicts among agents and resolves them in a standard
way by adding constraints. A potential conflict is an
element of a non-empty intersection of the potential
presences of two agents.

3.2.1 Computing Minimum Cost Policy

In case of no constraints, the problem of computing
the minimum expected cost policy for a given agent a
can be easily formulated as a Markov Decision Pro-
cess with an infinite horizon.

We set the set of states to be V (vertices of the
graph), set of available actions in vertex v to Av =
{(v,w) | w ∈V,(v,w) ∈ E} (all neighbors, including a
loop (v,v) that represents wait action) and the prob-
ability P(v′i, li|v,a) of ending up in vertex v′i and ob-
taining reward li when action a is performed in vertex

Multi-Agent Path Finding: Policies Instead of Plans

97

v to be equal to pi if a ∈ Av and (pi,v′i, li) is a possible
outcome of the action. Otherwise, P(v′i, li|v,a) = 0.

We consider wait actions to be always determin-
istic, therefore for each vertex v the wait action (v,v)
has exactly one possible outcome (1,v,1) – with prob-
ability 1, the agent will stay in vertex v and the dura-
tion of the action is 1 timestep. So, P(v,1|v,(v,v))= 1.

The only exception is the wait action in agent’s
destination vertex g = g(a). We set the reward for
such action to be 0, i.e., P(g,0|g,(g,g)) = 1 – when
the agent executes wait action in g, it stays in g but re-
ceives reward 0 (instead of 1). Effectively, this means
that waiting at the destination does not increase the
total return and makes the destination an absorbing
state of the MDP – note, that we minimize the return
(utility), see next paragraph.

For given destination vertex g (= g(a)) and pol-
icy π : V → A, the expected travel time dπ(v) from
a vertex v to g is equal to E v′,l∼Pπ(v)

l + dπ(v′), i.e.,
an expectation over possible action outcomes of the
sum of the action duration and expected travel time
from next vertex. Therefore, dπ(v) is equal to the ex-
pected utility of state v in the above-defined MDP if
one is minimizing utility. Note that minimization of
utility in MDP is equivalent to maximization of utility
in MDP with negative rewards.

The optimal policy for an agent can therefore be
computed as the optimal policy of above mentioned
MDP. We can use standard algorithms, such as value
iteration.

In the case of a non-empty set of constraints, the
computation of the policy is a bit complicated. We
have to ensure that an agent a following its policy πa
will never be in a vertex or edge x in timestep t if
(a, t,x) is one of the constraints.

We can still formulate the problem as MDP, as
follows: The set of states is V × T , initial state is
(s(a),0). We require the optimal policy to bring the
agent to a state (g(a), t) (for any t) as soon as possible
(and then keep the agent in the vertex g(a)). There-
fore, we set the rewards in the same way (to be the
real duration of the action), except for waiting in the
agent’s destination vertex, where the reward (penal-
ization) will be 0 only for t ≥ Tgoal (until that it will
be 1 as for other wait actions). Tgoal is a timestep since
which the agent can stay at its destination forever, i.e.,
it is the timestep of the last constraint denying the des-
tination vertex.

Formally,

• set of states is V ×T ,

• set of available actions in given state is A(v,t) ⊆ Av
– given the constraints, an action is not available
at given timestep t if any of its possible outcomes
would lead to banned state (v′, t ′),

• probability of ending in state (v′i, t+ li) and obtain-
ing reward li (when executing an action a in state
(v, t)) is P((v′i, t + li), li|(v, t),a) = pi, if a ∈ A(v,t)
and (pi,v′i, li) is a possible outcome of a; 0 other-
wise.

Still, we need to work with infinite horizon MDP.
Hence, the presented formulation would lead to an in-
finite set of timesteps T and to an infinite set of MDP
states. However, we need the timesteps in states just
to be able to express variable (un)availability of ac-
tions. An action a from vertex v is unavailable only
if using it would lead to a violation of any constraint.
Thus, A(v,t) depends on t only for t less than or equal
to the timestep of the last constraint, let us denote it
tmax. Later (for t > tmax), all actions are available, i.e.,
A(v,t) = Av.

