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Abstract: During the lockdowns following the Covid-19 pandemic many companies have become flexible by 
implementing new manufacturing technologies, such as group technology (GT), just-in-time (JIT) production 
systems, and flexible manufacturing systems (FMSs) that, hence, become among the solutions of the future. 
This paper uses the emergence of these systems to present an alternative robust design formulation to Taguchi 
methodology before proposing a single-objective optimization scheme to find the optimal operational settings 
of primary individual key performance indicators (KPIs). The study uses the Throughput Rate (TR) and the 
Mean Flow Time (MFT) as illustrative examples of KPIs, tracked over a range of AGV fleet sizes. Additional 
KPIs, e.g., Work-in-process (WIP), Machine utilization, and AGV utilization are also analyzed as secondary 
measures to validate and fine-tune the results of the procedure. The study deploys and uses in association 
multiple statistical tools for a proper analysis and validation of the technique. The effectiveness of the 
proposed model is validated by comparing the results to some other similar approaches. Although derived 
from simulation of manufacturing operations, the framework presented in this paper can be applied to various 
industries including food production, financial institutions, warehouse industry, and healthcare.  

1 INTRODUCTION 

The COVID-19 pandemic put forth the role of 
technology in everyday business, especially in the 
manufacturing operations. Products needed to be 
manufactured quicker without sacrificing quality 
standards. The situation raised the demand for rare 
production items such as ventilators, gloves, face 
shields, masks, paper towels, toilet papers, 
andsanitizers at a high rate (Cohen, 2020). 
Manufacturing giants such as General Motors and 
Ford Motor Company turned their production 
systems to support the need of society in terms of 
manufacturing ventilators (Aalok Kumar et al., 2020). 
Then, it became evident that a flexible manufacturing 
system (FMS) was inevitable to fulfil the requirement 
for such necessary items. Today, in the post pandemic 
era, national government institutions, health 
institutions, food processing industry, pharmaceutical 
manufacturing organizations, should be prepared in 
advance to tackle any situation to control the 

production of essential and nonessential items during 
a pandemic, and have sufficient buffer plans to 
address the availability of life saver stocks such as 
ventilators, vaccines, sanitizers, masks, and face 
shields (Aalok Kumar et al., 2020) and also, a variety 
of non-health related goods, e.g., food, tools, 
automobile parts, and other equipment.  

The choice of performance measures in a 
processing system such an FMS depends highly on 
management policy and decision-making approach, 
especially under COVID-19-lke supply chain 
disruption conditions. Multiple objective measures, 
often referred to as Key Performance Indicators 
(KPIs) are needed to describe the dynamic nature of 
a manufacturing or production system such as an 
FMS.  

A single performance measure is not enough to 
capture and characterize the overall performance of a 
system. Hence, optimizing a system with respect to 
one single objective only may lead to sacrificing other 
objective(s) of interest. For example, the objective of 
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minimizing in-process inventory might conflict with 
that of maximizing a production rate.  

However, the author believes that during 
conditions of supply chain disruptions like the past 
pandemic era, it may become strategical to prioritize 
only one single performance to the detriment of 
others depending on the industry segment. Therefore, 
this paper presents a unique robust design scheme 
applied to an FMS with the objective of proposing a 
single-objective performance optimization procedure 
as well as all the statistical validation tools that 
support the scheme. 

2 THE HYPOTHETICAL FMS 

The paper analyzes a hypothetical flexible 
manufacturing system (FMS) using discrete-event 
simulation. The study proposes a unique and robust 
scheme in designing, modeling, and optimizing the 
system. The system is modeled with a total number of 
9 workstations including a receiving and a shipping 
station. This 9-station flexible manufacturing system 
as schematically depicted in Figure 1 is served by a 
fleet of AGVs while processing fifteen-part types, 
each with a different processing time.  

