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Abstract: Classical variational methods for solving image processing problems are more interpretable and flexible than
pure deep learning approaches, but their performance is limited by the use of rigid priors. Deep unfolding
networks combine the strengths of both by unfolding the steps of the optimization algorithm used to estimate
the minimizer of an energy functional into a deep learning framework. In this paper, we propose an unfolding
approach to extend a variational model exploiting self-similarity of natural images in the data fidelity term for
single-image super-resolution. The proximal, downsampling and upsampling operators are written in terms
of a neural network specifically designed for each purpose. Moreover, we include a new multi-head attention
module to replace the nonlocal term in the original formulation. A comprehensive evaluation covering a wide
range of sampling factors and noise realizations proves the benefits of the proposed unfolding techniques. The
model shows to better preserve image geometry while being robust to noise.

1 INTRODUCTION

The goal of image super resolution is to recover a
high-resolution image from a low-resolution obser-
vation of it. This field has significant importance
due to its numerous practical applications, includ-
ing satellite imaging, biometric information identifi-
cation, medical imaging, remote sensing, microscopy
image processing, surveillance, multimedia industry,
video enhancement or astrological studies, among
others (Lepcha et al., 2023).

In the literature, a wide variety of methods have
been proposed to address image super-resolution.
One may roughly divide them into interpolation,
model-based, and learning-based methods.

Interpolation methods are commonly used for
quickly generating zoomed images, providing a good
compromise between efficiency and quality. These
methods typically estimate pixel intensity using fixed
kernels, such as local variance coefficients (Keys,
1981), or adaptive structural kernels (Li and Orchard,
2001; Zhang and Wu, 2006). While these methods
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are efficient, they can introduce artifacts. For applica-
tions demanding greater precision, more sophisticated
techniques are required.

Model-based methods assume that the low-
resolution observed image is derived from the sought
high-resolution one after applying a sequence of op-
erators, usually blur filtering and downsampling. Re-
versing such a process is an ill-posed inverse prob-
lem, thus prior knowledge on the structure of nat-
ural images must be assumed to regularize it. The
most popular model-based methods are variational
models, which define an energy functional that in-
duces a high energy when the priors are not ful-
filled. The total variation (TV) semi-norm (Rudin
et al., 1992) and nonlocal regularization terms, which
exploit image self-similarities (Duran et al., 2014;
Wang et al., 2019; Gilboa and Osher, 2009), have
been mainly used as regularization terms in the varia-
tional framework. Several variational methods have
been proposed in the literature to deal with image
super-resolution (Yue et al., 2016). In this setting,
the total variation (TV) semi-norm (Babacan et al.,
2008) and nonlocal regularization exploiting image
self-similarities (Dong et al., 2011; Dong et al., 2013;
Zhang et al., 2012) have been mainly used as priors.
Recently, (Pereira-Sánchez et al., 2022) proposed to

190
Pereira-Sánchez, I., Sans, E., Navarro, J. and Duran, J.
Beyond Variational Models and Self-Similarity in Super-Resolution: Unfolding Models and Multi-Head Attention.
DOI: 10.5220/0012395400003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 3: VISAPP, pages
190-198
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



leverage the self-similarity in the fidelity term rather
than in the regularization term.

In the last decade, a growing number of deep
learning-based super-resolution methods have been
suggested in the literature and showed promising re-
sults. These approaches can be categorized depend-
ing on their architectures. In this setting, we can
find residual connections (Tai et al., 2017; Lim et al.,
2017), generative adversarial networks (Bell-Kligler
et al., 2019), or attention modules (Dai et al., 2019).
In fact, attention modules are based on the assumption
that images are self-similar and are the key of vision
transformers, which have become remarkably popular
(Wang et al., 2022; Lu et al., 2022).

The use of observation models makes variational
methods robust to distortions, but their performance is
limited by rigid hand-crafted priors. On the contrary,
data-driven learning approaches can easily learn natu-
ral priors, but are less flexible and interpretable. Deep
unfolding networks (Monga et al., 2021) combine the
strengths of both. The general idea consists in un-
folding the steps of the optimization algorithm used
to estimate the minimizer of an energy functional into
a deep learning framework. Since these networks do
not model the complete problem but particular oper-
ations, architectures are shallower than pure learning
approaches. Besides, the unfolding process avoids the
need of defining an explicit prior in the model-based
formulation. This results in efficient and highly inter-
pretable methods whose network architectures can be
trained on acceptable-sized datasets.

