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Abstract: This paper introduces innovative concepts for improving the process of selecting solvers from a portfolio to
tackle Satisfiability Modulo Theories (SMT) problems. We propose a novel solver scheduling approach that
significantly enhances solving performance, measured by the PAR-2 metric, on selected benchmarks. Our
investigation reveals that, in certain cases, scheduling based on a crude statistical analysis of training data
can perform just as well, if not better, than a machine learning predictor. Additionally, we present a dynamic
scheduling approach that adapts in real-time, taking into account the changing likelihood of solver success.
These findings shed light on the nuanced nature of solver selection and scheduling, providing insights into
situations where data-driven methods may not offer clear advantages.

1 INTRODUCTION

We are introducing a series of innovative concepts and
refinements to the process of selecting solvers from a
portfolio to solve problems of Satisfiability Modulo
Theories (SMT). Our methodology exhibits similari-
ties to MachSMT (Scott et al., 2021), albeit with the
potential for superior performance in various opera-
tional scenarios. Furthermore, we show that in many
cases trained Machine Learning (ML) model can be
omitted and one can even ignore features of problem
at hand and simply run the same schedule, designed
on training set, for all testing examples. As an illus-
trative case, we have chosen the scheduling of SMT
solvers, but it is essential to underscore that our pro-
posed techniques are universally applicable to situa-
tions where algorithm selection from a diverse port-
folio is a requisite.

The central emphasis of our approach revolves
around comparing the trained machine learning algo-
rithm and the scheduling approach without any train-
ing. Importantly, the role of this algorithm is not
merely to identify a single best solver for a given
problem but rather to construct an efficient sched-
ule similar to (Pimpalkhare, 2020). When creating
this schedule, we consider the interaction between the
solving capabilities of different algorithms.

a https://orcid.org/0000-0002-3867-644X
b https://orcid.org/0000-0001-7639-864X

This consideration is crucial, as it helps us steer
clear of scenarios where two algorithms, capable of
solving the same class of problems, also share a
propensity for failure on similar examples, when run
consecutively.

Our contribution comprises two key parts. First,
we propose a novel solver scheduling approach that
significantly improves the PAR-2 metric in selected
benchmarks. Second, we explore the necessity of
employing a ML predictor. Our investigation reveals
that, in certain cases, scheduling based on crude sta-
tistical analysis of training data performs just as well,
if not better, than an ML predictor. The superiority
of this scheduling is clearly visible especially in case
when it competes against a single selected solving al-
gorithm. These findings highlight the nuanced nature
of solver selection and scheduling, shedding light on
instances where machine learning methods do not of-
fer clear advantages.

2 PRELIMINARIES

2.1 Domain Description - Satisfiability
Modulo Theories

The SMT-LIB standard (Barrett et al., 2010) defines
the language and standardized theories. A reposi-
tory of benchmark problems is maintained within the
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( set− logic UFNIA)
( declare−fun f ( I n t ) I n t )
( declare−const c I n t )
( assert (= ( f c ) 0 ) )
( assert
( f o r a l l ( ( x I n t ) ) (>= ( f x ) ( * c ( f x ) ) ) ) )
( check−sat )

Figure 1: Example SMT input using the UFNIA logic.

SMT-LIB framework (Barrett et al., 2016). In this
context, a combination of theories is referred to as a
”logic.” For example, logic UFNIA encompasses un-
interpreted functions (theory UF) and non-linear in-
teger arithmetic (theory NIA). Hence, it is mandatory
for each problem file to specify the intended logic in
the header.

The SMT input format employs a notation similar
to that of LISP. An illustrative example is provided in
Figure 1, featuring an uninterpreted (unknown) func-
tion, denoted as f , mapping integers to integers, and
an uninterpreted integer constant, c. The formula
comprises two ”assertions” which are essentially sub-
formulas that must hold. The initial assertion stip-
ulates that f must yield a result of 0 when applied
to c, while the second assertion demands that f (x)
must be greater than or equal to c f (x) for any integer
x. This example problem is categorized as non-linear
due to the presence of a multiplication operation be-
tween two unknowns.

