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Abstract: Accurate predictive models for cloud workloads can be helpful in improving task scheduling, capacity plan-
ning and preemptive resource conflict resolution, especially in the setting of co-located jobs. Alibaba, one of
the leading cloud providers co-locates transient batch tasks and high priority latency sensitive online jobs on
the same cluster. In this paper, we consider the problem of using a publicly released dataset by Alibaba to
model the batch tasks that are often overlooked compared to online services. The dataset contains the arrivals
and resource requirements (CPU, memory, etc.) for both batch and online tasks. Our trained model predicts,
with high accuracy, the number of batch tasks that arrive in any 30 minute window, their associated CPU and
memory requirements, and their lifetimes. It captures over 94% of arrivals in each 30 minute window within a
95% prediction interval. The F1 scores for the most frequent CPU classes exceed 75%, and our memory and
lifetime predictions incur less than 1% test data loss. The prediction accuracy of the lifetime of a batch-task
drops when the model uses both CPU and memory information, as opposed to only using memory informa-
tion.

1 INTRODUCTION

Businesses today are routinely required to perform
resource-intensive computations but often lack suf-
ficient on-site resources. As a consequence, many
computational jobs are offloaded to the “cloud”. The
cloud refers to off-site resources that may be accessed
via the Internet. Such cloud services run on shared
clusters within data centers to lower costs and im-
prove resource utilization (Zhang et al., 2022). There-
fore, jobs from different parties are co-located on the
same machines. While co-location improves machine
utilization, it poses a number of challenges to the data
center, including security (isolation between different
services), scheduling and performance interference
(Jiang et al., 2022), (Xu et al., 2018). Additionally,
different jobs or services may contend for the same
resources causing service delays that affect Quality of
Service (QoS) of applications (Chen et al., 2018).
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To address these challenges and improve cloud
operation, efficient planning and optimization is re-
quired (Grandl et al., 2014). For example, through
better planning of which resources to provision and
when, capacity planners can proactively support fu-
ture workloads while trying to avoid resource short-
age and contention issues (Bergsma et al., 2021).
Contention can negatively effect performance and ef-
ficiency of co-located workloads. It leads to increased
pressure on memory resources due to increased pag-
ing and swapping activities, all of which ultimately
lead to QoS degradation and unpredictable applica-
tion behavior. By understanding the properties and
behavior of co-located workloads from real produc-
tion environments, we can improve decision making
in the cloud. (Liu and Yu, 2018) characterized a trace
of co-located workloads from Alibaba’s production
cluster to study some of these properties like the het-
erogeneity of clouds. We, on the other hand, propose
the development of a workload prediction model to
provide better estimates of future workloads for im-
proved scheduling and capacity planning decisions.

Accurate cloud workload models are valuable for
improved decision-making and planning within cloud
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management systems. However, the task of accu-
rately modeling these workloads is inherently chal-
lenging due to the “heterogeneous” and “imbalanced”
nature of the cloud with respect to resource alloca-
tion and lifespan (Verma et al., 2014). Modeling co-
located jobs presents an even greater challenge due
to additional factors such as interference, resource
contention, complex inter-job dependencies, varying
resource demands and isolation requirements, all of
which render simplistic modeling techniques inade-
quate.

Addressing this gap, this paper proposes a Ma-
chine Learning (ML) based approach to workload
modeling using real-world cloud data. While this
method is expected to be accurate and realistic, the
availability of such data is a challenge. Cloud
providers are generally reluctant to publicly release
their data (Calzarossa et al., 2016). Even when data is
available, it is often limited, making it challenging for
reliable training of ML algorithms. In this paper, we
work with one such dataset from Alibaba (Alibaba,
2018). A workload model derived from such a dataset
can not only be used for better planning decisions
in cloud environments, but also for generating real-
istic synthetic workloads, which, in turn, can proac-
tively support tuning systems without large downtime
or data gathering (Bergsma et al., 2021).