In this paper, we propose to extend the variational
model in (Pereira-Sánchez et al., 2022) with algo-
rithm unfolding techniques. This model leverages the
self-similarity of natural images in the fidelity term.
We use the proximal gradient algorithm to compute
the minimizer of the proposed energy functional and
replace all proximal, downsampling and upsampling
operators with a neural network specifically tailored
to model each function. In addition, we introduce a
new multi-head attention module to take the place of
the nonlocal term in the original formulation. Exten-
sive experiments under different sampling factors and
noise realizations of the proposed approach demon-
strate the effectiveness of the presented method.

The rest of the paper is organized as follows. Sec-
tion 2 presents the proposed model. Section 3 cov-
ers implementation details. Experimental results in
comparison with other methods are included in Sec-
tion 4, while Section 5 analyses the different compo-
nents of our model. Finally, Section 6 provides the
conclusions and outlines the future work. The source
code of the proposed method is publicly available at
https://github.com/TAMI-UIB/UNLDSR.

2 PROPOSED MODEL

The most common observation model in image super-
resolution relates the observed data f with the under-
lying image u via

f = DBu+η, (1)

where D is a decimation operator and B is a low-pass
filter. Then, DB is a linear operator modelling the
degradation of u and η is the realization of i.i.d. zero-
mean noise. Since solving (1) is an ill-posed inverse
problem, the choice of a good prior is required.

2.1 Variational Formulation

Let us denote the low resolution image as f ∈ RC×N ,
where N is the number of pixels and C is the num-
ber of spectral bands, and the restored image as u ∈
RC×M := X , with M > N.

Classical variational models for image restoration
include the fidelity term

∥DBu− f∥2 =
C

∑
k=1

N

∑
i=1

((DBu)k,i − fk,i)
2 . (2)

In order to take advantage of image self-similarity, the
work in (Pereira-Sánchez et al., 2022) extends the pre-
vious energy to a nonlocal framework, replacing the
previous term by a nonlocal data term. We propose
to enhance the performance of this nonlocal fidelity
term by incorporating learning-based modules in the
variational framework. In particular, we consider the
super-resolution variational model

min
u∈X

R(u)+
λ

2
∥(DBu− f )ω∥2, (3)

where R : X → [−∞,+∞] is a strictly convex, coer-
cive and lower-semicontinuous functional that plays
the role of the regularitzation term, λ > 0 is a trade-
off parameter, and (DBu− f )

ω
∈ RC×N×N is defined

as

∥(DBu− f )ω∥2 :=
C

∑
k=1

N

∑
i, j=1

ωi, j
(
(DBu)k,i − fk, j

)2
.

The weights {ωi, j} are originally computed on the
observed data f , taking into account both the spatial
closeness and the spectral similarity in f .

Since the proposed energy (3) is also strictly con-
vex, coercive and lower-semicontinuous, the exis-
tence and uniqueness of minimizer is guaranteed. In
contrast to (Pereira-Sánchez et al., 2022), the prior R
does not have a specific form in our formulation, since
it will be folded into the learning-based scheme. This
will permit to learn the regularization on u from train-
ing data.
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Figure 1: Illustration of one stage of the proposed model,
which unfolds Equation (5). Downk represents the down-
sampling DB, and Upk is its transposed counterpart (DB)T .
MHAk denotes the multi-attention module that substitutes
the nonlocal operator in the data term, and ProxNetk is the
architecture that replaces the proximity operator.

2.2 Proximal Gradient

We use the proximal gradient algorithm (Combettes
and Wajs, 2005; Chambolle and Pock, 2016) to min-
imize (3). Given a Hilbert space Z, when consider-
ing a proper, lower semi-continuous convex function
R : Z → [−∞,+∞], the associated proximal operator
is defined as

proxτR(x) = argminy∈ZR(y)+
1
2τ

∥y− x∥2, (4)

which can be seen as a generalization of the projection
operators.