The command check-sat instructs the solver to as-
sess the satisfiability of the previously stated asser-
tions. In the case of this example problem, it can be
trivially satisfied, for instance, by keeping f constant
and equal to 0. It is important to note that problems
can contain multiple check-sat statements, but this ar-
ticle’s focus is exclusively on single-query problems.

2.2 SMT Solvers

Satisfiability Modulo Theories (SMT) solvers are in-
dispensable tools in formal methods, effectively au-
tomating logical reasoning across a multitude of the-
ories and their combinations. They find applications
in critical domains, including software and hardware
verification, symbolic execution, and constraint solv-
ing (de Moura and Bjørner, 2012), (Godefroid et al.,
2012), (Bjørner and de Moura, 2014). It is worth not-
ing that the performance of different SMT solvers can
vary significantly when applied to the same problem
instance. One solver may outperform others in a spe-
cific instance, while the situation might reverse when
faced with a different problem. This variability is of-
ten linked to the unique features and characteristics of
each problem instance.

This interplay between problem instances and
solver performance underscores the complexity of se-
lecting the most appropriate solver for the problem
at hand. To tackle this challenge, practitioners of-
ten rely on extensive experimentation, benchmark-
ing, and profiling of solvers to gain insight into their
strengths and weaknesses. Such insights enable the
development of strategies for effectively matching
problem instances with the most suitable solvers, con-
tributing to more efficient and reliable automated rea-
soning. Understanding these dynamics between prob-
lem features and solver performance is crucial in har-
nessing the full potential of SMT solvers across vari-
ous application areas.

2.2.1 Notable SMT Solvers

It is not a goal to describe all existing solvers, but
for reference we give a few examples of solvers often
recurring in our predictions and schedules.

• Z3. Developed at Microsoft Research (De Moura
and Bjørner, 2008).

• CVC4. Developed jointly by Stanford University
and the University of Iowa (Barrett et al., 2011).

• MathSAT. A joint project of the Fondazione
Bruno Kessler (FBK-irst) and the University of
Trento (Bruttomesso et al., 2008).

• Yices 2. Developed by the Stanford Research In-
stitute (SRI International) (Dutertre, 2014).

2.3 Problem Description

Let S = {s1, . . . ,sl} be a set of l SMT solvers that
we have at our disposal. Our goal is to produce
an effective algorithm which on a per-instance ba-
sis creates a schedule from the set S. This means
that we want to find a function fθ (parameterized by
θ) that takes a representation of an SMT formula q
and the set S as input and outputs an ordered tuple
fθ(q,S) = ((i1, t1), . . . ,(in, tn)) where i j’s are indices
of selected solvers and t j’s are times assigned to these
solvers 1. The sum ∑ j t j ≤ tmax is restricted by tmax
which is the maximum time we are willing to spend
solving the problem.

Given a formula q and its schedule fθ(q,S), we
measure how long it takes to solve the formula us-
ing this schedule. We denote this measurement by
M(q, fθ(q,S)) and set it to a constant number tpen

1Note that this defiiton of problem wraps all cases dis-
cussed in our experiments. The schedule with one solver
can correspond to selecting the single best one, and the
greedy schedule treats the selection of the solver as a con-
stant function with respect to the varying input.
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(with tpen > tmax) if the formula was not solved within
the time limit tmax.

We assume that the problems/formulas we want
to solve come from an unknown distribution P and
that we have a finite set of independent and identically
distributed samples Q = {q1, . . . ,qm} where qi ∼ P.

Because the distribution P is unknown, we can
only try to minimize an approximation to the objec-
tive function samples in Q:

θ̂
∗ = argmin

θ

∑
qi∈Q

M(qi, fθ(qi,S)).