The Alibaba dataset considered in this work con-
sists of traces of co-located workloads over an eight
day period (Alibaba, 2018). It consists of online
services and batch workloads. We focus on model-
ing batch workloads as online services are guaran-
teed resources due to their high priority, while batch
jobs are executed on the remaining resources left on
the servers. By modeling batch workloads, we hope
that it can lead to their improved resource utilization,
performance and efficiency. Batch jobs in Alibaba’s
dataset are divided into tasks, where task executions
are subject to dependency constraints. These tasks are
further divided into instances that have the same bi-
nary code and resource requests but different input
data. We model batch tasks in our work as they are
the smallest unit of batch jobs for which we have in-
formation about resource requirements and comple-
tion times. This low-level model can be readily used
to model batch jobs if needed.

Our model, explained in Figure 2, uses the
Alibaba dataset to predict arrivals, associated re-
source requirements, and lifetimes/completion times
for batch tasks. To model arrivals, we use the Autore-
gressive Integrated Moving Average (ARIMA) model
(E. P. Box et al., 1970). ARIMA is a popular time
series forecasting model that has the ability to cap-
ture trends and seasonality. To model the resources

requirements and completion times, we use a Long
Short-term Memory (LSTM) based neural network
as such networks can capture long-term dependen-
cies (Siami-Namini et al., 2018). Our model can
reproduce the Alibaba dataset with very high accu-
racy. In order to be fully practical, our model must
be able to generate random yet realistic workloads.
This can be very easily realized by tuning parameters
of the ARIMA model or by modeling the probability
distributions over the resource requirements and life-
time through the use of Bayesian Machine Learning
methods such as Gaussian Process Regression. Addi-
tionally, we can model arrivals as a Poisson process,
an approach adopted in (Bergsma et al., 2021) when
modeling Virtual Machine (VM) arrivals in Microsoft
Azure (Cortez et al., 2017).

The remaining sections of the paper are organized
as follows: Section 2 discusses background and re-
lated research; Section 3 describes the Alibaba dataset
and our approach to model the batch tasks; Section 4
explains the setup used for training models; Section 5
presents the results from the experiments; and finally,
Section 6 concludes the paper.

2 BACKGROUND AND RELATED
WORK

Bergsma et al. (Bergsma et al., 2021) modeled the
production virtual machine workload from two real-
world cloud providers, Microsoft and Huawei, and
demonstrated its applications in scheduling and ca-
pacity planning. While we found their work inspir-
ing, it did not account for co-located workloads. Co-
located workloads have become increasingly preva-
lent in modern cloud environments, with leading
cloud providers like Google and Alibaba adopting the
technique to enhance cost efficiency and optimize re-
source utilization (Tirmazi et al., 2020). Costa et al.
(Da Costa et al., 2018) modeled Google’s co-located
traces using statistical methods and clustering tech-
niques, however, their work does not address our spe-
cific problem. Google’s cluster management system
operates on a monolithic architecture, utilizing a cen-
tralized resource scheduler for resource allocation and
management (Cheng et al., 2018), whereas our focus
is on online and batch services managed by separate
schedulers. Moreover, Google’s dataset does not con-
tain workload (online and batch) specific information,
making it challenging to characterize different work-
loads when co-located.

Acquiring realistic workload data for modeling is
challenging as most cloud providers, apart from a few
exceptions such as Google (Reiss et al., 2011), Al-
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ibaba (Alibaba, 2018), and Microsoft (Cortez et al.,
2017), are reluctant to disclose their data. Addi-
tionally, scholarly papers rarely provide information
about their data collection methods or even release it
for reproducibility. For this reason, we selected Al-
ibaba’s publicly available dataset, which offers dis-
tinct information for batch and online services, en-
abling us to delve deeper into the characteristics of
co-located workloads.

