
Feasibility of Random Forest with Fully Homomorphic Encryption
Applied to Network Data

Shusaku Uemura and Kazuhide Fukushima a

KDDI Research, Inc., Saitama, Japan

Keywords: Fully Homomorphic Encryption, Privacy-Preserving Machine Learning, Random Forest, TFHE,
Network Data.

Abstract: Random forests are powerful and interpretable machine learning models. Such models are used for analyzing
data in various fields. To protect privacy, many methods have been proposed to evaluate random forests with
fully homomorphic encryption (FHE), which enables operations such as addition and multiplication under the
encryption. In this paper, we focus on the feasibility of random forests with FHE applied to network data. We
conducted experiments with random forests with FHE on IoT device classification for three types of bits and
nine types of depths. By exponential regressions on the results, we obtained the relations between computation
time and depths. This result enables us to estimate the computation time for deeper models.

1 INTRODUCTION

In the era of big data, analyzing data has become
more important than ever in the field of industries and
research. In such circumstances, data analysis has
been applied to various data including network analy-
sis (Pashamokhtari et al., 2023).

Machine learning has been playing a significantly
important role in data analysis. In recent decades,
many machine learning models have been developed
and studied to make predictions more accurate. Due
to the development of machine learning and artificial
intelligence technologies, they are becoming more
important and are being used in many domains.

Decision trees and random forests (Breiman,
2001) are widely used machine learning models. De-
cision trees classify data by partitioning the feature
space. Partition is performed by comparing the input
data to the thresholds that are learned in the training
phase. By traversing from the root node to a leaf node
according to the comparison results, a decision tree
outputs the classification result. A random forest con-
sists of many decision trees and it classifies input data
by aggregating the classification results of the com-
ponent decision trees. As a decision tree uses only
comparisons to classify, the results of decision trees
can be interpreted well. The reasons for specific re-
sults can be explained by tracking the traversal from

a https://orcid.org/0000-0003-2571-0116

the root to the leaf. This explainability of a decision
tree has helped decision trees and random forests to
be used in various fields.

With the rise of data analysis over these years, the
importance of privacy has been growing. To analyze
data, they must be available to data analysts. There-
fore, analyses of highly confidential data are generally
restricted. Confidential machine learning models are
not shared, and the analysis of sensitive data is less
likely to be outsourced even though it sometimes pro-
vides deeper insights.

Fully homomorphic encryption (FHE) is one of
the solutions to the above problem. Encryption has
been used for decades to protect data against leak-
age. However, as encryption hides data information,
operations on encrypted data are impossible to per-
form correctly without decryption. Fully homomor-
phic encryption is a kind of encryption scheme that
overcomes this difficulty; that is, operations such as
addition and multiplication on encrypted data can be
performed correctly without decryption. Thus, it is
useful for analysis of confidential data.

Since machine learning basically consists of many
basic computations, it works well with FHE. The ap-
plication of FHE to machine learning is not straight-
forward due to the risk of data leakage. To apply
privacy-preserving technologies to machine learning,
research has been done such as SVM (Park et al.,
2020), (Bajard et al., 2020) and neural networks
(Dowlin et al., 2016), (Lee et al., 2022). Among such

534
Uemura, S. and Fukushima, K.
Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data.
DOI: 10.5220/0012394600003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 534-545
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



research, several researches have focused on privacy-
preserving decision trees and random forests. As
random forests are easily used due to their simplic-
ity, these researches are valuable. Although privacy-
preserving decision trees and random forests have
been broadly studied, the number of studies on their
applicability to real data is limited because in several
papers, popular datasets such as UCI datasets (Kelly
et al., 2023) are used. Such datasets are standard for
evaluating machine learning models, but these are ex-
ample data and sometimes less complicated than real
data. To the best of our knowledge, there is no study
on the feasibility of random forests with FHE to the
analysis of network data. Therefore, there is a neces-
sity to study it.
Our Contribution. We implemented random forest
models with FHE in order to assess their applicability
to network data of IoT devices. We conducted exper-
iments on random forests with nine depths for three
types of bits. The computation time and the accuracy
of random forests with FHE were measured. With our
results, exponential regressions are performed on the
computation time with respect to depth. By using the
coefficients and intercepts we obtained, we can esti-
mate the computation time for larger bits or depths.

This paper consists of 5 sections including this
section. This section includes descriptions of related
works. The following section is for preliminaries
where FHE and random forests are reviewed briefly.
in the third section, we explain the details of our im-
plementation especially the differences between nor-
mal random forests and privacy-preserving ones. In
Section 4, we describe our experiments, results and
discussion. Finally, in Section 5, we conclude this pa-
per.

1.1 Related Works

Akavia et al. (Akavia et al., 2022) proposed an FHE-
friendly decision tree algorithm using polynomial ap-
proximation. They implemented privacy-preserving
decision trees with Cheon-Kim-Kim-Song (CKKS)
FHE scheme (Cheon et al., 2017), and evaluated them
with UCI datasets.

Azogagh et al. (Azogagh et al., 2022) proposed a
privacy-preserving decision tree that can make predic-
tions without interactive processes, which is benefi-
cial in circumstances where communication resources
are limited. Their algorithms were based on fully ho-
momorphic encryption over the torus (TFHE) scheme
(Chillotti et al., 2016; Chillotti et al., 2020), mak-
ing use of an outstanding property of the scheme
called functional bootstrapping. They compared their
proposed algorithm with previous works in terms of

rounds, communication and computational complex-
ity, not implementations.