The study analyzes and proposes a single criteria 
“empirical” optimization scheme that is subsequently 
and separately applied to two most popular and 
conflicting performance measures indicators, namely, 
the Throughput Rate (TR) and the Mean Flow Time 
(MFT), over a range of AGV fleet sizes. The 
proposed optimization procedure also deploys a 
series of additional statistical tools intended to 
support the validation of the approach. Besides, three 
other metrics are tracked and analyzed as secondary 
measures or benchmarks to validate the selection of 
optimal values. The proposed optimization scheme is 
developed by studying an AGV-served FMS and 
evaluating its overall performance while considering 
5 design parameters as controllable variables, 
designated by Xi (i=1…5), namely:  

i) the number of AGVs (X1), 

ii) the speed of AGV (X2), 

iii) the queue discipline (X3), iv) the AGV 
dispatching rule (X4), v) and the buffer size 
(X5). These variables have a direct impact on 
the performance of machines and material 
handling (AGVs), considered as the most 
expensive components of the overall system. 

 
 

 

 

Figure 1: The Hypothetical Flexible Manufacturing 
System. 

Table 1 depicts the shop configuration as studied 
in this paper.  

Table 1: FMS – Shop Configuration. 

 

3 OVERVIEW 

The COVID-19 pandemic has disrupted 
manufacturing and production operations around the 
world on a huge scale, challenging manufacturers, 
vendors, and suppliers to seek for innovative new 
ways to continue their operations safely while 
minimizing risks and disruptions (Cappelli et al., 
2020). 

Manufacturing becomes increasingly digital each 
day. This can be seen in the concept commonly 
referred to as “Industry 4.0.” Essentially, Industry 4.0 
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refers to the digital automation of manufacturing 
capabilities. An FMS, by design, is part of Industry 
4.0 as it is an integrated and automated system of 
numerically controlled (NC) machines, material 
handling systems (e.g., AGVs), and a system 
controller (i.e., a centralized/decentralized or 
computer system) designed to provide benefits of 
reduced WIP inventory and shortened production 
lead time (Park et al., 2001).  

Because a characteristic of product demand in a 
modern economy is small quantity and high variety 
of products and or services, the effects of variations 
due to these uncontrollable factors can be drastic.  

During the FMS operations, its components can 
fail due to several reasons. In such an integrated 
system the failure of a single component may force an 
extremely expensive machine to idle, and, because 
there is limited work-in-process (WIP) within the 
system boundary, the entire system can be brought to 
starvation and stoppage. In such a potentially 
disruptive environment, reliability-related issues and 
robustness become important because of their 
possible negative effect on the FMS performances. It 
has been demonstrated that reliability, and operating 
policies for the scheduling decisions affect the 
performance of an FMS (Tshibangu, 2016). Many 
analytical tools exist to address these issues, with 
simulation being a powerful strategic analysis tool, 
particularly for design (Ball and Love, 2009).  

The natural values assigned to the robust design 
variables as applied in this research are displayed in 
Table 2. The controllable parameters X1 through X5 
are set and tested at two setting levels (min and max). 
Table 3 displays the settings and values for the noise 
factors considered in this study, also the most 
investigated and documented in the reported literature 
(Montgomery 2013) are: i) the arrival rate between 
parts (or orders), (X6), the mean time between failures 
of the machines (X7) and the associated mean time to 
repair (X8).  

4 RESEARCH METHODOLGY 
AND ROBUST DESIGN 

The various phases of the robust design methodology 
as applied in this paper are the same as proposed in 
most literature (Montgomery 2013, Taguchi 1987) 
except that in this study, after completing the 
simulation experiments and collecting all pertinent 
data the following additional steps are taken to 
accommodate any subsequent optimization 
procedures: 

1. Calculate the mean and the variance with 
respect to noise factors σ2

wrtnf(i) for each   
treatment i (row of the inner array) and for each 
performance measure of interest; this variance 
measures the variation in performance when 
there is a change in noise factors. 

2. Compute and use log σ2
wrtnf(i) of each 

performance measure to improve statistical 
properties of analysis. 

3. Apply the normal probability plotting technique 
to the calculated mean and the log σ2

wrtnf of each 
control factor setting to determine the 
significance of the main factors and their 
interaction effects on each measure of interest. 

4. Develop and implement a four-step 
optimization procedure to predict the factors and 
their associated settings that will simultaneously 
minimize σ2

wrtnf and optimize the mean of the 
performance measures. Adjust and fine-tune the 
settings to the most appropriate economical 
levels. 

5. Apply the residual analysis to verify the results. 
6. Run the confirmatory simulation tests. 
7. Conclude on the optimization procedure. 