Within the Alibaba dataset, we opted to initially
focus on modeling batch services. This choice stems
from the observation that batch services generally uti-
lize more CPU resources than online services (Liu
and Yu, 2018). Furthermore, due to the prioritization
of online services, they are executed within containers
that receive a dedicated allocation of resources, leav-
ing only a limited set of resources available for batch
services. This allocation strategy ensures the avail-
ability of resources for online services at all times.
Therefore, by gaining insights into batch workloads,
we aim to enhance job scheduling for batch services
and optimize resource provisioning for co-located
workloads. To the best of our knowledge, we have not
come across any existing work focused on modeling
co-located workloads or exclusively batch services.

We now briefly discuss some of the past research
in cloud workload modeling. Moreno et al. (Moreno
et al., 2014) have previously modeled arrival rates,
resource requirements, and job duration for specific
users in a Google cloud trace. In contrast, our ap-
proach does not rely on user-specific information, al-
lowing us to apply it more broadly to model large-
scale future workloads. Similarly, a workload gen-
erator is presented by Bahga and Madisetti (Bahga
et al., 2011) to evaluate cloud applications. They sim-
ulate user behavior with inter-session times and ses-
sion duration. A number of papers focus solely on
modeling job arrival rates (Juan et al., 2014), (Koltuk
and Schmidt, 2020), whereas our work models task
arrivals, resource requirements, and task completion
times within batch services. In addition, there has
been a lot more work on VM scheduling/co-location
rather than workloads in clusters (Cortez et al., 2017),
where the challenges as well as the solutions are not
necessarily applicable to our problem.

One of the most popular stochastic models in time
series forecasting is the ARIMA model developed by
Box and Jenkin (E. P. Box et al., 1970). It can capture
noise, trend as well as the seasonal component in the
dataset (Herbst et al., 2013). Rodrigo et al. (Calheiros
et al., 2015) used it to successfully predict hourly web
requests to English Wikipedia resources. Due to its
simplicity and flexibility, it has also been used to pre-
dict cloud coverage (weather) (Yu Wang and Xiao,

2018), tourist arrivals (Ching-Fu Chen and Chang,
2009) and short-term resource usage in the cloud (Ja-
nardhanan and Barrett, 2017) with high accuracy. We
used it to model the batch-task arrival counts in our
dataset. To model the resource requirements and life-
times, we used LSTM, a type of recurrent neural net-
work which excels at capturing long-term dependen-
cies. It has been used to model VM resource require-
ments and lifetime in the Microsoft dataset (Cortez
et al., 2017) by Shane et al (Bergsma et al., 2021).

3 OUR APPROACH

Alibaba dataset contains more than 14 million data
points. It captures co-located online and batch jobs
from a cluster of 4034 machines over an eight-day pe-
riod. The dataset is described in detail below.

3.1 Alibaba Dataset and Batch Task
Modeling

Alibaba’s cluster management system oversees re-
sources for two different kinds of workloads: online
and batch. It comprises of two different schedulers,
namely Sigma and Fuxi, each of which operates with
its own dedicated resource pool. Sigma is responsi-
ble for user-facing, long-running online services ex-
ecuted within containers, while Fuxi handles batch
jobs executed directly on physical hosts as shown in
Figure 1. To facilitate improved scheduling deci-
sions, Sigma and Fuxi share cluster state information.
The dataset collected from this system contains in-
formation about server metadata, server usage, con-
tainer metadata, container usage, and batch tasks and
batch instances. More specifically, the data contains
information about status, resource usage, resource re-
quirements, arrival and completion times of submitted
jobs.

Batch-processing applications utilize predefined
limited amount of resources, with a low priority. In
cases with insufficient resources for a newly arrived
online job, some or all of the batch jobs are preempted
to free-up resources. While batch jobs are not latency
critical, preempting them leads to overhead involved
in rescheduling. To avoid rescheduling, batch work-
loads are typically scheduled in windows when the
arrival rate of online jobs is lower, e.g, typically, late
at night. Such policies clearly give latency-critical
applications preference over batch-processing appli-
cations (Guo et al., 2019). Modeling these processes
(both online and batch jobs) is imperative for better
analysis and better utilization of available resources.
In this paper, we focus on modeling batch jobs.
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Figure 1: The architecture of Alibaba cluster management
system (Alibaba, 2018).

