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Abstract: Piece-wise planar 3D reconstruction simultaneously segments plane instances and recovers their 3D plane
parameters from an image, which is particularly useful for indoor or man-made environments. Efficient recon-
struction of 3D planes coupled with semantic predictions offers advantages for a wide range of applications
requiring scene understanding and concurrent spatial mapping. However, most existing planar reconstruction
models either neglect semantic predictions or do not run efficiently enough for real-time applications. We
introduce SOLOPlanes, a real-time planar reconstruction model based on a modified instance segmentation
architecture which simultaneously predicts semantics for each plane instance, along with plane parameters
and piece-wise plane instance masks. We achieve an improvement in instance mask segmentation by includ-
ing multi-view guidance for plane predictions in the training process. This cross-task improvement, training
for plane prediction but improving the mask segmentation, is due to the nature of feature sharing in multi-task
learning. Our model simultaneously predicts semantics using single images at inference time, while achieving
real-time predictions at 43 FPS. Code is available at: https://github.com/fraunhoferhhi/SOLOPlanes.

1 INTRODUCTION

Estimating the 3D structure of a scene holds impor-
tance across a variety of domains, including robotics,
virtual reality (VR), and augmented reality (AR). The
demand for real-time applications in these areas in-
creases over time as such technologies proliferate.
Man-made architectures and indoor environments,
where the application end-users spend a significant
amount of time, often consist of regular structures
like planar surfaces, aligning well with the Manhattan
world assumption that such surfaces typically exist on
a regular 3D grid (Coughlan and Yuille, 2003). Esti-
mating plane parameters directly can reduce noise for
areas lying on a planar surface, which can be partic-
ularly useful for indoor scenes dominated by planar
surfaces. It also holds relevance for outdoor scenar-
ios, such as self-driving cars and outdoor AR appli-
cations, where streets and buildings often adhere to
similar geometric principles.

Several methods have been proposed to use deep
learning to recover planes of indoor scenes from a
single image (Liu et al., 2018a; Yu et al., 2019; Liu
et al., 2019; Xie et al., 2021b,a). While existing works
have made strides in predicting piece-wise instance
masks and plane parameters, they often ignore the

(a) Ours. (b) GT.
Figure 1: Comparison of SOLOPlanes output with ground
truth (GT). 3D projections using predicted plane parame-
ters (left) and GT depth (right). Textures use RGB (top),
predicted semantics (bottom left), and GT semantics (bot-
tom right).

added information from scene semantics. Incorporat-
ing semantics provides an added layer of scene under-
standing, which can be useful in many applications.
For instance, the semantic label for a planar surface
can help a service robot in determining the correct
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behaviour (e.g. mopping floor vs. wiping table), or
AR/VR experiences could offer semantics-dependent
retexturization. Some models predict semantics along
with plane parameters but are often too computation-
ally intensive to meet the real-time requirements of
practical applications (Liu et al., 2022).

Multi-task learning, the technique of using a sin-
gle model to learn multiple tasks concurrently, has
shown promise in terms of data efficiency and im-
proved generalization (Caruana, 1997). However, re-
cent studies indicate that there is also added difficulty
in jointly learning multiple tasks. While some tasks
may benefit from being learned together, thereby
boosting accuracy, others may interfere with each
other, leading to worse performance (Standley et al.,
2020).

Our aim was to create a data-efficient model with
improved run-time efficiency compared to existing
models for planar reconstruction with semantics. We
achieve the desired outcome via our model, SOLO-
Planes (SOLOP), where we make use of multi-view
guidance for improved data usage when acceptable
ground truth plane segments differ across views, and
made adjustments to the base architecture for im-
proved efficiency. Multi-view warping is done in fea-
ture space, by warping plane features from neighbour
to source view, decoding, then transforming the de-
coded plane parameters to the source view camera
view for comparison with ground truth data during
training. This additional warping guidance for plane
features positively impacts the learning of segmenta-
tion masks, particularly when using a more limited
dataset, while only requiring a single view at infer-
ence time.

