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Abstract: This paper considers the deployment of flexible and high-performance surveillance systems. These systems
must continuously integrate new sensors and sensing algorithms, which are autonomous (e.g., capable of
making decisions independently of a central system) and possess interaction skills (e.g., capable of exchanging
observations). For this purpose, our work proposes adopting an agent-based architecture derived from an
organizational and holonic (i.e., system of systems) multi-agent model. It leverages autonomous processing
methods, resulting in a scalable and modular multisensor and multimethod surveillance systems. A vehicle
tracking case study demonstrates the relevance of our approach in terms of effectiveness and runtime.

1 INTRODUCTION

Surveillance systems traditionally employ a multi-
sensor architecture, enhancing system survivability
against device defects or temporary occlusions (Rao
et al., 1993). Despite this, prevailing systems pre-
dominantly rely on singular, unique processing meth-
ods (Wolpert and Macready, 1997), limiting adapt-
ability and flexibility in the face of evolving contexts
and scenarios. Next-generation surveillance systems
should consist of networks with interconnected sen-
sors and methods endowed with reasoning (i.e., infor-
mation processing) and interaction skills. Although
existing architectures enable the management of com-
plex structures of sensors, they assume that methods
are designed beforehand, thereby reducing the range
of applications and system flexibility.

Our paper addresses the design of a scalable,
modular, and adaptive multisensor and multimethod
surveillance system. Our approach involves break-
ing down the system into smaller, manageable parts
like sensors and methods. Each part can operate on
its own, making decisions without needing approval
from a central authority. Also, each part can commu-
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nicate, asking for and sharing information as needed.
Conventional software engineering techniques,

like UML, often fall short in managing the complexity
(Simon, 1976) of large-scale multi-sensor and multi-
method systems due to their foundational design con-
cepts (Rombach et al., 1993; Abbas, 2015; Wautelet
et al., 2021). In contrast, our work embraces the
concept of Multi-Agent Systems (MAS), more par-
ticularly leveraging the capabilities of Holonic Multi-
Agent Systems (HMAS). A HMAS refers to a multi-
agent system in which each agent is assigned to a self-
similar nesting structure, known as a holon. HMAS
represents a promising approach for complex system
modeling due to its capability to support the key prop-
erties of a complex system, including flexibility, in-
telligence, and scalability. This approach allows for
a more organic and responsive system architecture,
akin to living organisms, promoting autonomy and
dynamic interactions among system components. Ad-
ditionally, due to the stochastic interactions within
the real world, the agent paradigm must be aug-
mented with organizational concepts (actors, goals,
objectives, responsibilities, social dependencies, etc.)
that provide abstract patterns of interaction, ensuring
model scalability and flexibility (Ferber et al., 2003;
Cossentino et al., 2010; Abbas, 2015).

This paper focuses on designing an architecture
that facilitates autonomous Sensor Management and
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promotes Autonomous Methods for enhanced system
performance. To the best of our knowledge, there ex-
ists no model that guarantees such functionalities in
both sensors and methods concurrently. The contri-
butions of this paper are:

1. Design of an Organizational Holonic Agent
Architecture: accommodating multi-sensor and
multi-method systems.

2. Implementation: employing the SARL-agent
language (GALLAND et al., 2019). The link
for the multi-agent framework is available at
https://github.com/manjahdani/aptitude.

3. Experimental Demonstrations: with simple be-
haviors for image-processing algorithms while
improving the efficiency of a system.

This paper begins by discussing major related
work in smart surveillance systems in Section 2.
Next, in Section 3, we describe our system, and in
Section 4, we describe the ASPECS methodology
(Cossentino et al., 2010). In Section 5, we provide
large-scale experiments on 40 videos in The AI-City
challenge (Naphade et al., 2021) from the using our
multi-agent surveillance framework APTITUDE. We
conclude the paper with future directions and conclu-
sions in Section 6.