Let us now take a closer look at batch jobs. Each
batch job consists of one or more tasks. These tasks
can have dependencies, where the completion of one
task predicates the completion of others. This inter-
dependence can be represented as a directed acyclic
graph. Further, each task may create one or more in-
stances with the same binary code and resource re-
quests but with different input data. Such an instance
is the basic scheduling unit in Alibaba Cluster Man-
agement System. The duration of a job is the sum of
its task durations. The duration of a task is the sum of
the execution time of all its instances. More specif-
ically, the Alibaba dataset contains the following in-
formation with respect to the tasks (from some batch
job):

1. Start and End times.

2. Requested CPU and memory resources

3.2 Workload Prediction Model

Figure 2 illustrates our workload prediction model.
Using the Alibaba dataset from Section 3.1, this
model predicts the following:

1. The number of batch tasks that arrive within the
tth 30 minute window.

2. The number of CPU, memory requirements for
each arrival within the tth 30 minute window.

3. The lifetime of each arrival within the tth 30
minute window.

The dataset is used to train four different ML mod-
els. Specifically, the Autoregressive Integrated Mov-
ing Average (ARIMA) model is trained to forecast ar-
rival counts, while three Long Short-Term Memory

Figure 2: Illustration of the Workload Prediction Model.

(LSTM) networks are trained to predict the CPU and
memory requirements as well as lifetimes. In order to
predict memory requirements, we use the predicted
CPU requirements as input. Conversely, for the life-
time model, we use memory requirements as input.
In Section 4, we delve into the qualitative impact of
using CPU requirements to predict memory and mem-
ory to predict lifetimes. Now, we provide an overview
of ARIMA and LSTM networks, along with an expla-
nation for our choice of these models.

3.2.1 ARIMA for Arrivals

In the statistical parlance, the sequence of arrival
counts within successive 30 minute windows consti-
tutes a non-stationary time series data. This data may
exhibit variations, such as higher workload arrivals
during the day compared to night. This trend may
vary across days of the week, e.g., the weekends may
be quieter. The ARIMA model is a popular statistical
method that is often used to fit non-stationary time se-
ries data. It can also account for seasonal patterns in
the data. In summary, the ARIMA model has three
key components:

• “AR” (Autoregressive). This component ac-
counts for temporal dependencies by regressing
over the past values of the evolving variable - ar-
rival counts in our case.

• “I” (Integrated). It involves differencing the data
to achieve stationarity, enabling more accurate
predictions.

• “MA” (Moving Average). This component con-
siders moving averages to capture the average
changes in values, which helps in understanding
the evolving patterns of arrival counts over time.
These three components are defined by the pri-

mary model parameters: p, d and q, for the non-
seasonal aspects of the data, and P, D, Q for their
seasonal counterparts. Additionally, the model can
be parameterized by the number of periods within
every season, denoted as s. It is trained using the
Box-Jenkins method (E. P. Box et al., 1970), (Siami-
Namini et al., 2018). Recall that the Alibaba dataset
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contains the start times for batch tasks over an eight
day period. As a preprocessing step, these start times
are used to generate the time series dataset that is the
number of arrivals within each 30-minute window.
The ARIMA model is trained using this transformed
dataset for prediction and analysis. The dataset is di-
vided into 30-minute intervals, as using shorter inter-
vals would result in longer seasonal periods, which
can pose challenges for ARIMA modeling (Hynd-
man, 2010).