Aloufi et al. (Aloufi et al., 2021) explored a
method to evaluate random forests with multikey ho-
momorphic encryption. In their setting, there existed
several random forest model owners and they col-
laboratively aggregated the outputs in a blindfolded
manner. They implemented the algorithms with
Brakerski-Gentry-Vaikuntanathan (BGV) somewhat
homomorphic encryption scheme (Brakerski et al.,
2012). Their research evaluated their random forests
on UCI datasets.

The research of Kjamilji (Kjamilji, 2023) was
dedicated to a constant time algorithm of a privacy-
preserving decision tree. The implementation of the
research was based on Microsoft SEAL 3.7 (SEAL,
2021), which allows to use BGV and Brakerski-Fan-
Vercauteren (BFV) scheme (Brakerski, 2012; Fan and
Vercauteren, 2012). The algorithm was evaluated
with UCI datasets.

Paul et al.(Paul et al., 2022) made use of pro-
grammable bootstrapping to evaluate nonlinear func-
tions emerging in evaluation of decision trees. Thier
research is based on TFHE scheme and assessed the
algorithms with UCI datasets.

2 PRELIMINARIES

In this section, we introduce notations that we use
throughout this paper. Then, we quickly review ho-
momorphic encryption and random forests.

2.1 Notations

Z,R denotes the set of integers and real numbers, re-
spectively. For a positive integer q, we define Zq :=
Z/qZ. T denotes a torus, R/Z, and we define a dis-
cretized torus as Tq := q−1Z/Z, the representatives
of which are {0,1/q, . . . ,(q− 1)/q}. The sets of
n-dimensional vectors and n×m-matrix are Rn and
Rn×m, respectively. For a vector v, we use vi to de-
note the i-th entry. For positive integers N,q, where
N is a power of two, we set R := Z[x]/(xN + 1) and
Rq := R/qR. We use ⌊·⌉ for a rounding function.

2.2 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is an encryp-
tion scheme under which encrypted values can be
operated without decryption. Since Gentry devel-
oped the first FHE scheme (Gentry, 2009), several
FHE schemes have been proposed such as Brakerski-
Gentry-Vaikuntanathan (BGV) (Brakerski et al.,

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

535



2012), Brakerski-Fan-Vercauteren (BFV) (Brakerski,
2012; Fan and Vercauteren, 2012), Cheon-Kim-Kim-
Song (CKKS) (Cheon et al., 2017), and a torus fully
homomorphic encryption (TFHE) (Chillotti et al.,
2016; Chillotti et al., 2020). Each FHE scheme has
its pros and cons. Among them, TFHE has an out-
standing property called programmable bootstrapping
(PBS), which enables the evaluation of an arbitrary
discrete function. We explain this later in Section
2.2.4.

Since PBS goes well with machine learning which
sometimes requires evaluations of nonlinear func-
tions, we employed TFHE to conduct experiments.

2.2.1 LWE Chiphertext

As all of the FHE schemes developed so far are
based on the Learning with Errors (LWE) encryption
scheme(Regev, 2005), we quickly review the LWE
encryption and TFHE scheme.
Definition 2.1 (LWE Ciphertext). Let n,q, p be pos-
itive integers, and p divides q. Let N be a discrete
Gaussian distribution with a mean 0 and a small vari-
ance σ2 and s be a vector whose elements are sampled
uniformly over {0,1}. An LWE ciphertext of m ∈ Zp

is a pair (a,b) ∈ Zn+1
q where each elements of a ∈ Zn

q
is uniformly sampled over Zq, ∆ := q

p , and

b := ⟨a,s⟩+∆m+ e mod q, (1)

where e is sampled from N and ⟨·, ·⟩ is an inner prod-
uct.

In this definition, we call a vector s a secret vec-
tor or secret key, e a noise and m a message. We use
LWE(∆m) to denote an LWE ciphertext (a,b) of a
message m. We define a general LWE (GLWE) ci-
phertext almost the same as LWE, except that it is de-
fined over Rq instead of Zq. We use GLWE(∆m) to
represent a GLWE ciphertext of m.

By identifying Zq with a discrete torus Tq via mul-
tiplying q to the elements of the torus, we can redefine
the above definition on Tq. Thus, the TFHE scheme is
called fully homomorphic encryption over the torus.

The addition of two LWE ciphertexts can be per-
formed by simply adding them entrywise. The mul-
tiplication of two encrypted numbers is not straight-
forward. It requires another way such as an external
product. We explain the details in the next subsection.

2.2.2 External Product

As mentioned above, an external product is a way to
multiply two ciphertexts. An external product is a
product of a Gentry-Sahai-Waters (GSW) ciphertext
(Gentry et al., 2013) and an LWE ciphertext. Thus we
define a GSW ciphertext at first.

Definition 2.2 (GSW Ciphertext). Let n, l be posi-
tive integers and q, p,B be powers of two. Let s =
(s0, . . . ,sn−1) be a vector whose elements are sam-
pled uniformly over {0,1}. A GSW ciphertext of
m ∈ Zp is a vector of (n+ 1)l LWE ciphertexts. For
1 ≤ j < l, 0 ≤ k ≤ n− 1, the ( j + kl− 1)-th row is
an LWE ciphertext of − qskm

B j , i.e. LWE
(
− qskm

B j

)
. The

( j + nl− 1)-th row is an LWE ciphertext of qm
B j , i.e.

LWE
( qm

B j

)
.