The iterative scheme given by the proximal gradi-
ent algorithm becomes

uk =proxτR

(
uk − τ∇Fω(uk)

)
=proxτR

(
uk − τ(DB)T (DBu− fω)

)
,

(5)

where (DB)T is the transposed operator of DB and
fω = ∑ j∈X ωi, j f j.

2.3 Algorithm Unfolding

We propose to unfold (5) and replace the operators
involved the iterative scheme with learning-based net-
works. In particular, we replace proxτR by ProxNetk,
DB with Downk, (DB)T with Upk and the nonlocal
operator by a multi-head attention module MHAk.
With these replacements we allow the operators to
learn the intrinsic properties and geometry of natural
images. In addition, by rewriting the proximity opera-
tor with a neural network, we avoid the need of speci-
fying the prior on u, which will be implicitly modelled
by the network.

In the following we accurately describe these net-
works. Also, in the rest of the paper we refer to each
step k in the iterative scheme as a stage. Figure 1 il-
lustrates one stage of the proposed approach. In the
first stage, u0 is initialized with bicubic interpolation.

2.3.1 From Proximal Operator to Residual
Network

The proximal operator defined in (4) can be reduced
to

ŷ = proxτR(x) ⇐⇒ x ∈ ŷ+ τ∂R(ŷ)

⇐⇒ ŷ ∈ (Id + τ∂R)−1(x),
where ∂R is the sub-differential operator. Therefore,
we can view the proximal operator as the inverse of
a perturbation of the identity. Given this perspective,
residual networks are good candidates for replacing
the proximal operator in the unfolding context. They
consist of a convolutional neural network followed by
a skip connection, also known as a residual connec-
tion, making it an approach to identity.

Then, we replace the proxτR function by a resid-
ual network ProxNetk. We maintain the same archi-
tecture in all stages but without sharing the weights.
This architecture is depicted in Figure 2.

2.3.2 Upsampling and Downsampling Operators

The classic downsampling operator DB is modelled
with a convolution by a Gaussian kernel of σblur stan-
dard deviation, followed by a decimation operator.
We propose to learn this operator by modelling it with
two 2-dimensional convolutions. The first convolu-
tion substitutes the Gaussian convolution and their
parameters are determined by the standard deviation
σblur. While the decimation operator is replaced by
another convolution which stride equals the sampling
factor.

On the other hand, the upsampling operator
(DB)T is classically modelled by a zero-padding op-
erator followed by a Gaussian convolution of the same
standard deviation. We replace this upsampling by a
concatenation of transposed 2-dimensional convolu-
tions, which serve the purpose of zero padding, fol-
lowed by a 2-dimensional convolution that replaces
the Gaussian convolution. To determine the concate-
nation of transposed convolutions, we consider the
prime decomposition of sampling factors, sorted in
ascending order as s = pr1

1 · . . . · prm
m . This decompo-

sition determines the steps of the concatenation. For
a prime number p, we denote T C p as the transposed
convolution with a stride equal to p. Using this nota-
tion, we can describe the concatenation as the follow-
ing composition:

m︷ ︸︸ ︷
T C pm ◦ · · · ◦T C pm︸ ︷︷ ︸

rm

◦· · · ◦T C p1 ◦ · · · ◦T C p1︸ ︷︷ ︸
r1

.

This formula is designed to simplify the upsampling
operation by decomposing it into the smallest feasible
steps.
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Figure 2: Diagrams of the downsampling and upsampling
architectures for a sampling factor of 4, and ProxNet net-
work. We keep the same architectures at each stage, but
weights are not shared.

These replacements lead to the new downsam-
pling and upsampling operators, Downk and Upk, re-
spectively, which appear in Figure 1. Importantly, the
involved parameters in both upsampling and down-
sampling are not shared per stage. An example illus-
trating the proposed downsampling and upsampling
processes for a sampling factor of 4 is shown in Fig-
ure 2.

2.3.3 From Self-Similarity to Multi-Head
Attention

In the variational model, the weights {ωi, j} are com-
puted on the observed data f , taking into account the
similarities in f . This similarity is computed by con-
sidering a whole patch around each pixel and using
the Euclidean distance across channels. For compu-
tational purposes, nonlocal interactions are limited to
pixels at a certain distance. In practice, the weights
are defined as

ωi, j =
1
Γi

exp

(
−
∥∥ f (Pi)− f (Pj)

∥∥2

h2
sim

)
,

if ∥i− j∥∞ ≤ ν and zero otherwise. In this setting,
ν ∈ Z+ determines the size of the window to search
for similar pixels, Pi denotes a patch centered at pixel
i, and Γi is a normalitzation factor. The filtering pa-
rameters hspt > 0 measure how fast the weights decay
with increasing dissmilarity between patches.