3.2.2 LSTM for CPU, Memory and Lifetimes

We used LSTM networks to predict the CPU and
memory requirements, and the lifetime of a batch
task. Unlike a regular feedforward network, LSTMs
are artificial neural networks capable of processing
feedback. They are composed of special long short-
term memory units designed to capture temporal in-
formation effectively. LSTMs are particularly well-
suited for time series forecasting applications, espe-
cially when datasets contain relevant events separated
in time. In the Alibaba dataset, the task executions are
governed by a dependency graph. Specifically, a task
may only be executed provided a previous task has
already been executed. When predicting the resource
requirements (CPU, memory) or lifetime, it is impor-
tant to consider other related tasks that have been sub-
mitted for execution.

Alibaba dataset features 16 distinct CPU and over
300 unique memory values. To address these differ-
ent prediction tasks, we use two separate LSTMs. In
particular, we train the CPU-LSTM as a 16-class clas-
sifier whereas the memory-LSTM is trained using re-
gression. Additionally, we include CPU requirement
as an input feature when predicting memory. How-
ever, our findings in Section 4 show that the inclusion
of CPU does not significantly enhance the accuracy
of memory predictions. In other words, memory can
be predicted accurately without explicitly considering
CPU. Lastly, we consider the problem of predicting
task lifetimes. In the dataset, each task is associated
with one of four states: terminated, running, waiting
or failed. Our analysis focuses exclusively on predict-
ing successfully terminated tasks, which account for
over 98% of the dataset. As in the case of memory,
we employ an LSTM model trained through regres-
sion to predict the lifetime of a task. The LSTM takes
the (predicted) memory requirement as an additional
input. We also conducted experiments wherein we
used both CPU and memory as input. However, we
found that the prediction accuracy is better when the
input is memory alone.

4 EXPERIMENTAL SETUP

In order to present our numerical results, we need to
first specify the setup used to conduct the various ex-
periments. We begin by noting that we used Python
3.10 for all our experiments. Our models are ML
based, and Python provides the best libraries to im-
plement them.

4.1 Data Preprocessing

Since we predict the number of batch arrivals in a
given 30-minute window, we begin by preprocessing
the dataset to generate time series data containing task
arrival counts in consecutive 30-minute windows. As
each task is associated with a start and an end time,
this preprocessing step is fairly straightforward. We
use ARIMA to fit the resulting time series data. We
use Python’s pmdarima package, and call on the func-
tion auto-arima for training on the arrival count time
series. The CPU and memory requirements, and the
completion times are fitted using LSTM networks. As
there are only 16 unique values for CPU, we solve
the CPU prediction as a classification problem. For
memory and lifetime predictions, we adopt a regres-
sion approach. We use keras API, which is devel-
oped by Google and is a popular choice to train neu-
ral networks, to train our LSTMs. In the next section,
we discuss the various hyperparameters involved in
training.

4.2 Modeling Hyperparameters

We begin by noting the hyperparameters for the sea-
sonal ARIMA model. While in traditional ARIMA
models, p, d, and q values needed to be specified,
Seasonal ARIMA (SARIMA) models require, in ad-
dition, the specification of seasonal parameters P, D,
Q, and s. The parameter s represents the length of the
seasonal period, which varies depending on the recur-
rent periodicity in the data. For instance, a daily peri-
odicity corresponds to a value of 7, while weekly and
monthly periodicities have values of 52 and 12, re-
spectively. In our case, we are modeling day-over-day
seasonality in an 8-day dataset, with arrival counts
aggregated over 30-minute periods each day. There-
fore, the value of s is set to 48, which corresponds
to the number of 30-minute buckets in a 24-hour day.
The ARIMA hyperparameters are tuned using the Al-
ibaba dataset to increase prediction accuracy by the
auto-arima function. The recommended model uses
p= 4, d = 0, q= 3 in the non-seasonal part and P= 2,
D = 0 and Q = 1 to model the non-seasonal compo-
nents of the data.
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Figure 3: Time series decomposition of arrival counts.