We use GSW(m) to denote a GSW ciphertext of
a message m. As an LWE ciphertext is a vector of
the length n + 1, a GSW ciphertext is a matrix in
Z(n+1)l×(n+1)

q . In the above definition, the parame-
ters B, l are called the base and the level, respectively.
We define a GGSW ciphertext over Rq, represented
by GGSW(m), similar to a GLWE ciphertext. Note
that the above definition is different from the original
definition that uses a certain matrix called a gadget
matrix, but the both are equivalent.

An external product is an operator that maps a pair
of a GGSW ciphertext and a GLWE ciphertext to a
GLWE ciphertext of the product of messages that the
two ciphertexts encrypt.
Definition 2.3 (External Product). We define an ex-
ternal product � as
� : (GGSW(m1) ,GLWE(∆m2)) 7→GLWE(∆m1m2) .

(2)
There exists an algorithm that realizes the external

product defined above. See (Chillotti et al., 2020),
etc., for details.

External products can be performed on GSW and
LWE ciphertexts but we defined it as above because
TFHE-rs (Zama, 2022), the Rust library we used in
the experiments, currently supports the external prod-
ucts of only GGSW and GLWE ciphertexts.

2.2.3 Key Switching

Key switching of an LWE ciphertext is an operation to
change the secret keys of an LWE ciphertext without
decryption. We can also change the parameters of an
LWE ciphertext by key switching. In order to execute
key switching, a special key called a key switching
key is needed.

As details of key switching are not significant for
the analysis of the applicability of FHE to machine
learning, we skip the explanation of them. Refer to
(Chillotti et al., 2020) for details of key switching in
TFHE.

2.2.4 Programmable Bootstrapping

In the context of FHE, bootstrapping is an operation
of reducing the noise of an LWE ciphertext without

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

536



decryption. In TFHE, the evaluation of an arbitrary
function on an LWE ciphertext can be performed dur-
ing bootstrapping. This is called programmable boot-
strapping (PBS). As PBS changes the parameter of an
LWE ciphertext, key switching to the previous param-
eters is needed before the next PBS.

2.3 Random Forest

A random forest is a popular machine learning model
that can perform classification and regression tasks.
This paper focuses only on classification tasks.

A random forest consists of many decision trees,
thus we first review the structure of a decision tree.

A decision tree is a binary tree-based model,
which can be viewed as a function mapping input data
to a class. A decision tree consists of two kinds of
nodes, internal nodes and leaf nodes. Each internal
node represents a partition of the input feature space,
while each leaf node corresponds to the determination
of an output class. Every internal node has its feature
index and threshold value and every leaf node have
probability of predicted classes.

Prediction with a decision tree is associated with
a traversal from the root node to a leaf node. Specifi-
cally, the root node compares its threshold value with
input data at its feature index. If the threshold is larger
than or equal to the data, then do the same process is
performed at its left child node; otherwise, it is per-
formed at the right child node. Until the traversal
reaches a leaf node, the tree repeats this procedure.
Once it reaches a leaf node, a decision tree outputs
the class index of the selected leaf node as a predic-
tion result.

A random forest is a machine learning model that
consists of many decision trees. Random forests clas-
sify data by aggregating the classification results of
their component decision trees.

3 IMPLEMENTATION OF
RANDOM FOREST WITH TFHE

In this section, we describe how we evaluated a ran-
dom forest with homomorphic encryption. We im-
plemented random forests with FHE with TFHE-
rs (Zama, 2022), which is a Rust library of TFHE
(Chillotti et al., 2020). As a random forest is com-
posed of many decision trees, we first implemented a
decision tree with TFHE.

Our implementation is basically similar to that
of (Paul et al., 2022) in the sense that we imple-
ment decision trees with TFHE and make use of pro-
grammable bootstrapping as they do. Although the

developer of TFHE-rs, Zama, also supports a library
for machine learning with FHE, concrete ML (Meyre
et al., 2022), we did not use it because we investigated
details of the evaluation of a random forest with FHE.

An overview of implementation follows below. In
order to evaluate a decision tree homomorphically,
there are three differences from evaluation with plain-
text. One is how to evaluate comparisons at each in-
ternal node, and the others are related to how to eval-
uate tree predictions.

On the one hand, the former can be easily solved
with programmable bootstrapping. On the other hand,
the latter is not straightforward. First, the selection of
leaf nodes requires new ideas that are not necessary
for plaintext because the results of comparison are en-
crypted; hence, they cannot be directly used to select
a leaf node. After selecting a leaf node, the decision
tree needs to output what class the leaf node repre-
sents. This also cannot be done easily as the result of
selection cannot be known without decryption.

Several ideas to overcome the difficulty in the se-
lection of leaf nodes have been proposed such as path
costs (Tai et al., 2017) and polynomial form (Bost
et al., 2015). As the idea of path costs requires ad-
dition and checking whether the path cost is zero, it
goes well with TFHE. Therefore, we employed the
path costs to evaluate decision trees.

Before explaining the implementation of decision
trees, we first explain quantization of data.

3.1 Quantizing Data

As fully homomorphic encryption computes fast with
small bit values, it is efficient to quantize data into
small bits. Among several ways to quantize data such
as (Jacob et al., 2018), the simplest way is to quantize
uniformly, as done in (Frery et al., 2023). Uniform
quantization into n bits divides the interval between
the max value and the minimum value into 2n parts of
the same size, and then rounds a value into the clos-
est value of the quantized interval. In other words, for
fixed maximum M and minimum m, uniform quanti-
zation into n bits is

qn(x) := ⌊(2n−1)(x−m)/(M−m)⌉ . (3)

To adapt to a value larger than the maximum or
smaller than the minimum, we slightly modify this
function as

qn(x) :=


2n−1 if x > M⌊

(2n−3)(x−m)
(M−m)

⌉
+1 if m≤ x≤M

0 if x < m
. (4)

With this quantization, we can convert data into de-
sired bits. As this includes rounding, quantization has

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

537



a slight influence on accuracy, which we will discuss
in Section 4.3.1.