Therefore, for any t > tmax, the expected travel
time dπ(v, t) is equal to the expected travel time from
the version of MDP without constraints. Thus, the
optimal policy is the same as the optimal policy for
MDP without constraints (for t > tmax).

Provided that the action durations are positive,
an optimal policy can be computed as follows: For
t > tmax we use the precomputed policy from the ver-
sion without constraints. For t ≤ tmax we compute
the policy using the Bellman equation. We use dy-
namic programming and compute the policy ”back-
wards” – successively for tmax, tmax− 1, . . . , 0). Due
to the positivity of action duration, all required val-
ues dπ⋆(v′, t +d) at each step have already been com-
puted.

The method is summarized in algorithm 1. To
prove correctness, let us note that the algorithm is in
fact value iteration where the individual states are it-
erated in topological order. Thus, one iteration is suf-
ficient to compute the exact utilities of states (and op-
timal policy as well).

3.2.2 Incremental Approach

After adding a new constraint c = (ac, tc,vc) to C,
computation of a new policy π′ for agent ac satisfy-
ing all constraints in C is required. However, it is
not necessary to compute the policy from scratch, it is
sufficient just to modify the existing policy π. Specif-
ically, it is sufficient to recompute π′(v, t) for such
states (v, t) in which the optimal action might change.

Let us define a set of successor states N(v, t) as a
set of states (v′, t ′) such that (v′, t ′) is reachable from
(v, t) using an action. Therefore, according to the
Bellman equation, the value dπ(v′, t ′) influences the
choice of optimal action in (v, t).

The optimal action is chosen as
argmina∈A(v,t)

E v′,l∼Pπ(v,t)
l + dπ(v′, t + l). There

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

98

Data: Graph G = (V,E), goal vertex, set of
constraints C

Result: π, dπ – optimal policy and
corresponding expected travel times
to goal

φ,dφ← optimal policy and corresponding
expected travel times to goal in case
constraints are ignored;

tmax←max{constraint.t | constraint ∈C};
for t > tmax do

for v ∈V do
π(v, t),dπ(v, t)← φ(v),dφ(v);

end
end
for t in max dynamic t, . . . ,0 do

for vertex v ∈V do
dπ(v, t)←
mina∈A(v,t) E v′,l∼Pπ(v,t)

l +dπ(v′, t + l);
π(v, t)← corresponding action;

end
end
return π, dπ

Algorithm 1: Computation of optimal policy.

are two reasons why the value might change. Firstly,
if the set of allowed actions A(v,t) changes. That
happens if (vc, tc) ∈ N(v, t), i.e. one or more actions
lead to the newly prohibited state. Secondly, if the
value of dπ(v′, t + l) changes. That means, there
exists a (v′, t ′)∈N(v, t) such that d′π(v

′, t ′) ̸= dπ(v′, t ′).
Due to this fact, we may compute the new policy

π′ more efficiently using the algorithm 2.
Recall, for each successor (v′, t ′) ∈ N(v, t) holds

t ′ > t (assuming a positive duration of actions).
Hence, the timestep t ′ of each state in N−1 is less than
the timestep t of the currently processed state (v, t).
Therefore, each state (v, t) is processed at most once.

All states in which the new policy π′ or distance
dπ′ might differ from π or dπ, respectively, are recom-
puted. Hence, the algorithm 2 returns the same result
as the original algorithm 1.

3.2.3 Conflict Detection

To be able to implement the DeltaPolicyCBS algo-
rithm, we need a method to detect possible conflicts
between agents (following their policies). We pro-
pose using a concept of potential presence (Shahar
et al., 2021). The idea is to ”simulate” the agent fol-
lowing its policy and mark the visited timestep-vertex
and timestep-edge pairs.