In the context of our work, we found that multi-
view guidance using plane features leads to a notable
improvement in segmentation results. We attribute
this enhancement to our multi-task architecture and
the use of a shared trunk, meaning a global feature
extractor that is common to all tasks (Crawshaw,
2020). This architecture allows for loss propagation
through shared features and common base networks,
and may be particularly relevant in the case of
incomplete or varying data across overlapping views.

Our contributions include the following:

1. An empirical demonstration of cross-task im-
provement using multi-view guidance by fea-
ture warping, with particular relevance in cases
where ground truth data may be incomplete across
neighboring views.

2. A single-image planar reconstruction model, that
can concurrently predict semantics for planar seg-
ments while achieving the best efficiency com-

pared to other known planar reconstruction meth-
ods at a processing speed of 43 FPS.

Our approach may be a helpful method for other
multi-task models limited in some forms of ground
truth training data. The efficiency of the model makes
it suitable for a range of real-world applications.

2 RELATED WORK

Planar Reconstruction. Early works in planar recon-
struction using a single image predicted a set number
of planes per scene without using ground truth plane
annotations by employing a plane structure-induced
loss (Yang and Zhou, 2018). Another early end-to-
end planar reconstruction network from a single im-
age is PlaneNet, which uses separate branches for
plane parameter, mask, and non-planar area depth es-
timation (Liu et al., 2018a). Two major subsequent
models serve as the foundation for several later works.
PlaneRCNN is an extension of the two-stage instance
segmentation model, Mask-RCNN (He et al., 2017),
and predicts the plane instance normal and depth map,
then jointly process plane parameters along with seg-
mentation masks through a refinement module (Liu
et al., 2019). PlaneAE predicts per-pixel parame-
ters and associative embeddings and employs effi-
cient mean clustering to group the pixel embeddings
to plane instances (Yu et al., 2019). PlaneTR uses ge-
ometric guidance by generating and tokenizing line
segments, giving the input additional structural infor-
mation (Tan et al., 2021). Additional contributions
in this area include post-processing refinement net-
works that enforce interplane relationships, via pre-
dicting the contact line or geometric relations be-
tween adjacent planes (Qian and Furukawa, 2020).
More recent works follow the approach of using an
instance segmentation model base. PlaneSegNet is
based on a real-time instance segmentation architec-
ture and introduces an efficient Non-Maximum Sup-
pression (NMS) technique to reduce redundant pro-
posals (Xie et al., 2021a). PlaneRecNet predicts per-
pixel depth and plane segmentation masks, then use
classical methods like PCA or RANSAC to recover
plane parameters (Xie et al., 2021b). A number of
single-image plane reconstruction models use some
form of instance segmentation baseline. However,
most single-image models focus solely on spatial pa-
rameters and largely ignore the task of recovering se-
mantics.
Multi-View Approaches. The task of predicting 3D
plane parameters from a single image is inherently
ambiguous and challenging. Thus, several works have
incorporated multi-view information, either as a loss
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guidance or by using multiple image inputs at infer-
ence time. PlanarRecon (Xie et al., 2022) is a real-
time model using multiple image frames which makes
predictions directly in 3D by using a coarse-to-fine
approach for building a sparse feature volume, then
clustering occupied voxels for instance planes, and
uses a tracking and fusion module to get a global
plane representation. PlaneMVS (Liu et al., 2022)
is the first to apply a deep multi-view stereo (MVS)
approach to plane parameters. Although it achieves
state-of-the-art results and also predicts class seman-
tics, it is less computationally efficient due to the use
of 3D convolutions and requires generation of plane
hypotheses. PlaneRCNN incorporates a multi-view
warping loss module that enforces consistency with
nearby views by projecting the predictions to 3D and
calculating the distance after transforming to the same
camera coordinates (Liu et al., 2019). Unlike our
approach, their warping module is applied directly
on the predictions rather than in feature space. An-
other work enhances the PlaneAE model with multi-
view regularization by warping the plane embedding
feature maps and using associative embeddings from
multiple views to improve the final instance segmen-
tation (Xi and Chen, 2019).
Feature Warping. Feature warping is commonly
done in deep Multi-View Stereo (MVS) approaches,
as it was found that creating the cost volume using
features is as effective for artificial neural networks
and more computationally efficient due to reduced
size (Im et al., 2019; Yao et al., 2018). While some
approaches use a similarity function on the features,
others simply concatenate the warped feature with the
original and let the model learn the relation rather
than calculate an explicit cost volume (Chen et al.,
2020; Yao et al., 2018). The latter approach is used by
PlaneMVS to construct a Feature/Cost volume, which
is then processed by a 3D CNN to get the plane pa-
rameters. Deep MVS methods are more commonly
used for depth estimation, and their application to
plane parameter estimation is relatively novel. Other
research suggests that calculating a feature error be-
tween frames is more robust than a photometric er-
ror (Guo et al., 2021). However, this cannot directly
be applied to plane reconstruction, as the plane fea-
tures contain information in different camera views
when considering a video dataset. Takanori et al. use
multi-frame attention via feature warping for the task
of drone crowd tracking (Asanomi et al., 2023). Ding
et al. take MVS as a feature matching task and use
a Transformer model to aggregate long-range global
context using warped feature maps (Ding et al., 2022).