The parameters of this function cannot be directly
optimized with respect to the objective function by
gradient-based methods because it involves discrete
choices.

3 SCHEDULING OF SMT
SOLVER

In this paper, we compare a machine learning model
that selects the best solver for a given problem in-
stance, a dynamic schedule based on this selection,
and a trivial way to schedule solvers without even
looking at the problem. For that reason, we first
need to clarify how solvers are ranked with a machine
learning model.

3.1 Interval Prediction

Our predictor is inspired by the Empirical Hardness
Model (EHM) (Leyton-Brown et al., 2009) used in
MachSMT. For each logic and solver combination,
we train a dedicated model to predict the runtime re-
quired for that solver to solve an SMT problem in-
stance based on its features. The key change here is
that we don’t directly train the EHM. Instead, we di-
vide the runtime into multiple indexed intervals repre-
sented as I = (i1, i2, ..., in), defined by their endpoint
values t(ik). Our goal is to predict in which of these
intervals the solver will complete the instance. This
transformation turns the regression task into a classi-
fication problem.

We explored various methods to divide the run-
time into intervals. It is crucial to consider that most
instances are either solved very quickly or remain un-
solved. A uniform split would result in unbalanced
classes. We found that using a power or exponential
function for splitting worked better, but also left us
with empty classes. Ultimately, we opt for creating
perfectly balanced classes by using quantiles derived
from the solving times of the specific solver on in-
stances from the training set. This resulted in four

classes. For unsolved instances, we introduced a fifth
class, making the last interval to correspond to a time-
out with t(ik) equal to 2× timeout (corresponding to
the penalty for not solving the instance that is used to
compute the PAR-2 score). As a result, the endpoints
of the intervals vary for each predictor, and each class
has a different meaning.

Regarding the predictor’s output, our interest ex-
tends beyond merely predicting the interval. We seek
scores for each interval that can be normalized and
interpreted as probabilities representing the solver’s
likelihood of solving the instance within that specific
interval. Once we have these probabilities for a given
solver, we can compute an upper bound2 for the ex-
pected runtime by calculating the expected value of
the endpoints in each interval: Ei∈I [t(i)× ps(i)]. Here,
ps(i) is the probability that solver s will solve the
given formula in interval i. This expected runtime
serves the same purpose as EHM, helping to rank the
solvers.

The predictor predicts the runtime from the fea-
tures of the input problem. Problem features are
syntactical properties of the input. They include infor-
mation like frequencies of problem grammatical con-
structs or some meta-information like file size. Since
we used a feature extracted from the publicly avail-
able MachSMT repository, we refer to it for further
information 3. It is important to note that features are
extracted in the same way for each logic, thus there
appear useless features or features that are always 0.
MachSMT leverages it by dimensionality reduction
(PCA). We used a framework named Autogluon (Er-
ickson et al., 2020) that automatically selects only a
relevant subset of the available features. The reason
for that is that we wanted a fast and simple way to re-
produce MachSMT results, but with interval predic-
tions. The feature engineering is outside the scope of
this study. However, we note here that in the past, we
(Hůla et al., 2021) tried to use Graph Neural Networks
(GNNs, (Hamilton, 2020)) to automatically extract
features from Directed Acyclic Graph (DAG) formula
representation and train predictor end-to-end. This is
inspired by other deep learning tasks, where expert
features are replaced by learned ones (by projecting
the input into low-dimensional continuous space), for
example, in image processing, where filters in trained
Convolutional Neural Network (CNNs) extract fea-
tures in the input image (Albawi et al., 2017) and can
project them into an embedding vector in the penul-
timate layers. The method was shown to be suit-
able for feature extraction without expert feature en-

2In the sense of pessimistic estimate because endpoints
of intervals are used.