The method is shown in algorithm 3. We show di-
rectly a version extended by also marking the proba-
bility of presence. The pseudocode uses the following

Data: Graph G = (V,E), destination goal, set
of constraints C, new constraint c,
previous optimal policy π and
corresponding expected travel times dπ

(π respects C \ c)
Result: π′, dπ′ – optimal policy and

corresponding expected travel times
to goal respecting all constraints
(including c)

π′,dπ′ ← π,dπ;
q← empty queue // states to recompute;
N−1 = {(v′, t ′) | (c.v,c.t) ∈ N(v′, t ′)};
for (v′, t ′) ∈ N−1 do

if (v′, t ′) /∈ q then
q.Enqueue(v′, t ′);

end
end
while q not empty do

v, t← q.Dequeue();
dπ′(v, t)←

mina∈A(v,t) E v′,l∼Pπ(v,t)
l +dπ(v′, t + l);

π′(v, t)← corresponding action;
if dπ′(v, t) ̸= dπ′(v, t) then

N−1 = {(v′, t ′) | (v, t) ∈ N(v′, t ′)};
for (v′, t ′) ∈ N−1 do

if (v′, t ′) /∈ q then
q.Enqueue(v′, t ′);

end
end

end
end
return π′, d′π

Algorithm 2: More effective computation of opti-
mal policy using incremental approach.

notation:

• PP potential presence in vertices, PPE potential
presence in edges,

• PP [t] = {(vi, pi)} is a list of vertices where the
agent might be situated in timestep t, including
probability,

• method PP.add((v, t, p)) marks new option how
the agent might arrive to state (v, t) with probabil-
ity p – if v is not in PP [t], it is added with prob-
ability p; otherwise, probability is increased by p
(probability of independent ways how to arrive to
(v, t) is summed),

• PPE [t,(v,v′)] probability of agent being situated
on edge (v,v′) in timestep t

• method PPE.add((v,v′),(t, t ′), p) similarily
marks new presence of the agent on the edge
(v,v′) between timesteps t and t ′ (during travel

Multi-Agent Path Finding: Policies Instead of Plans

99

over the edge), with probability p – again, p is
added to PPE [t̄,(v,v′)] for all t̄ = t, . . . t ′.

Data: Graph G = (V,E), agent’s starting
vertex start, policy π

Result: set of states (and probability
distribution), where the agent might
locate during execution of π

PP.add((start,0,1)) // in timestep 0, agent is
in its source vertex (with probability 1);

t = 0;
while PP not stable do

for (v, p) ∈ PP [t] do
for possible outcome (p′,v′, l′) of the
action π(v, t) do

PP.add((v′, t + l′, p · p′));
PPE.add((v,v′),(t, t + l′), p · p′);

end
end
t← t +1;

end
return PP, PPE

Algorithm 3: PotentialPresence.

The simulation runs until PP stabilizes, i.e., until
PP [t ′] = PP [t ′+1] is quarantied for all t ′ > t. Suf-
ficient condition is that the agent is with probability
1 in its destination (PP [t] = (goal, t,1)) and will not
leave it (t > tmax).

Once the potential presence of all agents is com-
puted, potential conflicts can be found easily as an
intersection of the potential presences of two agents
(see algorithm 4). Similarly to other algorithms, we
show a version extended by outputting the probability
of each potential conflict (in addition to the conflict it-
self). The probability of the conflict is equal to pi · p j
because both agents need to be situated in the given
state (v, t) simultaneously.

3.2.4 Complete Algorithm

The complete high-level algorithm of DeltaPolicy-
CBS is shown in algorithm 5.

4 EXPERIMENTS

We conduct several experiments to compare the
proposed policy approach to MAPF to classical k-
robustness and to explore the influence of pruning (ig-
noring not much probable conflicts) on runtime and
quality of solution.

By the quality of a solution, we refer to
• expected cost (expected SOC),

Data: Potential presence PPa,PPEa for each
agent a ∈ Ag

Result: List of potential conflicts (optionally
including their probability)

forall ai ∈ Ag do
forall a j ∈ Ag; j < i do

forall t do
forall v : (v, pi) ∈ PPai [t] and
(v, p j) ∈ PPa j [t] do

Add (ai,a j,v, t, pi · p j) (or
only (ai,a j,v, t)) to C;

end
forall
(v,v′) : PPEai [t,(v,v

′)] = pi >
0∧PPEai [t,(v,v

′)] = p j > 0 do
Add (ai,a j,(v,v′), t, pi · p j)
(or only (ai,a j,v, t)) to C;

end
end

end
end
return C

Algorithm 4: FindConflicts.