In order to ensure differentiability, the warp to an-
other view using depth values and camera parame-

ters must be backprojected using bilinear interpola-
tion. Most existing works involving feature warping
do not specifically deal with plane features, which
require transformation to the correct view when de-
coded. Additionally, the majority of planar recon-
struction models do not offer semantic predictions for
the scene.

The majority of existing works primarily focus on
the geometric accuracy of planes without holistically
addressing the more practical requirements of speed
and semantic understanding of planar scenes. Our
work aims to fill this gap by offering a unified frame-
work for semantic planar reconstruction. We improve
data efficiency during training and achieve cross-task
improvement using multi-view guidance for plane
features, while maintaining an inference speed that is
suitable for real-time applications.

3 METHOD

Our objective is to develop a real-time framework for
the task of 3D semantic planar reconstruction. This
section is organized as follows: Section 3.1 provides
details of the framework, Section 3.2 elaborates on the
loss terms, and Section 3.3 introduces our multi-view
guidance.

3.1 Framework

Our framework is built on a light version of the
SOLOv2 instance segmentation model (Wang et al.,
2020b) using a ResNet-50 backbone (He et al.,
2016). SOLOv2 is a single-stage instance segmen-
tation model that predicts instance masks and labels
based on their spatial location. It achieves an execu-
tion speed of around 31 FPS using a single V100 GPU
card (Wang et al., 2020b). The model employs dy-
namic convolution to generate the final segmentation
mask, leveraging multi-scale features from the Fea-
ture Pyramid Network (FPN) (Lin et al., 2017a). Each
level of the FPN output features are used to predict
mask kernels and class semantics, with the features
reshaped to square grids of varying sizes, with each
responsible for predictions at a different scale. Each
grid location predicts a kernel and semantic category
scores. The mask feature is obtained through fea-
ture fusion of the first four levels of the FPN outputs
via bilinear upsampling and convolution layers, and
the final segmentation masks are obtained via con-
volution using the predicted kernels, with redundant
masks suppressed using matrix Non-Maximum Su-
pression (NMS) (Wang et al., 2020b). The mask and
kernel features receive spatial awareness information
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from concatenated normalized coordinate, a method
from Liu et al. (2018b).

Figure 2: Simplified overview of SOLOPlanes architecture.

We extend the base architecture by introducing a
plane feature branch that fuses the first two levels of
the feature map, along with a plane prediction head
that outputs per-pixel plane parameters via a convolu-
tion layer (see Fig. 2). This prediction is supervised
by a set of loss functions that leverage geometrical
constraints and ground truth depth information (de-
tailed in Section 3.2). The original architecture pre-
dicts the kernels and semantic categories using all five
feature map levels of the FPN. Based on the findings
of Chen et al. (2021), a divide-and-conquer approach
is more crucial than leveraging multi-scale features
for task-specific predictions, we experimented with
using different feature levels and found that using
fewer feature levels not only maintained compara-
ble performance in multi-task planar segmentation but
also improved the overall efficiency of the model.