3https://github.com/MachSMT/MachSMT
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gineering, but too expansive for computation com-
pared to simple syntactical MachSMT features. The
attempts to extract features from logical/mathemati-
cal expressions with (Graph) Neural Networks have
been recently and extensively studied, for example by
(Crouse et al., 2019), (Glorot et al., 2019) or (Wang
et al., 2017). One drawback of these features in the
context of logical formulae embedding is their inter-
pretability; for CNNs there are at least some methods
that can visualize what a model is focusing on (Sel-
varaju et al., 2017).

3.2 Greedy Selection

Here we describe a greedy method that can outper-
form intricate algorithm selections and is based on the
specifics of the benchmarks used and its crude statis-
tics. The significant feature of the benchmarks we are
dealing with is that the runtime is in many cases so
long that some solvers solve most instances within a
small fraction of this runtime. If a predictor from the
previous section selects only one best solver, without
schedule, we assign it the whole runtime.

We argue that in some cases where we do not care
about edge instances that need much more runtime
than average to be solved, it is more important to ask
how to use runtime resource in the most efficient way.
Exploiting the whole potfolio by creating a schedule
rather than having the ability to select a single solver
that might fail is a natural way to do it. The experi-
mental part confirms that those edge instances form a
minority and schedule-based methods solve more in-
stances overall.

Our goal is to solve as many instances as possi-
ble within the time limit (and achieve a good score),
thus wasting runtime when the probability of success
greatly diminishes after a few seconds is in direct con-
tradiction.

There are many ways to build an effective or a
baseline schedule. One can, for example, take mul-
tiple solvers that were ranked as best by the predictor
and split the runtime between them. We decided to go
a different route by not looking at the given example
at all.

We select n solvers for our schedule and assign
them runtime in the following way. First, we run
through the whole portfolio of solvers and look at how
many instances they can solve on training set: 1) we
select the solver that solves the most instances 2) we
remove all instances which the selected solver solved
from further consideration. 1) and 2) are repeated un-
til n solvers are selected. The second parameter is the
threshold q that can be between 0 and 1. To every
solver in the schedule we assign the time Ti in which

it can solve q ·Ki, where Ki is the number of instances
that solver i solves, as its base runtime. We try to se-
lect n and q to balance the number of solved instances
and give each solver enough runtime to solve as much
as it is capable of. The sum of times assigned to se-
lected solvers based on parameters n and q should not
exceed maximal runtime. The actual timeout is di-
vided between the selected solvers proportionally by
Ti (so they get a bit more time). The order in which
solvers are used is also based on time Ti (ascending).

This method does not need any learning or knowl-
edge about the problem at hand. There can be found
some similarities to the method proposed by (Ama-
dini et al., 2014), who, however, used the distance be-
tween the example and examples in the training set to
select the best sub-portfolio of solvers.

3.3 Dynamic Schedule

This schedule is constructed greedily, relying on the
predictions of the model. The process starts by
scheduling the solver with the smallest expected value
and running it for the duration of it is the first interval
(intervals are different for each solver). If the prob-
lem remains unsolved during this interval, we recom-
pute the expected value for the chosen solver by ig-
noring the first interval. Concretely, we just normal-
ize the probabilities for the remaining intervals and
then compute the expected value over these intervals
again. We also need to subtract the time for which the
solver has already run to obtain the upper bound of
the expected remaining runtime.

If this new expected value is smaller than the
second-smallest expected value computed previously,
then we run the same solver for the next interval; oth-
erwise, we switch to the solver with the next-smallest
expected value.