In (Wang et al., 2018), this expression is simpli-

fied by considering ωi, j =
1
Γi

exp( f (i)T f ( j)), and by

computing the similarity using the dot product while
employing the spectral representation of the image xi
at pixel i. The primary motivation for this simplifi-
cation is that the dot product is computationally more
efficient, and the difference between the distance and
the dot product does not yield significant differences
in practice. Furthermore, they propose a simple ex-
tension of these weights by incorporating a convolu-
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Figure 3: Illustration of the multi-head attention and self-
attention networks. The same architecture is used at each
stage without sharing weights.

tion operation, such that,

ωi, j =
1
Γi

exp((θ∗ f )(i)T (φ∗ f )( j)))

=softmax
(
(θ∗ f )(i)T (φ∗ f )( j)

)
.

Finally, they compute the nonlocal filter, denoted as
fω = ∑ j wi, j f j, by reshaping the data and perform-
ing matrix multiplication between the last two dimen-
sions, which can be efficiently executed on a GPU.
This module, followed by a residual connection, is re-
ferred to as self-attention. This architecture has been
widely used and forms the basis of the well-known
transformer block, which concatenates the previous
architecture and follows it with a multi-layer percep-
tron (MLP).

In our approach, we propose to write the varia-
tional nonlocal module as a multi-head attention one.
Instead of working with the spectral representation
of individual pixels, we propose to compute the dis-
tance between pixels using the spectral representation
of patches, to obtain more robust weights. Moreover,
we concatenate three self-attention layers, employing
three different auxiliary images for weight computa-
tion: f , DBu, and the concatenation of both. The ar-
chitecture is detailed in Figure 3.
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Reference VCLD UCLD

BIC VNLD UNLD (ours)
Figure 4: Close-ups of the results for single-image super-resolution on temple, with s = 2, σblur = 0.75 and σnoise = 0. While
the variational methods give oversmooth results, both unfolded models better preserve the geometry and textures of the image.

3 IMPLEMENTATION DETAILS

3.1 Convolution Parameters

The convolution that replaces the Gaussian operators
in the downsampling and upsampling operators is de-
termined by the blur standard deviation, denoted as
σblur. The kernel size is calculated as [4σblur]+1, and
the padding is set to the integer division of the kernel
size by 2. The padding consists of replicating the last
pixel at the boundary. This convolution operates in-
dependently on channel information, and the weights
are initialized with a Gaussian kernel.

For the transposed convolutions of the upsampling
operator, when given a prime factor p, the stride is
set equal to p, the kernel size is set to the smallest
odd number strictly greater than p, and consequently,
the padding is established as the integer division of
the kernel size by 2. In the case of the convolution
that replaces the decimation operator, the stride is set
equal to p, the kernel size is chosen as the smallest
odd number greater than the sampling factor, and the
padding is determined in the same way than the pre-
vious convolutions.

For all the convolutions in ProxNet we employ a
kernel size of 3 and a padding of 1. The number
of features added in the first convolution before the
residual block is 16. These convolutions do not have
bias terms, except for the last convolution, which in-
cludes a bias.

Finally, the involved convolutions in the attention
module MHA have a kernel size equal to one and
therefore no padding is needed, any of these convo-
lution have bias. The window size defined for the
neighbors in the multi-head attention is set to 5 for
all self-attentions. However, the patch size is equal to
3 for the self-attentions that use f and DBu, and it is
set to 1 for the one that uses the concatenation of both.

3.2 Training

We trained our complete system in an end-to-end
manner using the mean square error as loss function
for 400 epochs. The learning rate was initially set to
0.001 and was updated by a factor of 0.75 whenever
the loss for the training data did not decrease by more
than 0.0001 during the last 10 epochs. Regarding the
number of stages, a detailed study of its influence is
conducted in Section 5. For most experiments we
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Reference VCLD UCLD

BIC VNLD UNLD (ours)
Figure 5: Close-ups of the results for single-image super-resolution on squirrel, with s = 4, σblur = 1.4 and σnoise = 10. While
the variational methods face difficulties in reconstructing the textures of the images, the unfolded results yield better results.
Additionally, UNLD proves to be more effective in removing noise when compared to UCLD.