Now, we look at the hyperparameters tuned for the
LSTMs used to predict the resources and the lifetime.
We use the same LSTM network for the three pre-
diction tasks. In particular, all our LSTMs are sin-
gle layered with 32 hidden LSTM activations. The
classification-LSTM uses a soft-max output layer,
while the other two LSTMs use a linear output layer.
Since LSTMs are trained using the Back-Propagation
Through Time (BPTT) algorithm, we need to spec-
ify the number of steps in time that the BPTT al-
gorithm must look back. Our models look 10 steps
back in time. The optimizer used is the Stochastic
Gradient Descent (SGD) with momentum algorithm.
We use a decaying learning rate starting from 0.001
and a momentum value of 0.9. The learning rate de-
cays as a function of the epochs. When it comes to
the loss functions, the classification problem uses the
cross-entropy loss, and the regression problems use
the mean-squared loss.

5 EXPERIMENTAL RESULTS

We present the results from various experiments in
this section. We start by looking at the task arrivals
prediction model.

5.1 ARIMA - Arrivals

It is essential to eliminate non-stationarities in data
for ARIMA to have a high prediction accuracy. There
is an “initial differencing” step in ARIMA that is
repeated a few times in order to eliminate non-
stationarities. The number of repetitions are deter-
mined by the parameter d. In order to find the optimal
d, we used the Augmented Dickey-Fuller (ADF) sta-
tistical test (Fattah et al., 2018). The general guideline
for the ADF test is that if the p-value is less than the
critical value of 0.05, the d differencing steps have
eliminated trends. In our case, for the chosen d pa-
rameter value of 1, the p-value was 4.5e− 07 which
is less than 0.05.

Figure 4: Prediction results for ARIMA model.

All time series data have four components: av-
erage value, trend (i.e. an increasing or decreasing
mean), seasonality (i.e. a repeating cyclical pattern),
and residual (random noise) (Mitrani, 2020). Trends
and seasonality are not always present in time depen-
dent data, so we performed decomposition to identify
any underlying seasonal patterns. Figure 3 illustrates
the decomposition of the arrival counts data, where
it clearly displays daily seasonality. As a result of
this analysis, we decided to use SARIMA instead of
ARIMA to model arrival counts.

Figure 5: Probability-to-Probability (PP) Plot and Normal-
ity Tests for prediction errors in ARIMA model.

Figure 4 shows the modeling results for the num-
ber of task arrivals per 30-minute time intervals us-
ing SARIMA. The model uses 70% of the data for
training and 30% for testing. As shown, the predicted
values effectively capture seasonality as well as the
bursts in the data.

We use prediction intervals to evaluate our
model using Root Mean Squared Forecasting Er-
ror (RMSFE) (Brownlee, 2020). The valid-
ity of this approach relies on the assumption that
the residuals of our validation (or test) predictions
are normally distributed. To test this assumption,
we used a Probability-to-Probability (PP) plot, and
tested the normality of our prediction errors us-
ing the Anderson-Darling, Kolmogorov-Smirnov, and
D’Agostino K-squared (Mishra, 2020) tests. The PP-
plot compares the data sample with the plot of a nor-
mal distribution. Ideally, when the data follows a
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Figure 6: Actual and generated (with mean and 95% prediction intervals) arrival counts.

normal distribution, the data points align to form a
straight line. The three normality tests use p-values
to determine how likely it is that a data comes from a
population that follows a normal distribution. If the p-
values for all tests are greater than a chosen α thresh-
old, there is evidence to suggest that the data comes
from a normal distribution. Figure 5 shows that all
three tests returned a p-value larger than the α = 0.01,
therefore, indicating that our data points come from a
normal distribution.