Our final architecture takes a single RGB image,
I ∈ RH×W×C, as input during inference, and outputs
an arbitrary number of plane instance masks along
with instance level semantics and per-pixel plane pa-
rameters. We obtain the final result by pooling per-
pixel parameter prediction using the predicted masks,
and retaining per-pixel predictions in areas without a
plane instance. The model is trained on the large-
scale public ScanNet dataset containing indoor scenes
from Dai et al. (2017), supplemented with ground
truth plane annotations from Liu et al. (2019).

3.2 Losses

Mask & Category. We retain the original loss func-
tions from Wang et al. (2020b) for mask and category
predictions. The Dice Loss, LM , guides mask predic-
tion with the original loss weight wM = 3, and focal
loss, LC, for semantic category prediction (Lin et al.,
2017b). For full details, we refer readers to (Wang
et al., 2020a). In order to address class imbalances
due to dominating negative samples, we modified LC
to only consider grid locations containing an instance.
Plane Parameters. Plane parameters are represented
by the normal and offset of the plane, denoted as
p = (n,d), which we combine into a single parameter
p = n∗d ∈R3, with n normalized to unit length. Due
to the complexity of predicting plane parameters con-
taining both normal and depth information, we em-
ploy multiple loss functions for supervising per-pixel
plane predictions. We use L1 loss for direct compari-
son with ground truth plane parameters:

Lplane =
1
N

N

∑
i=1

∥pi −p∗
i ∥. (1)

An asterisk is used to denote predicted values, and
N represents the total number of pixels. The cosine
distance, denoted Lsur f ace, is used to guide the learn-
ing of surface normals. Due to the way we represent
plane parameter p, we get the equivalent result calcu-
lating cosine similarity on plane parameters directly.

simi =
pi ·p∗

i
∥pi∥∥p∗

i ∥
, Lsur f ace =

1
N

N

∑
i=1

1− simi (2)

Due to noisy and incomplete ground truth plane
annotations, we also make use of ground truth depth
data, D ∈ RH×W , for additional supervision. We cal-
culate the plane induced depth at pixel location i by

D∗
i =

d ∗
i

n∗T
i ·K−1qi

, (3)

where K represents the ground truth camera intrin-
sics of the scene and qi is the x and y index for pixel
location i. The plane induced depth loss, Ldepth, is
formulated as:

Ldepth =
1
N

N

∑
i=1

|Di −D∗
i |. (4)

We use the plane structure induced loss, first in-
troduced by (Yang and Zhou, 2018) and which we
denote by Lgeom, based on the principle that the dot
product of a 3D point on a plane with the normal
equals the offset, nT Q= d. We use ground truth depth
and camera intrinsics to retrieve the 3D point at each

Multi-Task Planar Reconstruction with Feature Warping Guidance

655



pixel location. Qi = Di K−1qi obtains the 3D point
projected at one location.

Lgeom =
1
N

N

∑
i=1

n∗T
i ·Qi −d ∗

i (5)

Gradient Weighting. We add gradient edge weight-
ing as a model variation, weighting Ldepth and Lgeom
to emphasize learning at edges, areas which are typ-
ically more difficult to learn. We choose to use the
gradient of the image, G ∈ RH×W rather than depth,
in order to better capture edges. Despite more noise
at non-edge areas, it can capture more plane edges
as some plane instances can have the same depth but
still represent different surfaces (e.g. picture frame on
a wall). This addition results in cross-task improve-
ments for segmentation mask prediction in the case
of the multi-view model (see Section 3.3).

Ldepth,geom =
1
N

N

∑
i=1

Gi ∗Li (6)

The total loss for plane guidance is

LP = Lplane +Lsur f ace +Lgeom +Ldepth, (7)

and the final combined losses:

Ltotal = LM ∗wM +LC +LP. (8)

3.3 Multiview Plane Feature Guidance

In this section, we introduce our multi-view guidance
approach, depicted in Fig 3. We take neighbouring
image pairs, which we denote by source and neigh-
bouring view (Is, In), and extract the corresponding
2D features. The two finest pyramid feature maps are
fused to generate plane features f ∈ R 1