Data: MAPF instance
Root.constraints← /0;
Root.solution← find individual policies by
the low level;

Root.cost←Cost(Root.solution);
insert Root to OPEN;
while OPEN not empty do

N← best node from OPEN;
pp← PotentialPresence(N.solution);
con f licts← FindCon f licts(pp);
if no conflict then

return N.solution
end
C← a conflict (ai,a j,x, t) from con f licts

forall agent a in C do
NN← new node;
NN.constraints←
N.constraints+(a,v, t);

NN.solution← N.solution;
Update NN.solution by low level –
update a’s policy;

NN.cost←Cost(NN.solution);
if NN.cost < ∞ then

Insert NN to OPEN;
end

end
end

Algorithm 5: PolicyCBS – high level – pseu-
docode.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

100

Figure 1: Warehouse map.

• real cost (evaluated by simulation),
• success rate of execution – whether any collision

happened during simulation.
Experiments were run on a computer with AMD

Ryzen 5 3600 CPU (frequency 3.9 GHz) and 32
GB RAM. We used our implementation of DeltaPol-
icyCBS in Python 3.11.0. To obtain k-robust so-
lutions, we used Improved k-Robust CBS (Atzmon
et al., 2018), implemented by Nekvinda and Barták
(Nekvinda and Barták, 2021).

In our experiments, we abbreviate DeltaPolicy-
CBS as DPCBS. DPCBS-0.001 then denotes the
pruned variant of DeltaPolicyCBS that ignores con-
flicts whose probability is less than 0.001. Of course,
the pruned variant guarantees neither optimality nor
safeness of the solution.

4.1 Instances

MAPF Benchmark (Stern et al., 2019) contains sev-
eral different kinds of maps commonly used for test-
ing MAPF algorithms. For our experiments, we use
the empty grid map 8 × 8 and a warehouse map
(namely, warehouse-10-20-10-2-1). The warehouse
map is shown in Figure 1. Instances are created by
taking the first n agents from each of 25 random sce-
narios for a given map. Solutions of successfully
solved instances are then simulated on 50 presampled
sets of real action results. During each simulation,
real SOC cost and number of collisions are observed.

We used two modes of incorporating nondeter-
minism. In the first set of instances, we set two possi-
ble outcomes to every non-deterministic edge – length
1 with probability 1− p and length 2 with probability
p. The parameter p can be seen as the probability of
delay.

In the second set of instances, edges (actions)
from selected vertices only are set as nondeterminis-
tic, we refer to those vertices as locations with higher

delay probability. In particular, in the map Grid, all
vertices in the 3rd and 5th rows were selected. In the
map Warehouse, inner crossroads in the 5th, 10th, and
15th rows were selected. Other actions are determin-
istic – have one and only possible outcome with travel
time 1. We refer to this set of instances as mixed – as
there are both deterministic and nondeterministic ac-
tions.

4.2 Results

For each map, number of agents, and value of p (delay
probability) we present, for each algorithm, the ratio
of solved instances (out of the 25), the success rate
of executions (ratio of simulations that ended without
any collision) and the mean of measured real costs (in
terms of SOC). In order not to penalize an algorithm
that solved more instances by including real costs of
those, possibly more difficult, instances, the execution
success rate and real costs are computed using only
instances solved by all algorithms.

Table 1 shows the results on the map Grid with 10
agents. DPCBS achieves a 100% success rate, sim-
ilarly to 1- and 2-robust classic plans. However, the
real cost of DPCBS solutions is on average lower, es-
pecially compared to 2-robust plans.