3.2 Implementation Details of Decision
Tree

As we mentioned above, the implementation of a
decision tree with homomorphic encryption differs
from that in plaintext. We describe the three afore-
mentioned differences; comparison, selection of leaf
nodes and outputting a class as prediction.

3.2.1 Comparison

Comparing two encrypted data is not easy in general.
However, if one value is known by the encrypter pre-
viously, it can be done with programmable bootstrap-
ping.

A comparison of a value x with a fixed value y can
be regarded as a step function such as

Compy(x) =
{

0 if x≤ y
1 if x > y . (5)

By evaluating encrypted data via programmable boot-
strapping with this comparison function, compari-
son can be performed homomorphically. We used
2(message bit−4) instead of one as we switch the mes-
sage bits after comparison for efficiency of computa-
tion.

3.2.2 Selection of Leaf Nodes

In order to determine which leaf node should be out-
put, we employed path costs (Tai et al., 2017). Path
costs are nonnegative integers assigned to each node
of a decision tree. For leaf nodes, the path cost is
equal to zero if and only if a leaf node corresponds to
the selected node.

Path costs can easily be computed with compari-
son results at all internal nodes. To illustrate how to
compute path costs, we define two types of variables,
path cost pci and comparison result ci at the i-th node.
The numbering of nodes begins with the root node as
zero, and increases as the depth becomes deeper. For
nodes at the same depth, numbers are assigned from
left to right. Therefore, if a tree is a complete binary
tree, the number of left child nodes of the i-th node is
2i+1 for the right child node 2i+2.

With the notations above, path costs are computed
recursively as{

pc2i+1 = pci + ci
pc2i+2 = pci +(1− ci)

(6)

where i = 0, ...,2d−1 and ci is the comparison result
at the i-th node. As this computation requires only ad-
dition, it is perform homomorphically with encrypted

Algorithm 1: How to select a leaf node. Note that all the
computations below are performed under encryption.

Input: Array of comparison results of the size 2d−1:
C

Output: Array of 0/1s where only index of selected
leaf is 1

1: PathCosts← [0, ...,0] of length 2d+1−1
2: for i← 0 To 2d−2 do
3: PathCosts[2i+1]← PathCosts[i] + C[i]
4: PathCosts[2i+2]← PathCosts[i] + (1−C[i])
5: end for
6: LeafPathCosts← PathCosts[2d ...2d+1−2]
7: SelectedLeaf← [0, ...,0] of length 2d+1−1
8: for i← 0 To 2d−2 do
9: SelectedLeaf[i] ← PBS(LeafPathCosts[i],

is zero)
10: end for
11: return SelectedLeaf

values. After computing the path costs above, we ex-
ecute programmable bootstrapping with a function to
determine whether the input is zero or not, that is

is zero(x) =
{

1 if x = 0
0 if x ̸= 0 (7)

With the procedure above, we obtain encrypted val-
ues corresponding to leaf nodes, one of which is an
encrypted one and the rest are encrypted zeros. This
algorithm is shown in Algorithm 1.

3.2.3 Output Class

Through the above process described in Section 3.2.2,
we obtain a one-or-zero value corresponding to which
leaf is selected. Outputting the predicted class is,
however, not straightforward because the result is en-
crypted. To output the predicted class without decryp-
tion, we use homomorphic multiplication. For each
leaf node, we first prepare for a one-hot vector of the
number of classes. The i-th entry of the vector is set
to one if the leaf node is associated with the i-th class,
and the rest are set to zero. Then encrypt each entry
of the vectors. Finally, after multiplying the result-
ing values of selection of leaf node to the correspond-
ing encrypted one-hot vectors, we take the entrywise
summation of the vectors. This completes the homo-
morphic evaluation of a privacy-preserving decision
tree.

Note that in order to evaluate one decision tree, it
is more efficient to multiply a class index instead of
one-hot vector. We used it for extensibility to random
forests at the expense of the computational cost.

Multiplication on encrypted values in TFHE-rs is
executed by an external product of the GGSW value

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

538



Algorithm 2: Output class one-hot vector. All the com-
putations are performed under encryption. KStoGLWE is
a function that switches the keys of LWE to GLWE. Exter-
nalProd is an external product. PBS(x, f ) is a programmable
bootstrapping on x with a function f . id is the identity func-
tion.
Input: GGSW encrypted one-hot vectors of class as-

sociated to leaf nodes: C, LWE encrypted one-hot
vectors of selection of leaf nodes: S

Output: one-hot vector of tree result where only in-
dex of selected class is 1

1: GlweS← KStoGLWE(S)
2: TreeOnehot ← [0, ...,0] of length

NumberO fClasses
3: for i← 0 To 2d−1 do
4: for j← 0 To NumberO fClasses−1 do
5: TreeOnehot[j]← TreeOnehot[j] + External-

Prod(C[i][j],GlweS[i])
6: if i mod 8 = 7 then
7: TreeOnehot[j] ← PBS(TreeOnehot[j],

id)
8: end if
9: end for

10: end for
11: return TreeOnehot

and GLWE. We can convert an LWE ciphertext into
GLWE ciphertext via key switching. We obtain a
GLWE ciphertext of the multiplication of GGSW and
GLWE. Sample extraction enables the conversion of
a GLWE ciphertext into an LWE ciphertext.