4 H× 1
4W×C. We

backproject the neighbouring feature fN to the cor-
responding location of the source view using bilin-
ear interpolation. This process uses the ground truth
depth, intrinsic parameters, and the relative transform
between the views to obtain the warped 2D coordi-
nates, from which we obtain the out-projection mask.
We then decode the warped neighbouring feature f̂N
with the plane prediction head to get the correspond-
ing plane parameters. It is important to note that
f̂N contains plane information of the neighbouring
view, under the camera coordinates of In. Therefore,
we transform the decoded plane parameters to the
source view’s camera coordinates before comparing
to ground truth. This transformation is given by:

n̂s = Rnn, d̂s = dn +nn
T · t, (9)

where (R, t) represents the rotation matrix and trans-
lation vector from neighbour to source view, and

(nn,dn) are the normal and offset in the neighbour-
ing view. We then calculate an additional plane loss
LP using the transformed plane parameters decoded
from the warped feature, excluding from the loss ar-
eas that are occluded or fall outside of the 2D image
coordinates using the out-projection mask.

Figure 3: Overview of the feature warping guidance.

3.4 Instance Plane Soft-Pooling

To obtain the final instance level plane parameters,
we use a soft-pooling technique which only considers
per-pixel parameters within the area of the predicted
instance. We found that restricting the pooling to this
binary area yields better results compared to using
soft-pooling across all pixel locations. We opted to
not use an instance level plane loss as it negatively im-
pacts the learning of mask segmentation. We generate
a binary segmentation mask by applying a threshold
to the predicted soft mask, denoted as m∗ ∈ [0,1]. The
instance level parameter can be retrieved by

pins =
∑

M
i=1 m∗

i p∗
i

∑
M
i=1 m∗

i
, (10)

where M represents all the pixels falling within the re-
gion indicated by the binary segmentation mask, and
p∗

i the predicted plane parameter at the corresponding
location.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

656



4 EXPERIMENTS

We evaluate various configurations of our model as
well as comparison models. The nomenclature for
our model versions is as follows: SOLOP-5lvls is a
single view version using the original 5 feature lev-
els for prediction, SOLOP-SV refers to the single-
view model trained on 60,000 samples, SOLOP-MV
is the multi-view model trained on 30,000 pairs,
and SOLOP-MV-gw incorporates gradient edge loss
weighting into the multi-view model. Qualitative re-
sults are obtained using the last configuration, as it
achieved the best performance.

4.1 Setup & Training Details

For comparison between different model versions,
we train a base model initialized with a pretrained
ResNet-50 backbone and employ a data augmentation
scheme where each sample has a 15% chance of un-
dergoing one of several augmentations, such as a) jit-
ter of brightness, contrast, hue, saturation, b) Planck-
ian jitter (Zini et al., 2023), c) Gaussian noise, or d)
motion blur. We use learning rate warm-up for the
first 2000 steps starting from a learning rate of 1e−6
and increases until 2e−4. After the initial warm-
up period, the learning rate is reduced by a factor
of 0.1 given no improvement to the validation loss.
For quicker and more fair comparison of model vari-
ations, a base model with the best validation loss was
saved at epoch 9 and used as initialization to our main
models, which were trained for 11 additional epochs.
We employ early stopping if validation loss fails to
improve for 5 consecutive epochs and save the model
with best validation performance as well as the last
checkpoint. For evaluation, we take the best of ei-
ther saved model. The additional models trained us-
ing the base model initialization do not use data aug-
mentation, and have 500 steps of learning rate warm-
up starting from 1e−6 to 1e−5. We use a batch size of
32 for the single view model with gradient accumula-
tion to mitigate the higher instability associated with
multi-task learning. We train the models on a single
NVIDIA Ampere A100 GPU. For evaluation and FPS
calculation, we use a single NVIDIA GeForce RTX
3090 GPU for all models.