We used a prediction interval of 95% to evaluate
our model. In a normal distribution, approximately
95% of the data points lie within 1.96 standard devia-
tions of the mean. Hence, to determine the size of our
prediction interval, we multiplied 1.96 by the RMSFE
for our arrival counts model. The results, as shown in
Figure 6, indicate that our model captures over 94%
of the data points within the 95% prediction interval.
The line in the figure represents the mean of predic-
tions. Another noteworthy aspect of our model is that
it tends to slightly overestimate the arrivals in approx-
imately 90% of the cases. This indicates that while
our model can be utilized for an informed planning
of the future through forecasting, it also exhibits the
ability to accommodate small estimation errors and
operate under small variations in expected load.

We modeled individual arrivals within each 30-
minute period by a Poisson process. Since a ran-
domly distributed set of arrival times will have sub-
sequent times exponentially-distributed, we modeled
individual arrivals in any given 30-minute period by
sampling its arrival count from a uniform distribution.
The actual and generated results for one time period
are shown in Figure 7.

Figure 7: Actual and generated individual arrivals over one
time period.

5.2 LSTM - CPU, Memory, Lifetime

As stated earlier, we model both resource require-
ments and task lifetime in our dataset using LSTMs.
Note that the resource requirements include both CPU
and memory resources.

5.2.1 CPU

Considering that our dataset consists of over 14 mil-
lion data points with only 16 unique values for CPU,
we opted for a classification approach to model CPU.
The dataset was divided into three subsets: training,
validation, and testing, with 75% of the data allo-
cated for training and validation, and the remaining
25% for testing. The input data was one-hot encoded
before feeding it to LSTM. To train our model, we
used time series cross validation with k = 10. Our
LSTM comprised of a single layer with 32 hidden
nodes and used the SGD optimizer with a decaying
learning rate of 0.001. The loss was calculated us-
ing the ‘cross-entropy’ function. The cross-entropy
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Figure 8: Cross entropy training loss for CPU.

Figure 9: Cross entropy validation loss for CPU.

for different epochs and time series cross-validation
splits for the training and validation sets can be ob-
served in Figure 8 and Figure 9, respectively. The
loss for the test data was 0.795.

Although loss is a useful metric for assessing the
performance of our CPU model, the F1 score pro-
vides a more comprehensive evaluation of its accu-
racy. The F1 score is an ML evaluation metric that
combines precision and recall scores to measure the
class-wise performance of a classification problem.
It is particularly beneficial when dealing with imbal-
anced class distributions within the dataset. Figure
10 shows the frequency of occurrence for all the CPU
classes along with their prediction frequency using
our LSTM model. The two classes - 50 and 100 -
occur in more than 80% of the dataset and our model
is able to predict them with similar frequency. Apart
from that, Figure 11 shows the F1 scores for all the
classes (except for one, i.e., 12 which was neither pre-
dicted nor was part of the test data used to generate

Figure 10: True and predicted frequency for CPU classes.

Figure 11: F1 score for CPU classes.

these results). Here again, the results show that the
model works well with the two most frequently occur-
ring classes and the class 400. The remaining classes
are taken as outliers.

Given that our model predicts three classes well,
we pool groups of CPU requirements together in or-
der to reduce the number of classes, and also to re-
duce class imbalance. To do so, we divide our dataset
into three classes, with 50 and 100 remaining intact.
The newly created class contains all the other less fre-
quently occurring classes and is named 500. If we
train our model with this new dataset, we get the re-
sults shown in Figure 12 and Figure 13. As expected,
our F1 scores for the individual classes increased
by grouping the less frequently occurring classes to-
gether.

Since the values in the new class vary widely, if
we make a prediction of CPU resources to be “500”,
then that value could be as low as 5 and as high as
1000. To make a reasonable prediction within this
group, we build an empirical distribution (sample fre-
quency = no. of samples of a particular class/ total
number of other classes) over these classes by using
the dataset at hand. Every time our model predicts
500, we sample from this distribution. So, on an av-
erage, our model does well.
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Figure 12: True and predicted frequency for grouped CPU
classes.

Figure 13: F1 score for grouped CPU classes.