Figure 6: Set of images used for validation. From left to
right and from top to botom: stairs, lock, statue, squirrel,
temple, penguin.

have chosen to set it at 5 because it strikes a good bal-
ance between performance and computational cost.

3.3 Dataset

We have selected 19 images from the DIV2K dataset
and cropped each of these images to a size of
512x512. These crops have been divided into 13 for
training, with the remaining 6 for validation, consid-
ering these crops as the reference images. Figure 6
displays the validation data. The low-resolution im-
ages are generated by applying a Gaussian kernel,
followed by bicubic interpolation for downsampling,

and then adding Gaussian noise with a standard devi-
ation in the range of [0,255].

4 RESULTS

In this section, we assess the performance of the pro-
posed unfolded nonlocal model (UNLD) and compare
it with other methods. In particular, we compare with
the unfolding of the variational model that uses the
classic data fidelity term from Equation (2) (UCLD).
This comparison will prove the influence of the multi-
head attention module. Also, we include two varia-
tional models, the conventional classic data (VCLD),
and the one with the nonlocal data term (VNLD) from
(Pereira-Sánchez et al., 2022). Both of these vari-
ational methods use total variation as regularization.
Additionally, we include the bicubic (BIC) interpola-
tion method in our evaluation.

The comparison is conducted by using sampling
factors of 2 and 4, with standard blur deviations of
0.75 and 1.4, respectively. In both cases, the mod-
els have been evaluated for different realizations of
noise, with standard deviations of 0, 5, 10, and 25.
The parameters of the variational methods have been
optimized using the image penguin from the valida-
tion set.
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Table 1: Results for a sampling factor of 2, a blur level of 0.75, and various noise levels: 0, 5, 10, and 25. The comparison is
based on PSNR and SSIM metrics, with the averages computed across the entire validation data. Bold numbers indicate the
best metrics for the mean, and the italic numbers represent the second-best metrics. Notably, the proposed UNLD achieves
the best metrics across all noise levels.

BIC VCLD VNLD UCLD UNLD
Noise PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 26,33 0,784 28,29 0,811 29,40 0,871 29,31 0,870 29,57 0,876
5 25,69 0,716 27,61 0,781 27,95 0,805 28,39 0,822 28,49 0,826
10 24,33 0,595 26,58 0,738 26,63 0,739 27,01 0,758 27,30 0,775
25 20,18 0,342 24,02 0,597 24,48 0,624 24,79 0,648 24,86 0,654

Table 2: Results for a sampling factor of 4, a blur level of 1.4, and various noise levels: 0, 5, 10, and 25. The comparison is
based on PSNR and SSIM metrics, with the averages computed across the entire validation data. Bold numbers indicate the
best metrics for the mean, and italic numbers represent the second-best metrics. Notably, the unfolded nonlocal data achieves
the best metrics across all noise levels.

BIC VCLD VNLD UCLD UNLD
Noise PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 24,37 0,640 24,22 0,647 24,24 0,658 24,77 0,670 24,81 0,672
5 23,96 0,598 23,88 0,609 23,89 0,616 24,34 0,630 24,37 0,633
10 22,98 0,517 23,33 0,569 23,37 0,575 23,77 0,590 23,88 0,601
25 19,53 0,318 22,04 0,498 22,11 0,503 22,35 0,515 22,38 0,518

The quantitative results can be found in Tables 1
and 2 for sampling factors of 2 and 4, respectively.
Our method achieves the best metrics for both sam-
pling factors and for all noise realizations. Moreover,
the second-best metrics are achieved by the other un-
folding method. This corroborates the fact that un-
folding methods are capable of learning the intrin-
sic and natural geometry of the images better than
variational methods. Furthermore, the superiority of
UNLD over UCLD demonstrates the importance of
the multi-head attention module.