These factors are also tested at two levels in 
combination with each control factor (X1 through X5) 
at each setting level. For both controllable and noise 
factors, the coded levels are (-1) and (+1) for the low 
and high level, respectively. 

Table 2: Natural Values and Setting of Control Factor. 

Designation Control Factor 
Low Level 

(-1) 
High Level  

(+1) 
X1 Number  of AGVs 2 9 
X2 Speed of AGV 100 200 
X3 Queue Discipline FIFO SPT 

X4 
AGV Dispatching 

Rule 
FCFS SDT 

X5 Buffer Size 8 40 

Table 3: Natural Values and Setting of Noise Factors. 

Designation Noise Factor
Low 

Level (-1) 
High 

Level (+1) 

X6 Inter-arrival EXPO (15) EXPO (5) 

X7 MTBF EXPO (300) EXPO (800)
X8 MTTR EXPO (50) EXPO (90) 

The general data collection plan (the M x N 
matrix) for the FMS under consideration in this 
research is displayed in Table 4. In this research the 
design matrix is constructed using a 2v 5-1 fractional 
factorial design while the noise factor is generated 
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using a 23 full factorial design. The notation used in 
this table is defined as follows:  

Let Y represent a performance measure of interest 
(e.g., throughput, flow time, machine utilization, 
work-in-process). 

Let yIJ represent a realization of this performance 
measure for system configuration or system design I 
=1, 2,…M, and noise set J = 1,2,…, N. 

Let θi I represent the setting of the ith controllable 
variable (i= 1, 2,…, k) for system configuration I 
(e.g., number of AGVs, AGV speed, AGV 
dispatching rule, machine queue discipline in force).  

Let ωJ represent a set of noise conditions, J=1,2, 
...N 

Let ωj J represent the jth noise variable setting (j = 
1, 2, …, l) for noise condition J (e.g., machine mean 
time between failure, mean time to repair, mean 
interarrival time). 

Table 4: Data Collection Plan. 

 

Let ZI(θ) represent a performance statistic for 
each design configuration (e.g., mean or variance of 
a performance measure such as throughput, flow 
time, machine utilization, work-in-process).  

ZI(θ) is a function or functions of all of the data 
that have been selected by the simulation analyst to 
examine one or more aspects of the performance of 
system configuration i over the noise conditions. By 
examining different choices for Z, the experimenter 
can examine various system performance aspects.  

This research focuses on examining the mean 
system performance, the system variance with respect 
to noise (Var(wrtn)), the maximum and minimum 
system performance. Therefore, ZI(θ) may represent 
a vector of values such as the row average, the row 
variance, and the row maximum or row minimum.  

This simulation data collection plan described 
above represents a departure from the procedures 
discussed in the literature of experiments. The 
associated design of experiments strategy for robust 
design can facilitate detailed analysis. A robust 
system design is, then, one that performs desirably 
and consistently under all the noise conditions 
represented in the simulation experiments. 

5 VARIANCES, MAIN AND 
INTERACATION FACTORS 

A well-planned experiment makes it simple to 
subsequently analyze and predict the improved 
(optimal) parameter settings. In this study, for each of 
the simulated design configurations i, eight 
measurements (over the set of noise factor 
combinations) were taken for each performance 
measure of interest, and then, averaged across the 

replications to obtain iy  for each ith row of the inner 

array. Sixteen design configurations and five center-
points (for a total of 21) designs were simulated over 
a set of eight noise factor combinations, leading to a 
total of 21 x 8 =128 simulation runs. The results of 
these various simulation experiments, too large to be 
displayed in this paper, but available upon request, 
were subsequently averaged up across the three 
replications. 

This research intends to minimize the variances of 
the performance measures with respect to the noise 
factors for each run.  

5.1 Determination of Main Effects on 
Means and Variances  

The objective is to make the variances of the 
responses (performance measures) as small as 
possible while bringing the means to their optimum 
settings, i.e., minimum MFT and maximum for the 

TR. The study then computes the values of iy  and 

log σ2
(wrtnf)i at each design configuration. 