Tables 2 and 3 show the results on the map Grid–
mixed with 10 and 13 agents, respectively. Similarly
as in the previous case, DPCBS is able to reach a suc-
cess rate of 100% while achieving low real costs –
similar to the 0-robust solution. k-robust solutions are
either not successful on all instances (for k ≤ 1) or
have significantly higher real costs (k = 2). The major
drawback of DPCBS is not being able to solve all in-
stances in the given time limit, as opposed to k-robust
solutions (at least for smaller k).

The same observations hold also for the bigger
map, Warehouse–mixed, as shown in the table 4.

Apart from the optimal DPCBS, tables contain re-
sults of its pruned variant DPCBS-0.001. Recall, that
DPCBS-0.001 ignores conflicts whose probability is
less than 0.001 and therefore is not optimal and does
not guarantee the safety of the solution. Notwith-
standing, no collisions occurred during simulations
and the real costs of the solutions were almost iden-
tical to those of DPCBS (on instances solved by both
algorithms. On the other hand, due to ignoring some
conflicts, DPCBS-0.001 was able to solve more in-
stances than DPCBS, especially when the delay prob-
ability p was rather small.

Multi-Agent Path Finding: Policies Instead of Plans

101

Table 1: Quality of solutions, instances on the map Grid, 10 agents.

Instances Execution RealAlgorithm
solved success rate cost

p = 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

DPCBS 0.52 0.56 0.68 1.00 1.00 1.00 50.22 54.82 69.79
DPCBS-0.001 0.72 0.64 0.68 1.00 1.00 1.00 50.21 54.81 69.84
0r-plan 1.00 1.00 1.00 0.72 0.61 0.64 49.31 53.84 68.91
1r-plan 1.00 1.00 1.00 0.98 0.97 0.97 50.41 55.03 70.40
2r-plan 1.00 1.00 1.00 1.00 1.00 1.00 52.78 57.49 73.14

Table 2: Quality of solutions, instances on the map Grid–mixed, 10 agents.

Instances Execution RealAlgorithm
solved success rate cost

p = 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

DPCBS 0.88 0.88 1.0 1.00 1.00 1.00 49.67 51.27 57.05
DPCBS-0.001 1.00 1.00 1.0 1.00 1.00 1.00 49.65 51.27 57.05
0r-plan 1.00 1.00 1.0 0.78 0.66 0.53 49.59 51.70 59.14
1r-plan 1.00 1.00 1.0 0.99 0.97 0.92 51.06 53.14 60.66
2r-plan 1.00 1.00 1.0 1.00 1.00 0.99 53.83 55.95 63.93

Table 3: Quality of solutions, instances on the map Grid–mixed, 13 agents.

Instances Execution RealAlgorithm
solved success rate cost

p = 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

DPCBS 0.68 0.68 0.8 1.00 1.00 1.00 62.29 64.38 70.81
DPCBS-0.001 0.76 0.72 0.8 1.00 1.00 1.00 62.29 64.38 70.81
0r-plan 1.00 1.00 1.0 0.69 0.49 0.35 62.03 64.80 72.97
1r-plan 1.00 1.00 1.0 0.99 0.95 0.85 65.03 67.69 75.86
2r-plan 0.60 0.60 0.6 1.00 1.00 0.97 70.57 73.37 81.69

Table 4: Quality of solutions, instances on the map Warehouse–mixed, 20 agents.

Instances Execution RealAlgorithm
solved success rate cost

p = 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

DPCBS 0.72 0.76 0.80 1.00 1.00 1.00 1537.67 1539.99 1555.67
DPCBS-0.001 0.80 0.84 0.80 1.00 1.00 1.00 1537.67 1539.99 1555.68
0r-plan 0.88 0.88 0.88 0.84 0.76 0.70 1540.51 1545.94 1571.55
1r-plan 0.80 0.80 0.80 1.00 0.99 0.92 1541.16 1546.77 1572.55
2r-plan 0.72 0.72 0.72 1.00 0.99 0.93 1541.17 1546.66 1572.17

Table 5: Quality of solutions, instances on the map Grid–mixed with non-deterministic resulting vertex, 7 agents.