Since an external product increases the noise of
an encrypted message, it is necessary to refresh the
noise. To do so, we executed programmable boot-
strapping with the identity function every eight addi-
tions.

3.2.4 Expansion of Decision Tree

A complete binary tree is a tree where all internal
nodes have two child nodes. In general, a decision
tree is not complete. When a decision tree is not com-
plete, partial information of the tree might be leaked
from the evaluation time. As random forests with
FHE take more time to predict than those without
FHE, the risk of this increases.

Expanding incomplete decision trees into com-
plete ones can prevent this. The expansion of a de-
cision tree appends dummy nodes until the tree be-
comes complete. Descendant dummy nodes of an
internal node have random thresholds and the same
class as the internal node previously had as a leaf
node. Thus this expansion process does not affect the
classification result. Such expansion is performed in
(Aloufi et al., 2021; Kjamilji, 2023), for instance.

Algorithm 3: Overview the Complete Algorithm. All the
computations below are performed under encryption.

Input: Data, Model
Output: Encrypted summation of one-hot vector of

all component decision trees
1: Generate keys
2: EncModel← Encrypt(Model)
3: QuanData← Quantize(Data)
4: EncData← Encrypt(QuanData)
5: for i← 0 To NumberO f Models−1 do
6: CompRes ← CompWithPBS(EncData, Enc-

Model)
7: KsCompRes← KeySwitch(CompRes)
8: SelectedLeafOnehot ← LeafSelec-

tion(KsCompRes)
9: ClassOnehots[i] ← Output-

Class(SelectedLeafOnehots)
10: end for
11: RandomForestResult← Sum(ClassOnehot)
12: return RandomForestResults

3.3 Implementation of Random Forests

Our implementation of a random forest with FHE is
a natural expansion of decision trees with FHE. As a
random forest is a aggregation of many decision trees,
entrywise summation of the one-hot vectors output by
component decision trees can compute the prediction
of a random forest. By taking the index of the max-
imum value of the summation of the one-hot vector,
we obtain the index of the predicted class.

3.4 Algorithm

We summarize our implementation here. The
overview of the algorithm we executed is depicted in
Algorithm 3.

As we mentioned in Section 3.2.1 after comparing
thresholds and data, the required message space is at
most the depth of the tree or the number of trees be-
cause the encrypted values are 0/1, the path cost, or
the summation of tree results. Thus, we can switch
the message modulus into a smaller one. In this pa-
per, as we used 15 trees and depth of at most 9, we
selected a four-bit massage space. As it needs PBS
after this switching, we used a five-bit message space.

4 EXPERIMENTS

In this section, we describe the details of the experi-
ments we conducted.

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

539



4.1 Data Used in Experiments

The original data we used are IoT device network
data, KDDI-IoT-2019 (available at https://github.c
om/nokuik/KDDI-IoT-2019) (Okui et al., 2022).
These data are composed of IP Flow Information Ex-
port (IPFIX) (Trammell and Boschi, 2008) data col-
lected from 25 IoT devices, such as smart speakers,
network cameras or door locks. The task we focused
on was to classify which device the IPFIX data were
collected from. Thus, the number of target classes
was 25.

We processed the raw data into feature data so
that the models can predict the labels more accurately.
This process was the same as that performed in (Okui
et al., 2022). Details of this are as follows. We used
eight types of packet data. They were tcp, udp, smb,
ntp, ssdp, dns, http and https . For these types of
data, we aggregate them in the range of 1800 sec-
onds according to four criteria: outward packet, in-
ward packet, bytes of outward packet and bytes of in-
ward packet. After aggregating them, we calculated
four statistics: maximum, minimum, mean and me-
dian. Thus, we made 128(= 8× 4× 4) features. In
addition, we used the total number of records for all
eight types of protocols as features. In total, we used
136 features for our experiments.

Table 1: Description of Feature Data.

number of feature data 109870
number of features 136
number of classes 25

4.2 Models Used in Experiments

The random forest models we used are trained with
scikit-learn (Pedregosa et al., 2011), a machine learn-
ing library in Python. We performed experiments on
9 different random forest models. Every model has
15 component decision trees of the same depth. The
depths of a tree are integers between one and nine.

The procedure to make the models follows below.
We split the feature data into training and test data,
90% for training and 10% for testing. We trained each
random forest with the training data and expanded ev-
ery component tree into a complete tree. After train-
ing, we picked the information of the models such as
thresholds and feature indices of internal nodes and
classes that each leaf node is associated with, and
saved them into files. This is the preparation for the
experiments.

The parameters of TFHE we used are the
prepared parameter settings of TFHE-rs. For
experiments of B bits, we used parameters of

PARAM MESSAGE {B+1} CARRY 0 KS PBS due to
PBS, which requires one more bit than the desired
message bit. Some values of the parameter settings,
which are important for discussion later, are shown
in Table 2. Refer to the implementation of TFHE-rs
(Zama, 2022) for other values.

Table 2: Parameter settings of
PARAM MESSAGE {B+1} CARRY 0 KS PBS.

Bits: B 5 6 7
Ciphertext bit size 64 64 64
LWE dimension 915 930 1017

GLWE dimension 1 1 1
Polynomial size 8192 16384 32768

PBS level 1 2 2

4.3 Difference Between Plaintext and
Ciphertext

There are three main differences between plaintext
and ciphertext that affect the prediction of models.
They are quantization, noise and aggregation of the
results of decision trees. The details of them follows
below.