Subsequently, the effects of each control factor on 
the overall mean and the variance (or log σ2

wrtnf) are 
calculated using the normal probability method. The 
same procedure is applied to the complete set of 
controllable factors to assess the effects on the means 
of Throughput Rate (TR), Mean Flow Time (MFT), 
Work-in-Process (WIP), and Utilization (UT). 
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Table 5: Effects of Control Factors MFT Variance. 

Control 
Factors 

Effect on MFT 
log σ2

wrtnf 
Level (+1) 

Effect on log 
MFT σ2

wrtnf at 
Level (-1) 

Absolute Value 
Difference 

 

X1 1.6159 1.657502 0.04155 

X2 1.6081 1.558286 0.04982 

X3 1.4921 1.781325 0.28920 

X4 1.6338 1.639566 0.00568 

X5 1.6032 1.670230 0.06701 

The results, not all displayed in this paper, are 
available upon request. Then each controllable factor 
is tested at two levels and the magnitude of its effect 
on the mean measured.  

Table 5 displays the effects of controllable factors 
on the MFT mean, just as an illustrative example.  

Analysis of the results in Table 5 reveals that X3 
(queue discipline) has the most significant effect on 
the MFT variability as highlighted in bold, while the 
exam of other results shows that X1 (number of 
AGVs) has the most significant effect not only on the 
MFT mean but as well as on the TR variability and 
mean. These results agree with previous findings 
Bardhan and Tshibangu, 2002, Tshibangu 2003).  

Subsequently, the effect at high level is compared 
to the effect at low level, and the better setting of each 
control parameter is that gives the smaller average 
value of log σ2

wrtnf. Results indicate that factor X1 (the 
number of AGVs), when set at its high level, has the 
most significant effect on the mean value of MFT. 
Other results, not displayed here, but available upon 
request, indicate a high impact of X1 (the number of 
AGVs) on TR.  

Once identified, these significant factors for MFT 
and TR will be set at the settings (levels) that 
minimize log σ2

wrtnf., i.e., X1 and X3 at high settings, 
and these, implemented. Note that a visual summary 
of the magnitude of each control factor’s effect can 
also be used for analysis of various effects.  

The relative importance of different main effects 
of control factors on the means and variances have 
been derived. Figure 2 displays a visual 
representation of the main effect on TR means for 
illustration purpose. Other graphs exist for the effects 
on variances and means of all other controllable 
factors. A quick glance at Figure 2 and others, not 
displayed here, reveals on one side, that control factor 
X1 (fleet size) is a critical factor because it has a 
significant effect on the TR and MFT means and on 
TR Variance. On the other side, Factor X3 (queue 
discipline) has the biggest effect on MFT variance. 
This agrees with the analytical results (Tshibangu 
2003). 

 

Figure 2: Main Effect Plot (data means) for TR. 

5.2 Determination of 2-Way 
Interaction Effects 

Effects due to interaction between factors are 
important in selecting an experimental design, 
because underestimating these effects may lead to 
incorrect conclusions whereas overestimating them 
may unnecessarily increase the experimental design 
size (Tshibangu 2003).  

This research uses a resolution V design to allow 
an estimation of effects of two-way interactions. The 
effects of interactions between factors are determined 
using a Minitab software package for the estimation 
of main effects. As an example, and for illustration 
purposes, Figure 3 displays a 2-way interaction 
between mean values control factor TR.  

To be certain that the samples collected through 
simulation and robust design of experiments 
approaches are statistically valid, all the necessary 
hypothesis and normal probability tests have been 
conducted at 95% confidence level. 

Normal probability plots are useful in assessing 
the significance of effects from a fractional factorial, 
especially when several effects are to be estimated 
(Montgomery 2013).  

 
Figure 3: Interaction Plots (data means) for TR. 
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6 OPTIMIZATION SCHEME 
IMPLEMENTATION 

In this section, a unique optimization procedure is 
developed and presented. The developed 
optimization procedure represents a departure from 
other approaches reported in the literature in the sense 
that this procedure is the first to include the effects of 
two-way interaction between controllable factors. 
The approach is inspired and motivated by Taguchi’s 
strategy for improving product and/or process quality 
in manufacturing.  