We continue in this fashion, always deciding
which solver to run after every interval, until the time-
out is reached. For this reason, the schedule is dy-
namic as it is calculated on the fly. It is also a preemp-
tive schedule (Zhao et al., 1987), which means that
individual solvers can be stopped and resumed later.
This means that the result is theoretical since in prac-
tice we might not be able to freeze solvers and resume
the computation later easily. Nevertheless, it can lead
to good improvement, and we propose it as a univer-
sal method rather than as a tool that only schedules
SMT solvers. The process is also shown in the figure
2. This way wallclock time is not reduced at the ex-
pense of the CPU, as stopped solvers’ state could be
stored in the memory.
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solver 1

solver 2

solver 3

1s 4s 9s 16s time
out 1s 4s 9s 16s time

out

normalize and
compute expectations solved 

or timeout?

run the solver with min.
expectation for the next 
interval

remove the �rst of
the remaining intervals
from the chosen solver

END

yes

no

repeat
Predictions

8.5

12.1

3.4

Figure 2: A simplified scheme of the algorithm used to dynamically schedule the solvers. The expected time for each solver
is calculated from the interval probabilities. After the solver with the smallest expected time runs for the length of the first
interval, we remove this interval and recalculate the probabilities together with new expected times. The process is repeated
until solved or timeout is reached. We also added short algorithm description to the Appendix.

4 EXPERIMENTS

4.1 Dataset

This experimental part of the paper is intended as a
case study comparing approaches with and without
scheduling, as well as with and without prediction in
the context of SMT solver selection. For this purpose,
we selected five SMT-LIB logics (Barrett et al., 2016)
and data from the 2019 SMT competition4, single-
query track. It includes solving times for different
solvers on different logics. The timeout is always set
to 2400 s. In Table 1, we show the summary of the
benchmarks used.

For the used solvers, we performed a little prun-
ing. First, we removed solvers if they missed solving
time data on the majority of examples. For the rest,
we removed examples on which some solvers miss
data. To have clearer data and not confuse models, we
also removed solvers with very little or no solved in-
stances at all. To make competition fair, we removed
the ”Par4” solver, which runs multiple SMT solvers
in parallel (uses more CPU time to minimize wall-
clock time) and in case of QF LIA the SPASS-SAT
solver designed specifically to work on that and sim-
ilar logics while outperforming all other solvers by
large margin. Lastly, if there were two versions of
the same solver with almost the same results (Z3), we
removed one. We keep the full names of the solvers
used as they are in the SMT-COMP data table in graph
legends, so our choice is transparent.

Table 1: Number of problems and solvers per benchmark
and number of solved examples by at least one solver.

Benchmark name # of problems # of solvers # of solved
QF NRA 2842 9 2659
UFNIA 6253 5 4875
AUFLIA 1638 7 1464
QF LIA 3136 8 3084

4https://smt-comp.github.io/2019/

4.2 Evaluation

For the evaluation we use K-fold cross-validation
protocol, it allows us to infer results for all problems
in the benchmarks. The data set is uniquely divided
into k folds (in our case k = 5) with the training and
test portion. All five test datasets are mutually ex-
clusive, but together cover whole original dataset. All
models are trained from random state on each of those
folds. In the same way, our greedy schedule is always
constructed again for a new fold. Solvers and sched-
ules are not only compared by the number of instances
but also by the standard PAR-2 score.

PAR-2 score is the sum of runtimes on all prob-
lems within the dataset. Instances on which the solver
fails to decide are penalized by two times maximal
runtime. The objective is to minimize this score.

The PAR-2 improvement is always related to the
best-solver performance. For this paper, we decided
to compare the following:

• Virtual Best Solver (VBS). This is a hypothet-
ical optimal algorithm that selects the best possi-
ble solver for each problem. It represents an upper
bound for a possible improvement.

• Single best approach chooses the best solver ac-
cording to the predictions of the model and runs it
until the timeout. In this work LightGBM is the
gradient boosting framework, that we always used
as our predictor (Ke et al., 2017).

• Greedy schedule selects always n solvers that to-
gether solve the most instances in the training set
and run them consecutively for the assigned time
(based on parameter q, computed from runtimes
on solved problems in training set). Stops when
reaching the maximum runtime or solve the ex-
ample. For this work, we fixed n = 3 and q = 0.8.