2 STATE OF THE ART

2.1 Surveillance Architectures

Traditionally, distributed surveillance systems are de-
signed as centralized systems with a topology con-
figuration in which the sensors are like the tentacles
of a central node (Valencia-Jiménez and Fernández-
Caballero, 2006). The simplicity of the approach, its
known performances, and controllability come with
an inherent bottleneck restricting scalability. To
improve the scalability of surveillance systems, re-
searchers (Park et al., 2017; Hilal and Basir, 2015)
have focused on a multi-layer management of sen-
sors. In this hierarchical approach, the central node
decomposes the processing loads into smaller assign-
ments. The advantage is the minimization of com-
munication costs, as only the results are passed on
to the upper layers. The approach is suitable if
the sensors are homogeneous and setup in a circum-
scribed environment. In fact, the assumption fails in
most real scenarios, where the sensors and situations
are heterogeneous. For example, in a video surveil-
lance system that monitors one crossroads, it is com-
mon to have various types of camera (PTZ, Bullet,

Dome, etc.). Furthermore, they can be set at various
heights (Elharrouss et al., 2021) and have individual
goals. A solution for better adaptability could then
be a decentralized architecture allowing local con-
trol and decision making. Preferably, a hybrid archi-
tecture would provide interesting alternatives (Mi-
hailescu et al., 2018).

A common issue in the literature is to design a
surveillance system as a closed network with static
components. This assumption is being increasingly
challenged. First, the massive Internet of Things (IoT)
enables cities to become urban sensing platforms
(Perera et al., 2014) and potential users of the system.
Furthermore, it may be economically advantageous
to employ large numbers of cheaper miniaturized de-
vices (Jetson Nano, Raspberry Pi, etc.). Naturally,
this increases the probability that sensors will arrive
and leave or fail during the processes. Systems will
thus be increasingly open in the future. This means
that nodes constantly need to negotiate and self-adapt
to ensure the best coverage (Saffre and Hildmann,
2021). In (Hilal and Basir, 2015), the authors de-
signed sensors as intelligent agents (autonomous, so-
cial, proactive and reactive nodes), using the frame-
work of Belief, Desire and Intention (Wooldridge and
Jennings, 1995). This agent-oriented paradigm allows
active rather than passive cooperation of sensors. We
claim it designs best next-generation surveillance sys-
tems.

Another common point in the literature (Park
et al., 2017; Hilal and Basir, 2015; Chen et al., 2009;
Valencia-Jiménez and Fernández-Caballero, 2006) is
that it falls within the scope of sensor management
and set-up experiments on simulated data or in small-
scale test-bed cases. However, to be able to move to-
ward large-scale end-to-end deployments, it is critical
that systems’ integration aspects be carefully consid-
ered (Mihailescu et al., 2018). Too often, methods are
given secondary importance in such studies. How-
ever, a portfolio of methods brings a new range of
possibilities. For instance, an ensemble of methods,
processing in parallel, could reduce the predictions’
uncertainty. Another example is that the system could
self-adapt to select a suitable method for a situation
(Figure 1b). In conclusion, in addition to working on
real datasets and scenarios, one must distinguish be-
tween sensors and methods to increase the model’s
modularity and broaden the range of applications of a
surveillance system.
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Figure 1: (Left) Figure 1a illustrates the conventional sensor management architecture. (Right) Figure 1b, inspired by Section
5.2, depicts the multi-layer signal processing in applications, highlighting the coordinated roles of Agents A3, A4, and A5,
guided by Agent A7. These figures juxtapose the complex dynamics of multisensor and multimethod systems and expose
the limitation of traditional sensor-based architectures: their inability to adaptively manage the interactions among multiple
methods without pre-established configurations. This contrast draws attention to the need for an evolution towards more
adaptive, integrated systems in signal processing, enhancing flexibility and efficiency through method autonomy and enriched
interactive capabilities.

2.2 Agent-Oriented
Software-Engineering

Large-scale multi-sensor and multi-method systems
are complex (Simon, 1976). Conventional software
engineering techniques, like UML, offer tools limited
by their foundational design concepts, like procedural
scripting (Abbas, 2015; Wautelet et al., 2021). Conse-
quently, they do not facilitate managing systems that
aim to expand both vertically (in control and infor-
mation layers) and horizontally (in physical distribu-
tion) as illustrated in Figures 1a to 1b. Engineering
should instead mimic living systems and their orga-
nization, endowing software components with auton-
omy and interaction abilities (Rombach et al., 1993;
Abbas, 2015; Wautelet et al., 2021). We refer to this
concept as the “agent” paradigm.