4.3.1 Quantizaion

As mentioned in Section 3.1, the data are quantized.
For values close to a threshold, the result of compari-
son may be wrong.

Concretely, let n be the number of bits into which
the value is quantized, and let {t0, . . . , t2n−1} be a se-
quence of the values at which the quantized value is
switched. In other words, for a number x, it holds that
qn(x) = i if and only if ti−1≤ x< ti for i∈ {1, . . . ,2n−
3}. For other i ∈ {0,2n − 3,2n − 2}, the following
holds. If x < t0 then qn(x) = 0, if t2n−3 ≤ x ≤ t2n−2
then qn(x) = 2n − 2 and if t2n−2 < x then qn(x) =
2n− 1. Let T be a threshold of comparison at an in-
ternal node, which satisfies tl−1 ≤ T < tl for a certain
l. Then, the tree comparison result after quantization
for a value x satisfying T < x < tl is wrong. As T < x
holds, CompT (x) = 1. However, the comparison after
quantization is that Compqn(T )(qn(x)) = 0.

When the comparison result is wrong, the selected
leaf node is different, and eventually, the result of the
tree is wrong. However this may not be a significant
problem because the range where the comparison re-
sult is wrong is not broad. Even if one tree result is
wrong, the result of the random forest might not be
affected because it is a majority vote of all the com-
ponent trees.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

540



Table 3: Mean time [s] to evaluate with a random forest of 15 component decision trees under fully homomorphic encryption.

1 2 3 4 5 6 7 8 9
5 bits 2.5 8.5 41.0 59.5 120.8 245.6 473.3 957.4 2602.2
6 bits 4.7 13.5 43.6 94.0 192.4 391.7 754.2 1529.8 3722.9
7 bits 9.4 27.6 77.4 165.3 396.2 930.1 1857.6 3736.3 8495.3

Table 4: Standard deviation of time [s] to evaluate with a random forest of 15 component decision trees under fully homo-
morphic encryption.

1 2 3 4 5 6 7 8 9
5 bits 0.49 4.85 22.93 2.59 4.55 8.99 15.50 30.78 1113.06
6 bits 0.48 0.53 1.44 3.26 6.75 12.15 19.67 30.85 1426.03
7 bits 0.33 0.97 2.50 2.44 136.23 420.69 804.14 1538.64 3176.40

4.3.2 Noise

As explained in Section 2.2.1, an LWE ciphertext has
a noise. As noise is small compared to the message
(∆m in Definition 2.1), it does not affect the decryp-
tion. However, many operations on a ciphertext such
as multiplication increase the noise. Once the noise
increases so much that it becomes comparable to the
message, it has an influence on the decryption result.

In order to prevent this, programmable bootstrap-
ping is executed to reduce the noise, but the compu-
tational cost of PBS is higher than other simple op-
erations. Thus the more PBS are executed the longer
it takes to finish the whole procedure of evaluating a
random forest. Therefore, we executed PBS as few
times as possible.

We executed PBS for comparisons at each internal
node and determined whether path costs are zero. We
also executed PBS with the identity function just to
reduce the noise while computing one-hot vectors of
tree results as illustrated in Algorithm 2. These PBS
were not enough to evaluate a random forest without
noise affecting the results. However, the errors caused
by the increase in noise seldom occurred in our exper-
iments and, for the same reason as that of quantiza-
tion, it did not have a significant impact on the result
of a random forest.

4.3.3 Aggregation of Tree Results

The most significant difference between plaintext and
ciphertext is aggregation of the results of the compo-
nent decision tree. On the one hand, in scikit-learn,
the result of each tree is weighted by their probabil-
ity estimates. On the other hand, our random forests
with FHE aggregate the results by simple summation.
Therefore, the result might be different even though
the all the computations are performed without any
other error. This error occurs especially when the
probability estimates of each tree is close to uniform,
that is, each tree generates less confidence in the re-

sults. If a tree result is output a probability estimate
where the probability of one class is close to one and
those of the others are almost zero, it is virtually one-
hot vector, which is the output of a decision tree with
FHE.

4.4 Results

Here, we show the results of the experiments.
In this paper, a message bit means the number

of bits to express features and thresholds of internal
nodes. The message bits we used are five, six and
seven.

As we mentioned in Section 4.2, we made 9 ran-
dom forest models. We conducted experiments with
five to seven message bits on 9 models. Therefore, we
conducted 27 types of experiments.

For each model and bit, we computed the predic-
tions with the random forest on 40 test data.

The computer we used has 3.00 GHz CPU (13th
Gen Intel(R) Core(TM) i9-13900K) and 128 GB
RAM. The Rust version is 1.72.0, and the TFHE-rs
version is 0.3.1. We did not compute in parallel to
assess the total time of computation.

4.4.1 Time of Computation

The mean times to evaluate with a random forest of
each model and bit are illustrated in Table 3. The box
plots of each bit are depicted in Figures 1, 2 and 3.
These figures have regression curves of the mean time
of each depth. Linear regressions were performed on
the logarithm of mean time with respect to depths one
to nine. As the linear regressions were performed
on logarithm of the time, they are exponential regres-
sions on the time.

We conducted linear regressions on logarithm of
time as it requires 2d−1 comparisons, 2d PBS at leaf
nodes and so on to evaluate a random forest and thus
the number of computations is expected to be the or-

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

541



Table 5: Accuracy of a random forest composed of 15 component decision trees under fully homomorphic encryption and
plaintext.