4.2 Dataset

For training and evaluation, we use the ScanNet
dataset which contains RGB-D images from video
sequences, totalling 2.5 million views complete with
camera parameters and instance level semantics (Dai
et al., 2017). The ground truth plane instance anno-

tations for instance masks and plane parameters are
generated by the authors of PlaneRCNN, and we fol-
low the same process for filtering and preprocessing
the planes (Liu et al., 2019). We also obtain the corre-
sponding plane instance semantics from the metadata
of the plane annotations. The ground truth plane data
often exhibited issues such as over-segmented, rough
edges, or missing plane instances, as planes with a
depth error above a 0.1 meter threshold were omit-
ted. For multi-view guidance training, we take sample
pairs which are 10 time-steps away. In some cases, a
neighbouring ground truth plane image might contain
a segment which is missing in the source view, and
vice versa. For the single-view model, we use 60,000
random samples from the training set and 10,000 from
the validation set. For the multi-view model, we use
30,000 neighboring pairs for training and 5,000 pairs
for validation.

Figure 4: Per-pixel recall at varying depth thresholds in me-
ters.

4.3 Comparison

Our model is most comparable to the PlaneAE model
from Yu et al. (2019) and PlaneTR model from Tan
et al. (2021), primarily due to the speed of predic-
tion and the fact that they predict plane parameters di-
rectly using a single image as input. Given the incon-
sistent quality of ground truth plane data, the authors
of PlaneMVS manually selected stereo pairs for the
test set, which contained samples with more complete
plane annotations (Liu et al., 2022). We run our eval-
uations using the same test set. For a fair comparison,
we train the PlaneAE model for a total of 20 epochs
using a ResNet-50 backbone and the same data with
an input size of 480 x 640. The original model was
trained using an input size of 192 x 256, resulting
in a higher FPS. To align with our training regimen,
we train PlaneAE for 11 epochs using 60,000 sam-
ples and an additional 9 epochs with 100,000 random
samples. We retain the original training configura-
tion of the authors (Yu et al., 2019). We use the same
approach for retraining the PlaneTR model, and gen-
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Table 1: Model comparison results on ScanNet dataset for variations of SOLOP model and other single-image planar recon-
struction methods.

Method Depth Metrics Detection Metrics FPS
AbsRel↓ SqRel↓ RMSE↓ log RMSE↓ δ < 1.25 ↑ δ2 < 1.25 ↑ δ3 < 1.25 ↑ AP mAP

PlaneAE 0.181 0.092 0.325 0.208 0.746 0.931 0.983 - - 17
PlaneTR 0.178 0.133 0.365 0.215 0.768 0.930 0.977 - - 15
PlaneRCNN 0.165 0.070 0.278 0.187 0.780 0.954 0.991 0.193 - 7
SOLOP-5lvls∗ 0.143 0.059 0.276 0.185 0.813 0.960 0.990 0.416 0.314 38
SOLOP-SV∗ 0.134 0.052 0.259 0.178 0.832 0.964 0.991 0.389 0.267 43
SOLOP-MV∗ 0.136 0.054 0.261 0.177 0.832 0.962 0.991 0.427 0.344 43
SOLOP-MV-gw∗ 0.133 0.052 0.259 0.177 0.833 0.964 0.992 0.434 0.347 43
∗ = Ours

erate the required line segments using HAWPv3 (Xue
et al., 2023). While PlaneRCNN also takes a single
image at inference time, its slower inference speed
makes it a less direct comparison. We run evaluations
on the provided model from authors Liu et al. (2019).

4.4 Evaluation Metrics

We follow previous methods (Yu et al., 2019; Liu
et al., 2019) and calculate the per-pixel depth re-
call at varying thresholds in meters, shown in Fig. 4.
We also calculate standard depth and detection met-
rics for a comprehensive evaluation of model perfor-
mance. Average Precision (AP) is used to assess the
quality of the predicted masks, and Mean Average
Precision (mAP) takes into account the semantic la-
bels by averaging AP across class categories. For
depth metrics, we use Absolute Relative Difference
(AbsRel), Squared Relative Difference (SqRel), Root
Mean Squared Error (RMSE), log RMSE, and delta
accuracy (Eigen et al., 2014). We also calculate model
efficiency using Frames Per Second (FPS). The re-
sults of these evaluations are summarized in Table 1,
which shows a marked improvement using our archi-
tecture.