Multi-Agent Systems (MAS) are considered a
pertinent paradigm for modeling complex systems,
comprising connected autonomous agents working
towards a common goal in a specific environment
(Rodriguez et al., 2011). Traditional MAS models
view agents as atomic entities, limiting their appli-
cation in exhibiting hierarchical structure. Holonic
Multi-Agent Systems (HMAS), however, overcome
this limitation by utilizing ’holons’—self-similar en-
tities representing whole-part relationships, enabling
detailed and modular modeling of large-scale com-
plex systems through aggregation of nested agent ac-
complishments (Gerber et al., 1999; Rodriguez et al.,
2011). Finally, the stochastic interactions within
the real world imply that the agent paradigm must

be augmented with organizational concepts (actors,
goals, objectives, responsibilities, social dependen-
cies, etc.) that provide an abstract pattern of interac-
tion, thereby ensuring model scalability and flexibility
(Ferber et al., 2003; Cossentino et al., 2010; Abbas,
2015). The motivation of an organizational approach
to modeling complex systems is further elaborated
upon in (Ferber et al., 2003; Cossentino et al., 2010)
and formally included in the ASPECS methodology
(Rodriguez et al., 2011). It specifies the problem to
be solved using an organizational modeling approach
based on the CRIO metamodel and designs a solu-
tion based on HMAS. The problem specification for
surveillance systems is detailed in Section 4.1. Sec-
tion 4.2 provides the mapping to the HMAS.

3 PROBLEM STATEMENT

Multisensor and multimethod surveillance systems
involve large-scale networks of interconnected com-
ponents (e.g., sensors and methods) endowed with
reasoning (i.e., information processing) and interac-
tion skills. We refer to the aforementioned concept
as an agent (Wooldridge and Jennings, 1995). They
collaborate to accomplish a given objective. For in-
stance, in our case study of traffic analysis, multi-
camera cooperation is needed for city-scale tracking.
The engineering of this particularly complex system
(Simon, 1976) should meet three main specifica-
tions:

C1. Scalability and modularity. A complex surveil-
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lance system should be able to continuously in-
tegrate more and more sensors (Valencia-Jiménez
and Fernández-Caballero, 2006) and new meth-
ods. It could itself play a role in a higher-order
surveillance system. In other words, the system
should be scalable and modular; the integration
of new and heterogeneous sensing methods in par-
ticular should be facilitated.

C2. Resilience. We describe the system’s ability to
gracefully degrade and recover under stress or
when a node is removed. As a general principle,
systems employing multiple sensors and methods
exhibit greater fault tolerance. For instance, (Liu
et al., 2020) demonstrates how cameras observing
the same scene can compensate for a malfunction-
ing camera (caused by occlusion or fault) by re-
constructing missed detections. Regarding meth-
ods, employing an ensemble approach reduces
false positive/negative rates and anomalies.

C3. Openness. Traditionally systems are mostly de-
signed as closed networks. This design is in-
creasingly being challenged. The massive Inter-
net of Things (IoT) sensors have enabled cities to
become massive sensing platforms (Perera et al.,
2014). Furthermore, economically, it may be ad-
vantageous to employ large numbers of cheaper,
miniaturized devices (Jetson Nano, Raspberry Pi,
etc.), which naturally increases the probability of
agents arriving, leaving or failing during the pro-
cesses. Preliminary studies have shown that ig-
noring this need for openness may lead to severe
losses of performance(Abdelrahim et al., 2018;
Hendrickx and Martin, 2018). The management
of openness implies self-organisation capabilities,
such that the system can self-adapt if a component
enters or leaves the system.
Conventional systems generally struggle to fully