5.2.2 Memory

When modeling memory resources for batch tasks,
we considered two options: 1) treating memory as
a standalone time series without any additional fea-
tures, and 2) incorporating CPU as a feature. To as-
sess the impact of CPU resources on improving the ef-
fectiveness of our predictive model, we calculated the
importance scores for the CPU feature. To do so, we
scaled the data using Min-Max between 0 and 1, fit-
ted a linear regression model on the regression dataset
and extracted the coefficients assigned to each input
variable (Artley, 2022). These coefficients serve as
a basic measure of feature importance. The obtained
result of this analysis was 0.00392. As this value is
positive, it suggests that the inclusion of CPU values
does not hinder the learning process of our model. In-
stead, it indicates a minor positive influence of CPU
on predicting memory requirements. Consequently,
we decided to include CPU as a feature in our LSTM
model for memory prediction.

Our memory LSTM comprised of a single layer
with 32 hidden nodes and used the SGD optimizer
with a decaying learning rate of 0.001. The loss was
calculated using the Mean Squared Error (MSE) be-
tween the true and the predicted values. The loss for
different epochs and time series cross-validation splits

Figure 14: MSE training loss for memory.

Figure 15: MSE validation loss for memory.

for the training and validation sets can be observed in
Figure 14 and Figure 15, respectively.

The loss for the test data is 1.88e− 04 when the
values have been scaled between 0 and 1. Since the
original values of memory in the dataset are also nor-
malized and range between 0 and 100, we can simply
multiply the loss by 100 to get the loss for the original
data. The value is less than 1% in both the cases.

5.2.3 Lifetime

Task lifetimes are also predicted using an LSTM
model with regression. In order to assess the sig-
nificance of resource requirements in determining the
duration of tasks, we once again calculated the im-
portance scores for CPU and memory features using
linear regression. Interestingly, we observed a nega-
tive score of −0.87 for CPU as a feature, indicating
its limited impact on predicting task lifetimes. On the
other hand, the memory feature exhibited a consider-
ably higher importance score of 350.26. One possible
explanation for this is the significantly lower diversity
of unique values in the CPU data compared to mem-
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Figure 16: MSE training loss for lifetime.

Figure 17: MSE validation loss for lifetime.

ory. Within this limited set of CPU values, over 80%
of the data points have only two distinct values. These
two values may not be adequately useful for the life-
time model. Therefore, to model task lifetimes, we
included only the memory feature.

The LSTM model used for predicting task life-
times is similar to the one employed for modeling
memory. Both models utilize MSE losses during
training. The results for our training and validation
losses for the lifetime model are shown in Figure 16
and Figure 17, respectively. When evaluated on the
test data, which accounts for 25% of the dataset, our
model achieved a loss of 1.94e− 06. These results
demonstrate the high accuracy of our model in pre-
dicting task lifetimes.

6 CONCLUSION AND FUTURE
WORK

In this paper, we considered the problem of building a
predictive model for co-located tasks in a cloud com-
puting environment. We started by looking at the Al-
ibaba dataset that contains the following data for an
eight day period: (a) online and batch task arrivals
(co-located) (b) CPU and memory requirements for
each task (c) tasks lifetimes. We trained an ML model
using this dataset to predict the number of batch tasks
that arrive in a 30-minute window, the associated CPU
and memory requirements, and their lifetimes. We
used Seasonal ARIMA to predict the batch-task ar-
rival counts and three different LSTM networks to
predict CPU, memory and lifetime for an arriving
task. Our results show that our trained models ac-
curately forecast the number of batch task arrivals in
30-minute windows as well as their associated CPU,
memory requirements, and lifetimes.

In the future, we would like to generalize our pre-
diction model through the use of probabilistic gener-
ative models. A probabilistic model, e.g., to predict
the CPU resources, implies that we can sample from
a distribution over a valid set of CPU values. Hence,
our model will predict different sequences of CPU re-
quirements for different runs. Training a task sched-
uler using such a model will greatly enhance its ro-
bustness and generality.
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