• Dynamic schedule is a preemptive schedule that
runs multiple solvers and their order is based on
evolving expected solving time as described in
3.3.
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Table 2: The result table comparing 3 approaches to the Best solver and to best possible selector called VBS.

Benchmark: UFNIA AUFLIA QF NRA QF LIA

Best Solver
solver Vampire-4.3-smt Vampire-4.4 Yices 2.6.2 Z3-4.8.4
solved 4034 1382 2165 2946
PAR-2 13 189 767 1 242 230 3 307 748 1 005 170

VBS
solved 4875 1464 2659 3084
PAR-2 7 929 162 851 466 918 030 285 143
PAR-2 impr. ceiling 66.35 % 45.89 % 260.3 % 252.51 %

Single Best
solved 4510 1403 2498 3036
PAR-2 10 126 778 1 148 163 1 712 536 526 085
PAR-2 impr. 30.25 % 8.19 % 93.15 % 91.07 %

Greedy Schedule
solved 4655 1455 2582 3056
PAR-2 9 174 250 970 656 1302598 696 884
PAR-2 impr. 43.77 % 27.98 % 153.93 % 44.24 %

Dynamic Schedule
solved 4672 1431 2579 3049
PAR-2 9 501 057 1 020 999 1 320 703 481 244
PAR-2 impr. 38.82 % 21.67 % 150.45 % 108.87 %
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vampire-4.4-smtcomp-wrapped-sq
Alt-Ergo-SMTComp-2019-wrapped-sq

Figure 3: Example result plot for UFNIA logic. It shows how many problems (y-axis) a given method solves up to a certain
time (x-axis). The greedy schedule performed best at the beginning. Schedules are different for each fold, but to get a better
idea here is an example of a greedy schedule for a single fold: ((z3-4.8.4, 1.83 s), (CVC4-2019-06-03, 125.5 s), (vampire-4.3,
2272.67 s)). In the end, the three methods achieved a similar number of solved examples.

4.3 Results

The results of three selected methods for four selected
benchmarks are summarized in table 2 and for UF-
NIA logic also shown in figure 3. The remaining fig-
ures with graphs for other logics can be found in Ap-
pendix.

Our single best predictor based on interval predic-

tion performs very close to the EHM predictor in the
original MachSMT paper (we compare it to the PAR-
2 score for SolverLogic found on their Github5, al-
though direct comparison might be inaccurate since
the solver set could be different. Concretely, for

5https://github.com/MachSMT/MachSMT/tree/
main/data/results/2019/SQ
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selected logics, they achieved: UFNIA: 10.58 %,
QF NRA: 92.27 %, AUFLIA: 12.44 % improvement
over best solver, for QF LIA we effectively removed
the best-performing solver SPASS-SAT in 2019 SQ
track so comparison does not make much sense. We
note that there is no significant change in results with
different prediction regimes; one can predict directly
solving time, intervals as we do or even just classify
a problem in binary fashion to solved/unsolved (and
for an instance pick single best solver with the highest
probability for solving) while using the same predic-
tion model.

Overall, the greedy approach, which creates the
same schedule for all problems only by looking at
solving times and number of solved instances in the
training data, performed comparably or better than
other approaches. It is clear that this is caused by a
combination of long maximal runtime and fast solv-
ing times for solved instances. Selecting a single best
solver is easiest and would probably be the best op-
tion if the solving time was close to maximal runtime
on average. For example, in QF NRA some solvers
solved 75% of instances under 5s, and rarely did the
time needed to solve 75% of instances exceed 20s.
However, the greedy method is sensitive to the correct
time assignment for selected solvers. The dynamic
schedule worked pretty reliably on all benchmarks.

5 RELATED WORK

Algorithm selection and scheduling (Kadioglu et al.,
2011) is recognized as an important topic as a conse-
quence of the need for fast and reliable problem han-
dling in practical applications. Portfolio-based algo-
rithm selection with a machine learning model was
popularized by Leyton-Brown et al. (Leyton-Brown
et al., 2003).