meet those specifications. Sensor management archi-
tectures with a topology similar to Fig. 1a can handle
scenarios involving multiple cameras observing the
same scene (Fig. 2) or city-scale tracking where the
smart sensors select the appropriate method for each
camera (Fig. 3). Nevertheless, their structure assumes
that the processing methods are designed beforehand
as a sequence of intertwined processes. For instance
in a tracking by detection, the tracker could be pro-
grammed to receive multiple detections. However
the integration of new behaviours (e.g., voting mech-
anisms in case of uncertainty) requires to adapt the
tracker’s module for each camera in which we want to
install the behaviour. In contrast, if each component
(tracker and detectors) is designed as an autonomous
self-adapting block, deployment of resilient and flex-
ible system behaviours can be facilitated.

Figure 2: District 2. A network of cameras observing the
same target bolsters the system’s resilience as the failure
(e.g., fault or occlusions) of one or several cameras can be
balanced by the other functioning cameras.

Figure 3: Positioning of the cameras in the case study of
Section 5.1. A general-purpose method produces underper-
forming systems. There is no dataset large enough to cover
all aspects of a city scenario (Soviany et al., 2021).

4 HOLONIC ARCHITECTURE

As a preliminary point, the concepts of organization
and role must be defined. An Organization represents
a subsystem in which entities play roles and interact
together to achieve a shared goal in the context of this
organization. A Role is both an expected behavior to
fulfill (part of) a requirement and a status to the role’s
player in the organization. At the agent level, they
can select one or more roles to be played by them and
execute the corresponding behaviors.

Holarchy is the hierarchical structure composed
of the agents/holons of the system. Each level of this
holarchy is a possible instance of an organization that
is defined in the problem specification (as illustrated
in Section 4.1). Each holon plays one or more roles
in one or more groups (instances of organizations) on
the same level. Composition relations between super-
holons and sub-holons are then specified in accor-
dance with the contributions from the organizations
defined in the organizational hierarchy.
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4.1 Organizational Model

The section presents the organization cyber-physical
platform (CPP) (Fig. 4) and its roles Resource
Provider, Observer and Sensor.

CYBER-PHYSICAL PLATFORM

<<role>> 
Observer

level n

level n+1

Provide data 
capacity request

<<environment role>>
Resource Provider[nb=1]

<<role>> 
Sensor

request 
access

1
answer 1..n

1..n

Figure 4: Organizational model of the cyber-physical plat-
form, using the ASPECS notation (Cossentino et al., 2010).
The Resource Provider role ensures a fair distribution of
the resources among all parties. The Observer role has the
capacity to deliver perceptions thanks to the data acquired
by the Sensor role. The acquisition of data could rely on
another CPP.

CPP has the capacity to provide perceptions to ex-
ternal requests. It has finite resources while ensuring
fair access to multiple surveillance operations. There-
fore, the Resource Provider role handles authoriza-
tions of legitimate interactions and management of re-
sources. For instance, it could prevent the execution
of a mission requiring more resources than available
(e.g., prevent the fusion of several methods) or the use
of a method disrespectful of a standard (i.e., privacy).
The Observer role has the capacity to provide percep-
tions after processing data given by sensors. Multi-
ple Observers can operate in parallel within the orga-
nization in collaboratively or competitively. The be-
haviour of the Sensor role is to acquire data. The ac-
quisition of data could rely on another CPP. A pseudo-
code of the behaviours is provided in the Algorithm 1
in the APPENDIX section.

4.2 Holarchy Design

A holarchy is represented in Fig. 5. The level n repre-
sents an agent providing perceptions to any requester.
At level n− 1, holons with Observer role (e.g., H1
and H2) collaborate (or negotiate) to reach a com-
mon objective (e.g., counting vehicles or pedestrians).
Each holon with an Observer role implements a spe-
cific method or algorithm to analyze the input of a
holon that endorses the Sensor role (e.g., H3). Upon
disagreement, they can negotiate a consensus (e.g.,
agreement on the type of object). The level n − 2
shows a holon (i.e., H3) that is providing input data.
The latter is composed of one or multiple agents (e.g.,
H4 and H5). That agent can be activated to fulfill H3’s
objective. The sub-holons could be a network of cam-
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ge

nd
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Group
Agent
Role

n

n-1

n-2

H3

G2 : data fusion 

ObserverSensor

H2

Observer

CPP LEVEL

Resource 
Provider 

G1: parallel 
processing  
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Sensor
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Sensor
Observer