1 2 3 4 5 6 7 8 9
Plaintext 0.300 0.525 0.650 0.825 0.925 0.925 0.975 1.000 0.950

5 bits 0.175 0.350 0.450 0.600 0.650 0.600 0.850 0.850 0.850
6 bits 0.175 0.300 0.400 0.600 0.650 0.650 0.875 0.900 0.925
7 bits 0.175 0.325 0.450 0.600 0.675 0.650 0.875 0.900 0.875

Table 6: Coefficients and intercepts of regression on the log-
arithm of time with respect to depth.

coefficient intercept
5 bits 0.805 0.664
6 bits 0.800 1.097
7 bits 0.834 1.679

der of two to the power of d.
Figure 4 shows how the computation time in-

creases as the depth of the decision trees increases
for each bit. Note that the scale of the vertical axis
is logarithmic.

4.4.2 Accuracy

The accuracy of random forests is shown in Table 5.
In the table, the row of ”Plaintext” shows the accu-
racy of prediction that the original models in plaintext
output. As the number of samples we had the exper-
iments with were limited to 40, the accuracy is not
necessarily higher as the depth becomes larger.

If the encrypted models work without errors, the
predictions are supposed to be as accurate as those of
models in plaintext.

4.5 Discussion

In this subsection, we discuss the results shown in the
previous section with respect to time and accuracy.

4.5.1 Time

As shown in Figure 1, 2 and 3, the computation time
increases exponentially as the depth increases. This
is explainable because there are some computations
almost proportional to two to the power of the depth.

One of them is the comparisons at each internal
node. As a complete binary tree of depth d has 2d−1
internal nodes, it requires the same number of com-
parisons with PBS to obtain the results of comparison.
Computation of the path costs of all the leaf nodes
is expected to have less influence on the time than
that of comparisons because the homomorphic addi-
tion is much faster than that of PBS. When selecting
the leaf node corresponding to the tree result, it also
requires 2d times of PBS to evaluate whether the path

cost is zero, and also C · 2d multiplication to output
the prediction where C is the number of classes. This
also affects the resulting computation time. There are
several computation that requires O(2d) operations.
Therefore, our results do not contradict this.

We performed an exponential regression on the
computation time and obtained the coefficients and
intercepts as shown in Table 6. With these coeffi-
cients, we can estimate computation time of deeper
random forests assuming that this trend continues in
the range of larger depths.

Additionally, with these regressions, we can esti-
mate computation time of more bits. The reason the
time varies among the bits is basically the differences
in the parameter set. As shown in Table 2, the LWE
dimension increases as the bit increases, and the poly-
nomial size, which affects the PBS, doubles as the bit
increases. It is necessary to take the influence of the
parameter set into account when estimating the time
of more bits.

4.5.2 Accuracy

As shown in Table 5, the accuracy of the random
forests with FHE is less than that of the random for-
est without FHE. The reasons for this are discussed
in Section 4.3. The differences in accuracy between
plaintext and FHE random forests seem to decrease
as the depth increases. This may be because the accu-
racy of decision trees increases as the depth increases,
and thus even if a few component trees predict incor-
rectly, the influence on the prediction of random forest
is not significant since many trees predict accurately.

As discussed in Section 4.3.3, the difference in ag-
gregation can be a significant error. Increasing the
depth of component trees of a random forest is ex-
pected to be one of the solutions to this because mak-
ing component trees more accurate by increasing the
depth leads to increasing the probability of plaintext
tree prediction to 1.

5 CONCLUSION

We conducted experiments on random forests with
TFHE to evaluate their feasibility on network data of

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

542



1 2 3 4 5 6 7 8 9
Depth of Trees

0

1000

2000

3000

4000

5000

Ti
m

e[
s]

Regression:
y = exp(0.805x + 0.644)

Figure 1: Box plot of time to evaluate a random forest for 5
message bits and their regression curve.

1 2 3 4 5 6 7 8 9
Depth of Trees

0

2000

4000

6000

8000

Ti
m

e[
s]

Regression:
y = exp(0.800x + 1.097)

Figure 2: Box plot of time to evaluate a random forest for 6
message bits and their regression curve.

IoT devices. Through our experiments, we revealed
the computation time and accuracy of random forest
with FHE applied to real network data. We obtained
the time to compute random forests with fully homo-
morphic encryption and their accuracy. With these
results, we conducted an exponential regression on
the time with respect to the depths of the component
trees and obtained coefficients and intercepts of the
regression, which allows us to estimate the computa-
tion time for larger depths.

Although the current time we obtained does not
seem feasible for real data as it takes a few hours to
evaluate a random forest, our results are beneficial for
estimating the cost of introducing random forests with
FHE.

5.1 Future Work

As we implemented random forests with FHE in a
simple way without parallel computation, there is
room for improvement. Our future work is to improve

1 2 3 4 5 6 7 8 9
Depth of Trees

0

2000

4000

6000

8000

10000

12000

Ti
m

e[
s]

Regression:
y = exp(0.834x + 1.679)

Figure 3: Box plot of time to evaluate a random forest for 7
message bits and their regression curve.

1 2 3 4 5 6 7 8 9
Depth of Trees

101

102

103

104

Ti
m

e[
s]

 (l
og

)

5bits
6bits
7bits

Figure 4: Comparison of the logarithm of mean time to eval-
uate a random forest.

the implementation and accelerate processing.
Using other real data in fields such as network and

cyber security to assess the feasibility of a random
forest is also our future work.