4.5 Results

The task of segmentation becomes more challeng-
ing when predicting multiple classes, as overlap-
ping masks from different classes are less likely to
be suppressed. The oversegmentation issue appears
to be more pronounced in the single view model,
whereas multi-view guidance using plane features
helped to produce more complete and less over-
segmented masks. This improvement is likely at-
tributable to feature sharing and the correlation be-
tween ground truth plane instance masks and plane
parameters.

Figure 5: Visualization of semantic predictions using the
SOLOP-MV-gw model.

Despite using multi-view guidance on plane pre-
dictions, we observe an objective improvement in pre-
diction of segmentation masks. We hypothesize that
this is especially effective when adjacent views have
disparate ground truth data, such as in the case of
missing annotations. This would explain the similar
performance with regards to depth metrics between
SOLOP-SV and multiview variants, as the ground
truth depth is fairly stable across views. Ground
truth mask completeness can differ across neighbour-
ing views due to lower quality segments being filtered
out. Even though the variants using multi-view guid-
ance saw a lower diversity of scenes compared to the
single view version, it nevertheless outperforms the
single view variant on the task of mask segmentation.
Quantitative. All results are obtained using the se-
lected test set chosen by the authors of PlaneMVS.
The authors Liu et al. (2022) manually selected a
higher quality set to evaluate on due to the incom-
plete and imprecise nature of the ground truth plane
annotations. The resulting test set contains 949 image
pairs. Our quantitative findings from model compar-
isons, summarized in Table 1, indicate that our multi-
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Figure 6: Qualitative results of instance plane and semantic prediction using model with best performance, SOLOP-MV-gw.
From left to right: Input image, GT planes, predicted planes, GT depth, predicted depth, predicted semantics.

view model variant not only matches the performance
of the single-view model in depth metrics, but also
shows a significant improvement in detection metrics.
This demonstrates the efficacy and improved data ef-
ficiency in using multi-view guidance via warping in
feature space, at least in the case of using shared fea-
tures for multitask learning. Since all SOLOP vari-
ants use a single image at inference time, the FPS re-
sult is the same for the versions of the model using
3 feature levels (SOLOP-SV, SOLOP-MV, SOLOP-
MV-gw), but significantly reduced for the version
with the original 5 level architecture (SOLOP-5lvls).
SOLOP-MV-gw achieves better depth recall compar-
atively (see Fig. 4), while all SOLOP variants outper-
form the comparison models on standard metrics.
Qualitative. We display different types of visual re-
sults from our best model in Figures 1, 5, and 6.
In contrast to previous works that predicted a binary
plane indication, the incorporation of multi-class se-
mantics introduces an added complexity. The change
made to the focal loss for category predictions (see
Section 3.2) leads to more confident scoring as well
as a potential increase in false positives, which is
already exacerbated in the case of multi-class pre-
dictions. However, we found that raising the score
threshold for the final masks partially mitigated this
issue. See Fig. 6 for visual results. The structure of
the scene is easier to predict than the exact depth, a
challenge presented when using a single image for in-
ference. Sample visualizations of the semantic pre-
dictions can be found in Fig. 5. Cases of oversegmen-

tation can occur due to prediction of different classes,
or different plane orientation, as each mask represents
a planar segment associated with a class label. Over-
all, our model demonstrates robust performance both
visually and quantitatively for the task of planar re-
construction with semantic labels.

5 DISCUSSION AND FUTURE
WORK

In this work, we introduce SOLOPlanes, a real-time
semantic planar reconstruction network which shows
cross-task improvement when using multi-view guid-
ance in feature space. The task of predicting plane
parameters from a single image is non-trivial, and
the complexity is further compounded by multi-task
learning. Despite these challenges, our model com-
petes favorably with other, less efficient methods in
planar reconstruction that do not offer semantic pre-
dictions. To the best of our knowledge, our model also
outperforms all other planar reconstruction models in
computational efficiency, measured using FPS. Our
work advances semantic plane instance segmentation
without sacrificing computational efficiency, striking
a balance between efficiency and performance. We
hope it will serve as an inspiration or stepping stone
for further research geared towards applications with
real-world impact.
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