Figure 5: Holonic architecture. The representation of the
holarchy was inspired by the “cheese board”notation pro-
posed by (Cossentino et al., 2010; Feraud and Galland,
2017).

eras observing the same scene or different methods
processing a signal. In Section 5, we show the time
gained thanks to the cooperation between two holons
taking turns to process a video stream with varying
traffic density.

5 EXPERIMENTATION

5.1 Case Study

Smart cities continuously face increasing mobility
challenges due to ever-growing populations, novel
transportation modes (micro-mobility, autonomous
cars, etc.) and threats (loitering, abandoned objects,
etc.). A resilient and scalable surveillance framework
offers cities data-driven governance and could facili-
tate the advent of connected devices such as wearable
blind navigation. City-scale vehicle tracking consists
in tracking vehicles across multiple cameras both at
a single intersection and across multiple intersections
scattered over a city. It helps traffic engineers under-
stand journey times along entire corridors. It can be
used to design better intersection signal timing plans
and apply other traffic congestion mitigation strate-
gies when necessary (Naphade et al., 2021). The de-
ployment of such large-scale solutions requires both
effectiveness in tracking and efficiency in processing.
Traditionally, a surveillance company chooses and de-
ploys one tracker and one detection model across all
its solutions. The choice and development of such
algorithms are based on their prediction capacity to
outperform other existing methods. Yet, the deploy-
ment of a unique solution neglects the diversity of
contexts in a city (density, lighting, etc.). Conse-
quently, one has to compromise either by deploying
an effective but energy-consuming method or a low-
cost but poorly effective algorithms. For instance, in
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low-density traffic (i.e., fewer objects to track), sim-
ple methods (e.g., inter-frame difference) give satis-
factory results for detecting the presence of moving
objects. Conversely, in high-density traffic (i.e., many
vehicles to track), the use of sophisticated methods
(e.g., deep neural network) must be used to achieve
good tracking performance. The following experi-
ment demonstrates how the collaboration of active
and autonomous methods uses fewer resources while
maintaining good predictive results for vehicle track-
ing.

5.2 Practical Design of Agents

The following example illustrates the chain of pro-
cesses occurring upon the decision of a camera to
track vehicles. In this scenario, the tracker estimates
the number of tracks as low and informs the detectors
that the camera might be in a low-density area (i.e.,
few objects to track). The detector adopts a strategy
that involves recruiting a method (e.g., inter-frame
differencing) that assumes the role of an activity de-
tector. When movement is detected, it alerts a deep
neural network (DNN) that is present but in a sav-
ing mode. The advantage of this approach is that the
DNN becomes active only when necessary, leading to
reduced energy consumption while maintaining effec-
tive detection performance. We present these interac-
tions in Fig. 6, and an abstract behavior is provided in

the Algorithm 2, in the APPENDIX section.

5.3 Evaluation Protocol

We evaluated the sensors and methods architecture’s
cost at scale against the single sensor approach, us-
ing 40 cameras from the AI-City challenge dataset
(Naphade et al., 2021).

5.3.1 Metrics

Higher Order Tracking Accuracy (HOTA) (Luiten
et al., 2021) is a community standard for evaluating
the effectiveness of multi-object tracking (MOT). In
summary, HOTA ∈ [0,1] measures how well the tra-
jectories of matching detections align and averages
this over all matching detections, while also penaliz-
ing detections that do not match (Luiten et al., 2021).
Efficiency is evaluated by the processing time of each
processing phase. In the adaptive approach, we added
the cost of agentification (i.e., the cost of agent inter-
actions).