6.1 Four-Step Single-Response 
Optimization Approach for Robust 
Design 

Because flexible manufacturing systems and any 
other process-oriented systems are subject to various 
uncontrollable factors that may adversely affect their 
performance, a robust design of such systems is 
crucial and unavoidable. The author has developed a 
four-step optimization procedure to be used 
simultaneously with the robust design as first step of 
the optimization scheme as proposed in this study: 

Let iy  represent the average performance measure 

across all the set of noise factors combination, 
averaged across all the simulation replications for each 
treatment combination (or design configuration) i.  

Let log σ2
wrtnf(i) be the associated logarithm of the 

variance with respect to noise for that treatment i. 
Kacker and Shoemaker, 1986 recommend using the 
logarithm of the variance to improve statistical 
properties of the analysis, and to employ the “effects” 
values and/or graphs in association with normal 
probability plots and or ANOVA procedures to 
identify and partition the following three categories 
of control factor vectors: 

Under the assumption that we have partitioned 
three categories of control vectors as non-empty sets 
Xv

T containing the factors that have a significant effect 
on the variances, Xm

T containing factors significant on 
the means (and their interactions), and X0

T as the set of 
the factors that affect neither the mean nor the variance, 
respectively, then a four-step empirical optimization 
procedure may be implemented as follows: 

Step 1  
Identify the vector Xv

T and adjust the controllable 
factors members of this set to their values that 
minimize σ2

wrtnf
. of the performance measure y. 

Step 2 
Identify vector (Xm

T )1 of factors having a  
 

significant effect on the mean y and set the 

controllable factors members of this set to their 
level values that optimize the mean y  of the 

objective performance  y. Also, identify (Xm
T)2 

vector of factors having a significant effect on 
mean y  and on the variance σ2

wrtnf 

simultaneously and set the factor members of this 
set to their level values that optimize the mean y
if this setting does not act in opposition with the 
minimization of the variance. Otherwise, find a 
compromise between minimizing the variance 
and optimizing the mean as suggested in Step 4 
where the final setting is to be decided. 

Step 3 
Identify the vector X0

T and set the control factors 
members of this set to the values of their 
interaction with members of vector Xv

T that 
minimize the variance or log σ2

wrtnf   or the values 
of their interaction with members of Xm

T
 that 

optimize the mean y . Otherwise, set the factors at 

their economic settings. 

Step 4  
Conduct a small follow-up experiment to find the 
trade-off between members of (Xm

T)2
B containing 

factors with effects on variance and mean acting 
in opposition and or the overall economical 
settings. A suggestion from this study is that in 
finding the overall economical setting, the step 
involves only those factors that have the greatest 
effect on either the variance σ2

wrtnf or the mean y . 

6.2 Throughput Rate (TR) and Mean 
Flow Time (MFT) Optimization 

When applying the above-described procedure the 
optima for TR (maximum) and MFT (minimum) are 
found using the associated plots and tables, the 
following result are obtained: 

For Throughput Rate (TR)  

Xv
T: [X1(-1), X2(-1)], pending (X1 and X2 

adjustment through follow-up and confirmatory 
runs). 

Xm
T: [X5(-1)], confirmed. 

X0
T: [X4 (-1), X5(-1)], confirmed. 

For Mean Flow Time (MFT) 
Xv

T: X3 (+1), confirmed. 
(Xm

T): (Xm
T)1: X1(+1), X2(+1) 

               (XmT)2: (Xm
T)2

A:  X3(+1), confirmed. 
        (Xm

T)2
B: φ 

(X0
T): X4 (-1), X5(-1), confirmed. 
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6.3 Follow-up and Confirmatory Runs  

Follow-up and confirmatory experiments are then be 
conducted under the above specified system 
conditions. For each configuration tested, besides the 
primary performance measures TR and/or MFT, other 
performance measures such as machine utilization, 
work-in-process (WIP), and AGV utilization are also 
recorded for benchmarking purposes. The results of 
the tuning and confirmatory runs at different settings 
for TR and MFT are displayed in Table 11 and 12, 
respectively. 

At the completion follow-up/confirmatory, the 
most optimal and robust design to be implemented 
with respect to the performance measure of interest 
TR (used here as an example) is highlighted in bold 
in Table 6.  

Table 6: TR Optimization follow-up/Confirmatory Runs 
Under Various #AGVs (X1) & AGV Speed (X2). 