Success Real costs
Algorithm rate (average)

p = 0.1 p = 0.5 p = 0.1 p = 0.5

DPCBS 0.00 0.21 —- 43.57
DPCBS-0.001 0.36 0.36 36.58 40.72

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

102

Table 6: Quality of solutions, instances on the map Warehouse–mixed with non-deterministic resulting vertex, 10 agents.

Success Real costs
Algorithm rate (average)

p = 0.1 p = 0.5 p = 0.1 p = 0.5

DPCBS 0.52 0.72 671.72 661.09
DPCBS-0.001 0.96 0.96 660.42 667.47

4.3 Non-Deterministic Resulting Vertex

Additionally, we conduct another set of experiments
in environments with non-deterministic results of ac-
tions. Recall, that in our model of environment, a set
of possible outcomes {(pi,vi, li)}i is assigned to each
action. In this set of experiments, outcomes might
have different vertex vi in (which agent ends up).

This set of experiments is conducted on the maps
Grid–mixed and Warehouse–mixed. Possible out-
comes of a move action (u,v) from vertex u are set
as follows. Duration li is always set to 1. If u is not
marked (as a location with higher delay probability),
the resulting vertex vi is equal to v. If u is marked,
the action has 3 possible resulting vertices (3 possible
outcomes): v with probability 1−2p, v−1 with proba-
bility p, and v+1 with probability p. Vertices v+1 and
v−1 are neighbors of u located clockwise, or counter-
clockwise, from v.

Possible outcomes correspond to the possibility
that an agent traveling through a marked vertex turns
90° left or right from the desired direction. Wait ac-
tions are always deterministic.

Results on the map Grid–mixed with 7 agents
are shown in Table 5. Table 6 shows results on
Warehouse–mixed with 10 agents. Contrary to the
previous section, we present a success rate which
is a ratio of simulations in which both the instance
was solved by the algorithm and the simulation ended
without any collisions. Both success rate and real
costs are computed from all instances and simulation,
for each algorithm independently (i.e., it is not lim-
ited to instances solved by both algorithms only). The
reason is the ratio of solved instances by one of the al-
gorithms.

Results show that with p = 0.5, algorithms
are more successful but the cost of solutions is
higher. This is expected because, with p = 0.5, non-
deterministic actions have in fact two possible results
only. On the other hand, they lead to opposite ver-
tices.

DPCBS (without pruning) is not very successful,
especially on the smaller map with more agent inter-
actions and a higher density of non-deterministic ac-
tions. We assume it might be caused simply by the
non-existence of a safe solution. The existence of a

safe solution in non-deterministic MAPF remains an
open problem.

Nevertheless, results illustrate that by using our
approach (policies instead of plans) it is possible to
solve at least some instances of MAPF in an environ-
ment with non-deterministic resulting vertices. Let us
recall that classical plans (sequences of actions) can-
not be used in such environments.

5 CONCLUSIONS

In this paper, we introduced a novel idea of represent-
ing MAPF solution by policies, instead of sequences
of actions or sequences of visited vertices. Policies al-
low the agent to take different actions based on actual
timesteps of arrival into a vertex. Therefore, agents
are able to react to experienced delay during execu-
tion while we are still in an area of offline MAPF –
the solution (policies) is computed completely before
the execution.

The use of policies is beneficial only in non-
deterministic environments where agents might expe-
rience some delays or other unpredicted events. We
formalized such a non-deterministic environment in a
way similar to MDP – a set of possible outcomes is
assigned to each action (move to a neighbor vertex).
The possible outcome consists of the duration of the
action (which allows us to model a delay) and the re-
sulting vertex (to model for example a wrong turn).

The main part of this paper presents an algorithm,
called DeltaPolicyCBS (DPCBS), that optimally (in
terms of expected cost) solves MAPF in the above-
mentioned version of a non-deterministic environ-
ment and returns the solution in the form of policies.
The algorithm is a modification of a well-known Con-
flict Based Search in which individual shortest-path
problems are formulated as Markov Decision Pro-
cesses. A solution of the MAPF problem then consists
of (optimal) policies for those MDPs.