REFERENCES

Akavia, A., Leibovich, M., Resheff, Y. S., Ron, R., Shahar,
M., and Vald, M. (2022). Privacy-preserving decision
trees training and prediction. ACM Trans. Priv. Secur.,
25(3).

Aloufi, A., Hu, P., Wong, H. W. H., and Chow, S. S. M.
(2021). Blindfolded evaluation of random forests
with multi-key homomorphic encryption. IEEE
Transactions on Dependable and Secure Computing,
18(4):1821–1835.

Azogagh, S., Delfour, V., Gambs, S., and Killijian, M.-
O. (2022). PROBONITE: PRivate One-Branch-
Only Non-Interactive Decision Tree Evaluation. In
Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography,

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

543



WAHC’22, page 23–33, New York, NY, USA. Asso-
ciation for Computing Machinery.

Bajard, J.-C., Martins, P., Sousa, L., and Zucca, V. (2020).
Improving the efficiency of SVM classification with
FHE. IEEE Transactions on Information Forensics
and Security, 15:1709–1722.

Bost, R., Popa, R. A., Tu, S., and Goldwasser, S. (2015).
Machine learning classification over encrypted data.
In Proceedings 2015 Network and Distributed System
Security Symposium. Internet Society.

Brakerski, Z. (2012). Fully homomorphic encryption with-
out modulus switching from classical GapSVP. In
Safavi-Naini, R. and Canetti, R., editors, Advances in
Cryptology – CRYPTO 2012, pages 868–886, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012).
(leveled) fully homomorphic encryption without boot-
strapping. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS ’12,
page 309–325, New York, NY, USA. Association for
Computing Machinery.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Takagi, T. and Peyrin, T., editors, Ad-
vances in Cryptology – ASIACRYPT 2017, pages 409–
437, Cham. Springer International Publishing.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(2016). Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In Cheon, J. H.
and Takagi, T., editors, Advances in Cryptology –
ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(2020). TFHE: Fast fully homomorphic encryption
over the torus. Journal of Cryptology, 33:34–91.

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. (2016). Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33rd
International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, page
201–210. JMLR.org.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive,
Paper 2012/144. https://eprint.iacr.org/2012/144.

Frery, J., Stoian, A., Bredehoft, R., Montero, L., Kherfal-
lah, C., Chevallier-Mames, B., and Meyre, A. (2023).
Privacy-preserving tree-based inference with fully ho-
momorphic encryption. Cryptology ePrint Archive,
Paper 2023/258. https://eprint.iacr.org/2023/258.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC ’09,
page 169–178, New York, NY, USA. Association for
Computing Machinery.

Gentry, C., Sahai, A., and Waters, B. (2013). Homomorphic
encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In

Canetti, R. and Garay, J. A., editors, Advances in
Cryptology – CRYPTO 2013, pages 75–92, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. (2018). Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Kelly, M., Longjohn, R., and Nottingham, K.
(2023). The UCI machine learning repository.
https://archive.ics.uci.edu.

Kjamilji, A. (2023). A constant time secure and private
evaluation of decision trees in smart cities enabled by
mobile IoT. In 2023 IEEE International Conference
on Smart Mobility (SM), pages 51–58.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., and No, J.-
S. (2022). Privacy-preserving machine learning with
fully homomorphic encryption for deep neural net-
work. IEEE Access, 10:30039–30054.

Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bre-
dehoft, R., Montero, L., and Kherfallah, C. (2022).
Concrete ML: a privacy-preserving machine learning
library using fully homomorphic encryption for data
scientists. https://github.com/zama-ai/concrete-ml.

Okui, N., Nakahara, M., Miyake, Y., and Kubota, A. (2022).
Identification of an IoT device model in the home do-
main using IPFIX records. In 2022 IEEE 46th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 583–592.

Park, S., Byun, J., Lee, J., Cheon, J. H., and Lee, J. (2020).
HE-friendly algorithm for privacy-preserving SVM
training. IEEE Access, 8:57414–57425.

Pashamokhtari, A., Okui, N., Nakahara, M., Kubota, A.,
Batista, G., and Habibi Gharakheili, H. (2023). Dy-
namic inference from IoT traffic flows under concept
drifts in residential ISP networks. IEEE Internet of
Things Journal, 10(17):15761–15773.

Paul, J., Tan, B. H. M., Veeravalli, B., and Aung, K. M. M.
(2022). Non-interactive decision trees and applica-
tions with multi-bit TFHE. Algorithms, 15(9).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Regev, O. (2005). On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, page 84–93, New York, NY,
USA. Association for Computing Machinery.

SEAL (2021). Microsoft SEAL (release 3.7). https:
//github.com/Microsoft/SEAL. Microsoft Research,
Redmond, WA.

Tai, R. K. H., Ma, J. P. K., Zhao, Y., and Chow, S. S. M.
(2017). Privacy-preserving decision trees evaluation
via linear functions. In Foley, S. N., Gollmann, D.,

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

544



and Snekkenes, E., editors, Computer Security – ES-
ORICS 2017, pages 494–512, Cham. Springer Inter-
national Publishing.

Trammell, B. and Boschi, E. (2008). Bidirectional Flow Ex-
port Using IP Flow Information Export (IPFIX). RFC
5103.

Zama (2022). TFHE-rs: A Pure Rust Implementation of the
TFHE Scheme for Boolean and Integer Arithmetics
Over Encrypted Data. https://github.com/zama-ai/tf
he-rs.

Feasibility of Random Forest with Fully Homomorphic Encryption Applied to Network Data

545