 

7 RESULTS AND 
COMPARATIVE ANALYSIS 

In both TR and MFT cases, the results obtained are 
compared with those generated by similar procedures, 
such as Taguchi (using S/N ratio), Kacker and 
Schoemaker (1986), Wild and Pignatiello (1996), and 
Bulgak et al. (2000) approaches. Table 7 depicts one 
of the primary performance measures of optimal 
robust design configurations as achieved under 
various approaches. The reader is referred to 
Tshibangu 2003 for details and background about 
each procedure.  

TR optimal design yields the highest throughput 
rate of (3000 parts/day), a fair machine utilization rate 
of (89.73%), an acceptable WIP (81 parts/day) and a 
relatively high AGV utilization (97.87%). Indices 
100, 150, 200 refer to AGV speed in (ft/min). Using 
the natural values, the optimum of MFT is achieved 

with fleet of 6AGVs, at 200ft/min, SPT queue 
discipline, FCFS AGV dispatching rule, and a buffer 
capacity of 8 units, yielding MFT of 0.3666 min/part 
in coded units, machine utilization of (86.5%), a 
decent WIP of (77 parts/day) and an AGV utilization 
rate of (90.19%).  

8 CONCLUSIONS AND FUTURE 
RESEARCH 

The coronavirus crisis has dramatically increased risk 
for every business, with many, experiencing shocks 
in both supply and demand. Manufacturing plants are 
at the center of that uncertainty, and their continued 
operation through the crisis and beyond will depend 
in large part on the organization’s ability to navigate 
these wider risks (Vivek et. al. 2020).  

In this study, a unique single-objective 
optimization procedure is developed and presented. 
Because of supply chain disruptions that have been 
experienced in the manufacturing and production 
industry, many organizations had to develop strategic 
approaches for survival by focusing on few key 
performance indicators, such as timely delivery of 
manufactured goods, or solely on the volume of 
products in need on the market. 

 Regardless of the selected KPI it was imperative 
to be the best in the market segment. This study has 
been motivated by the pandemic crisis to develop and 
propose a robust single-objective optimization 
procedure and apply it to a Flexible Manufacturing 
System (FMS) that has been designed and analyzed 
using a discrete-event simulation approach. 

The developed approach is an approximation and 
empirical procedure that takes advantage of a unique 
robust design formulation to include the 
consideration of the two-way interaction factor 
effects. Although inspired and motivated by 
Taguchi’s strategy for improving product and/or 
process quality in manufacturing, the developed 
procedure, however, the intentionally departs from 
Taguchi’s and traditionally known approaches as it 
avoids the criticisms and insufficiencies thereof. 
Hence, a series of additional statistical tools is used to 
assist the procedure. These include main and 
interaction effects of control factors, t-test, ANOVA, 
normal probability plots, etc.      

As further research pathway, the optimal values 
found in this single objective optimization procedure 
could then be used as target value in any subsequent 
multiple optimization scheme to be developed in 
future research studies. 
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Table 7: Comparison Optimal TR as Realized under 
Various Approaches. 

 
The procedure is developed and applied to the 

simulation outputs, focusing on optimizing TR (max) 
and MFT (min). These performance measures have 
been selected because they are extensively referred to 
as primary KPIs in the literature. Follow 
up/confirmatory runs are subsequently conducted as 
sensitive analysis to fine-tune and validate the 
settings initially uncovered through the first 
approximation. 

There are three areas of focus can help plant 
managers and leaders navigate the transition from 
initial crisis: (i) Protect the workforce: standardize 
operating procedures and processes; (ii) Manage risks 
to ensure business continuity: anticipate potential 
changes and model the plant to react to fluctuations 
to enable rapid, fact-based actions. (iii) Drive 
productivity at a distance: Continue to effectively 
manage performance at the plant while physical 
distancing and remote working policies remain in 
place.  

As future research, the single-objective optimal 
values can subsequently be used as targets for a more 
advanced analytical multiple-objective optimization 
scheme, using tools such as simulation metamodels. 
In addition, the multiple objective-optimization could 
include other KPIs such machine utilization, WIP, 
and AGV utilization as primary metrics instead of 
benchmarks or decision guides as used in this 
research (Abdessalem et. al, 2022). 
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