In the last section, DPCBS was experimentally
evaluated on several types of MAPF instances. So-
lutions were executed in a simulation and compared
to classical k-robust plans. We showed that usage
of policy-based solutions found by DPCBS leads to

Multi-Agent Path Finding: Policies Instead of Plans

103

no collisions during execution while keeping low real
costs of the solutions.

The intent of our work was to explore a novel ap-
proach to solving MAPF in a non-deterministic en-
vironment. We have shown that using policies is
beneficial not only in environments in which the re-
sults of actions are nondeterministic – as those en-
vironments cannot be solved using standard plans –
but also in environments in which the only possible
non-determinism is delays – using policies reduces
real costs while ensuring no collisions. Our work
opened several directions for future research. For
the approach to be usable in practice, a more effi-
cient method (than our current version of DPCBS)
for finding a MAPF solution in the form of policies
is needed, possibly accompanied by some clever effi-
cient data structure for storing policies in a compact
way. The incapability of DPCBS to solve even some
rather small instances opens the question of the actual
existence of a safe policy solution of a given MAPF
instance, especially in highly nondeterministic envi-
ronments, such as our not-mixed Grid map with some
delay probability on each edge.

ACKNOWLEDGEMENTS

Research is supported by project No 23-05104S of
Czech Science Foundation.

REFERENCES

Atzmon, D., Stern, R., Felner, A., Sturtevant, N. R.,
and Koenig, S. (2020). Probabilistic Robust Multi-
Agent Path Finding. Proceedings of the International
Conference on Automated Planning and Scheduling,
30(1):29–37.

Atzmon, D., Stern, R., Felner, A., Wagner, G., Barták,
R., and Zhou, N.-F. (2018). Robust Multi-Agent
Path Finding. Symposium on Combinatorial Search
(SoCS), pages 2–9.

Barták, R., Švancara, J., Škopková, V., Nohejl, D., and
Krasičenko, I. (2019). Multi-agent path finding on real
robots. AI Communications, 32(3):175–189.

Howard, R. (1960). Dynamic programming and Markov
processes. Technology Press of Massachusetts Insti-
tute of Technology.

Li, J., Chen, Z., Zheng, Y., Chan, S.-H., Harabor, D.,
Stuckey, P. J., Ma, H., and Koenig, S. (2021a). Scal-
able rail planning and replanning: Winning the 2020
flatland challenge. Proceedings of the International
Conference on Automated Planning and Scheduling,
31(1):477–485.

Li, J., Felner, A., Boyarski, E., Ma, H., and Koenig, S.
(2019). Improved Heuristics for Multi-Agent Path

Finding with Conflict-Based Search. In Proceedings
of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pages 442–449.
International Joint Conferences on Artificial Intelli-
gence Organization.

Li, J., Harabor, D., Stuckey, P. J., Ma, H., Gange, G., and
Koenig, S. (2021b). Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence,
301:103574.

Nekvinda, M. and Barták, R. (2021). Contingent Planning
for Robust Multi-Agent Path Finding. In 2021 IEEE
33rd International Conference on Tools with Artificial
Intelligence (ICTAI), pages 487–492.

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence:
A Modern Approach. Prentice Hall.

Shahar, T., Shekhar, S., Atzmon, D., Saffidine, A., Juba, B.,
and Stern, R. (2021). Safe Multi-Agent Pathfinding
with Time Uncertainty. J. Artif. Int. Res., 70:923–954.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. (2012).
Conflict-Based Search For Optimal Multi-Agent Path
Finding. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 26(1):563–569.

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,
Walker, T., Li, J., Atzmon, D., Cohen, L., Kumar, T.
K. S., Boyarski, E., and Barták, R. (2019). Multi-
Agent Pathfinding: Definitions, Variants, and Bench-
marks. Symposium on Combinatorial Search (SoCS),
pages 151–158.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. The MIT Press, 2 edition.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

104