5.3.2 Methods

The detector based on the inter-frame differencing is
Background Substraction from the computer-vision
library OpenCV and the deep neural network is a
YOLO v4 model (Bochkovskiy et al., 2020) trained
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Table 1: Comparison of large-scale testing of a multi-sensor architecture vs our architecture that integrates autonomous
methods. The camera arrangement is depicted in Fig. 3.

Method HOTA Proc. Time (s) Agent Time (s) Total (s)
multisensor, DNN only 0.361 2327.05±21.41 9.95±0.8 2337
multisensor, multimethod 0.360 2169.40±30.84 12.48±0.85 2181.88
Difference 0.001 -157.65 2.53 -155.12

on the MIO-TCD dataset (Luo et al., 2018). In both
cases, the tracker is SORT (Bewley et al., 2016).

5.3.3 Test Environment

Finally, the experiments were performed on a com-
puter with an Intel(R) Core(TM) i7-8700K CPU
processor running at 3.70GHz and on Windows
10. YOLO v4 ran on GPU with NVIDIA GeForce
GTX 1080 Ti. All publicly available source
codes, selected videos and methods configurations
used in this work are available and detailed at
(https://github.com/manjahdani/aptitude).

5.4 Results

Table 1 displays the HOTA scores, processing times,
and agentification costs, alongside their respective
differences. These tests utilized 40 videos from the
cameras in the AI-City Challenge (Naphade et al.,
2021), as illustrated in Fig. 3. The processing times
mentioned are averages derived from 10 simulations.
Analysis of Table 1 indicates that the system main-
tains consistent tracking performance at scale. It also
reveals a 25% increase in agent interactions, but over-
all consumption was reduced by 7%.

6 CONCLUSION

We overcome the lack of flexibility of existing multi-
sensor architecture by adding autonomy to the meth-
ods. We propose a system in which each component
(sensors, methods) is endowed with autonomy, allow-
ing them to make decisions without referencing a cen-
tral system, and interaction skills, enabling them to
request and provide observations. Given the intrinsic
complexity of such a surveillance system, we selected
the organizational and holonic multi-agent paradigm
for modeling. The different organizations and roles
of the system are highlighted (Section 4.1) and de-
scribed, as well as the interactions and role behaviours
(Section 4.2). To validate the proposed model, a city-
scale vehicle tracking system consisting of multiple
cameras at single or multiple intersections across a
city was considered (Section 5). The experiment de-
ployed a system embodied with a portfolio of meth-

ods and provided intelligence to select the best pro-
cessing technique dynamically according to the con-
text’s density. The experimental results indicate that
by implementing simple behaviors in methods, the
system can, without prior knowledge of image pro-
cessing, offer vehicle tracking quality comparable to
the best image analysis approaches. This is achieved
with significant gains in runtime performance and
minimal agent interaction costs. Future work will in-
volve introducing an organization responsible for the
system’s learning for continual learning of methods.
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APPENDIX

Data: CPP (CyberPhysicalPlatform)
Result: Managed interactions within CPP
Holarch CPP:
if receive external request for perceptions
then

ResourceProvider.manageRequest();
Observer.initiateProcessing();

end
Role ResourceProvider:
if new request or mission then

if resources available and legitimate
request then

allocate resources;
authorize interactions;

else
deny request;

end
end
Role Observer:
if initiation then

while mission is active do
Sensor.acquireData();
process data to generate perceptions;
if collaboration or competition is
needed then

interact with other Observers;
end

end
end
Role Sensor:
if requested by Observer then

if data relies on another CPP then
request data from other CPP;

end
Provide data to Observer;

end
Algorithm 1: Holonic Organizational Interactions
in CPP.

Data: costX, perfX, densityInfo
Result: Adaptive behavior based on density,

cost, and performance
Agent Algorithm - Method X:
Behavior:
if low density and costX is min then

Act as primary detector;
else

if average density and costX is min then
Act as activity detector;
if activity detected then

Notify other method;
end

else
if high density and perfX is max then

Act as primary detector;
end

end
end
Interaction & Decision Protocol:
Share cost and performance;
Evaluate current density;
Apply rules based on density, cost, and
performance;

Algorithm 2: Rule-based Interactions in Imple-
mented CPP for the level n-2.
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