The proposed work comes from MachSMT (Scott
et al., 2021), their main approach is to try to se-
lect only one solver from the whole portfolio. Ex-
cept EHM they also incorporate pairwise predictor
for solver selection. In the context of the selection of
logic solvers with EHM their predecessor is SATZilla
(Xu et al., 2008).

Our work is also related to various approaches that
use ML for solver scheduling, especially in the do-
main of SMT (Balunovic et al., 2018) use imitation
learning techniques to schedule strategies within the
Z3 solver. Similarly, (Ramı́rez et al., 2016) uses an
evolutionary algorithm to generate strategies for the
Z3 solver.

For an overview of various use cases of ML meth-
ods for combinatorial problems and algorithm selec-

tion, see the following survey papers: (Bengio et al.,
2020; Kerschke et al., 2019; Talbi, 2020). For a
more specific overview focused on GNNs, see (Cap-
part et al., 2021).

6 CONCLUSION

In conclusion, our research has introduced a novel ap-
proach to solving selection and scheduling that takes
advantage of dynamic scheduling policies and ma-
chine learning techniques. While our initial focus
was on the scheduling of Satisfiability Modulo The-
ories (SMT) solvers, it is important to highlight that
our methodology extends beyond this specific appli-
cation. The selection and scheduling of algorithms is
widespread in various domains. Our work was not
intended solely to solve SMT solver scheduling, but
rather used scheduling of SMT solvers as a practical
example.

Our investigation revealed that the greedy sched-
ule, which does not rely on machine learning predic-
tions but instead selects solvers based on training data
statistics, often performed as well as or better than the
machine learning-based approach.

The results of this case study showed that solver
selection and scheduling are nuanced tasks and that
machine learning methods may not always offer clear
advantages over simpler approaches based on statis-
tics.

In future work, it would be valuable to further ex-
plore the dynamic scheduling approach, considering
its potential in scenarios where preemption and re-
sumption of solvers may be practically feasible.
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APPENDIX

Additional Graphs and Dynamic
Schedule Algorithm
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Figure 4: On AUFLIA greedy method solved almost the same number instances as VBS. The drawback is that at the beginning
of runtime it did not perform as well.
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Figure 5: In QF NRA logic the dynamic schedule performed very similarly to the greedy one, while both outperformed single
solver selection by considerable amount.
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Figure 6: In QF LIA the greedy schedule did not perform as well as others. The reason behind it is that the average solving
times for selected solvers in training data were very small, and at the same time very similar, thus applying the greedy method
in the same way as to other logics, split the runtime between the selected 3 solvers evenly (two visible jumps in number of
solved instances). This shows that our greedy method cannot be applied blindly and one should consider a different way
of solving time assignment. Greedy schedule example from a single fold: ((Ctrl-Ergo-2019, 713.77 s), (CVC4-2019-06-03,
808.76 s), (z3-4.8.4, 877.45 s)), although 75% of the solved examples in the entire dataset are solved by 12.9 s, 18.88 s and
18.42 s by these solvers, respectively.

Algorithm 1: Dynamic scheduling with predictions.
Data: D: array of lists. List

D[i] = [(t i
1,d

i
1), . . . ,(t

i
n,d

i
n)] corresponds to

solver i with t i
j being the length of the j-th

interval and di
j its score.

Result: Total runtime spent on the formula
1 runtime← 0;
2 while runtime < timeout do
3 expectedTimes← getExpectedTimes(D) ;
4 currBest← argmin(expectedTimes);
5 nextIntLen, score← getFirst(D[currBest]);
6 solved, time←

runSolver(currBest,nextIntLen);
7 runtime← runtime+ time;
8 if solved then
9 return runtime;

10 else
11 D[currBest]←

removeFirst(D[currBest]);

12 return 2× timeout; // unsolved instance
penalty
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