Moreover, the qualitative results are showcased in
Figures 4 and 5. The visual comparison aligns with
the quantitative results. In both examples, variational
methods VNLD and VCLD provide oversmooth solu-
tions while their unfolded versions UNLD and UCLD
better preserve the image geometry and textures.
However, in Figure 5 the proposed UNLD shows to
be superior to UCLD in removing noise. When as-
sessing the performance of both models, it becomes
evident that the nonlocal model consistently outper-
forms its counterpart when subjected to varying de-
grees of noise.

5 ABLATION STUDY

In this section, we evaluate the influence of differ-
ent components of our system. First, we explore
the efficacy and robustness of various residual net-
works architectures within our context. Four propos-
als of residual networks were considered to replace

the proximal network ProxNet. These proposals can
be divided into two different approaches. The first
approach incorporates the argument in the proximal
network provided by Equation (5), i.e., u − τ∇Fω.
Within this approach, we tested two similar architec-
tures: one with batch normalization, denoted as Net1,
and the other without batch normalization, denoted as
Net2. The second approach introduces a concatena-
tion of u and ∇Fω instead. Within this approach, we
tested two similar architectures: one without adding
features to u and ∇Fω, denoted as Net3, and the other
adding features, denoted as Net4. Table 3 demon-
strates that the second option delivers the best perfor-
mance, indeed, this architecture is the one used in our
model, as shown in Figure 2.

Next, we study the behaviour of the model un-
der different samplings of the data. We evaluated the
model with samplings 2, 3, 4 and 8 and blur 0.75,
1, 1.4, 1.8, respectively, all of them with absence of
noise. The results of both unfolding models is shown
in Table 4. As expected, the greater the sampling
the lower metrics, but in every scenario the nonlocal
model UNLD outperforms the classic model UCLD.
This behaviour confirms the adaptability of the model
to different data types.

Also, we have tested the performance of UNLD in
a scenario with high noise level. Figure 7 illustrates
that the model can reconstruct an image even with a
noise level of 50 in the case of sampling 2 and blur
0.75.

Finally, we checked the influence of the selected
number of stages in the iterative process. We trained
UCLD and UNLD models with 3, 5, and 7 stages.
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Reference BIC UNLD
Figure 7: Example showcasing the robustness to high noise level of UNLD. The images were generated from an input image
with a sampling factor of 2, a blur level of 0.75, and a noise level of 50.

Figure 8: Evolution of PSNR as a function of the number
of stages and noise values. Each PSNR value corresponds
to the average value over the validation set.

Table 3: Results for sampling factor 2, blur level 0.75 and
3 stages, and different architectures for the ProxNet. The
comparison is conducted in terms of average PSNR. The
bold numbers indicate the best metrics. Notably, the Net2
outperforms all other architectures.

ProxNet Net1 Net2 Net3 Net4
PSNR 25,676 29,160 29,041 28,827

Results are reported in Figure 8 in terms of average
PSNR. While from 3 to 5 there is a significant in-
crease in performance, from 5 to 7 the performance is
just slightly better. This behaviour is consistent across
all noise levels. Therefore, we selected 5 stages as a
good compromise between performance and compu-
tational cost.

Table 4: Average PSNR values of UCLD and UNLD with
sampling factors of 2, 3, 4, and 8, and with blur levels of
0.75, 1, 1.4, and 1.8, respectively.

Sampling 2 3 4 8
UCLD 29,31 25,97 24,77 22,06
UNLD 29,57 26,08 24,81 22,12

6 CONCLUSIONS

In this work, we proposed an unfolding algorithm to
extend a variational model that includes a nonlocal
data fidelity term. After the minimization of the en-
ergy through the proximal gradient algorithm, we re-
placed all proximal, downsampling and upsampling
operators with neural networks. While we wrote the
nonlocal module in terms of a learning-based multi-
head attention.

Experimental results demonstrated that learning-
based methods can enhance the performance of vari-
ational models by leveraging prior knowledge from a
dataset, rather than solely relying on traditional reg-
ularization terms. Additionally, we have shown that
the benefits of self-similarity persist in the unfolded
network when using multi-head attention, making the
model more robust to noise.

As future work we plan to continue exploring such
models with novel architectures that further improve
performance. Furthermore, we aim to experiment
with different energy terms from the wide array of
models available in the literature.
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