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3Université de Rouen, France

muhammad.farhan@sse.habib.edu.pk

Keywords: Computer Vision, Frozen ViT, Temporal Modelling, Video Recognition, Prompt Tuning.

Abstract: The rapid progress of deep learning in image recognition has driven increasing interest in video recognition.
While image recognition has benefited from the abundance of pre-trained models, video recognition remains
challenging due to the absence of strong pre-trained models and the computational cost of training from
scratch. Transfer learning techniques have been used to leverage pre-trained networks for video recognition
by extracting features from individual frames and combining them for decision-making. In this paper, we
explore the use of Visual-Prompt Tuning (VPT) for video recognition, a computationally efficient technique
previously proposed for image recognition. Our contributions are two-fold: we introduce Auto-Regressive
Visual Prompt Tuning (AR-VPT) method to perform temporal modeling, addressing the weakness of VPT
in this aspect. Finally, we achieve significantly improved performance compared to vanilla VPT on three
benchmark datasets: UCF-101, Diving-48, and Something-Something-v2. Our proposed method achieves
an optimal trade-off between performance and computation cost, making it a promising approach for video
recognition tasks.

1 INTRODUCTION

Following deep learning’s success in image recogni-
tion, interest in video recognition has been steadily
growing in recent years. Whereas image recognition
on modestly sized datasets is now considered close
to being solved, one cannot say the same with regard
to video recognition. This can partly be attributed to
the plethora of pre-trained models available for im-
age recognition. While it would be difficult to train
such models from scratch on a custom dataset, the
availability of transfer learning techniques imply that
they can achieve a decent performance thanks to fine-
tuning. Datasets such as ImageNet-1k and ImageNet-
22k have played a key role in popularizing these tech-
niques.

Video recognition, on the other hand, is far from
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being considered solved. Training a model from
scratch is a challenge both in terms of its compu-
tational cost as well as the amount of training data
required by the model. Given the absence of strong
pre-trained models for video recognition, many tech-
niques try to leverage the already available pre-trained
networks for classification and utilize them to extract
features from individual video frames. These features
are then combined in order to arrive at a final decision.

While these pre-trained models are often fine-
tuned in order to update them given the video recogni-
tion task, it is often desirable to avoid the fine-tuning
step owing to its computationally expensive nature.
Examples of this include utilizing a frozen backbone
(CNN-based or transformer based) in order to ex-
tract features from individual video frames and then
learning a sequential model over such features. How-
ever, since our feature-extracting backbone is never
updated, it is not always certain that the features ob-
tained from it will be relevant to the task.

Given the aforementioned considerations,
prompting techniques seem to be an ideal candidate
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for video recognition. Visual-Prompt Tuning (VPT)
(Jia et al., 2022a) was proposed as a computationally
efficient technique that allowed the fine-tuning of
vision transformers for image recognition without
having to update the entire model. Prompts - which
are simply extra input tokens - are introduced in
the pipeline, and instead of modifying the network
architecture, only the prompts are modified during
transfer learning in order to obtain the task-relevant
prompts. These prompts can either be added to the
input tokens only (shallow approach), or they can be
added at every transformer layer (deep approach).
As VPT allows for fine-tuning in image recognition
without having to modify the existing architecture,
it’s natural to consider it in a video recognition
pipeline. This is because it will allow the extraction
of useful features from individual frames while also
learning computationally inexpensive task-specific
prompts.

In this work, we consider the application of VPT
to video recognition. In addition to applying the
vanilla VPT, we propose a simple modification (AR-
VPT) by introducing ‘recurrent prompts’ which allow
the VPT to be more tailored towards video recogni-
tion problems. Instead of having a set of prompts
for each input frame, prompts are only added to the
first frame and the updated version of these prompts is
then fed into the next frame. This allows the prompts
to take the sequential nature of the problem into ac-
count.

Our major contributions are summarized as fol-
lows:

• Considering the weakness in VPT which is its in-
capability to perform temporal modeling, we pro-
pose our very own temporal attention methods
based on prompting called Auto-Regressive VPT
(AR-VPT) by extending the VPT model to per-
form temporal modeling.

• We achieve significantly improved performance
compared to the vanilla VPT on three major
benchmarks: UCF-101 (Soomro et al., 2012),
Diving-48 (Li et al., 2018) and Something-
Something-v2 (Goyal et al., 2017). We also
achieve an optimal trade-off between performance
and computational cost.

2 RELATED WORK

2.1 Video Recognition

Video recognition has seen significant progress in
spatiotemporal learning techniques, evolving from

hand-crafted features to end-to-end deep learning
methods. Initially, video recognition relied on
feature-based approaches (Dollár et al., 2005; Klaser
et al., 2008; Wang et al., 2013). However, the suc-
cess of 2D CNNs in image recognition led to their
adoption in video recognition tasks (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; He et al.,
2016; Tan and Le, 2019).

Subsequently, with the introduction of large-scale
datasets like Kinetics (Kay et al., 2017), 3D CNN-
based methods emerged as more effective in capturing
spatio-temporal relations and outperformed their 2D
counterparts (Carreira and Zisserman, 2017; Feicht-
enhofer et al., 2016; Tran et al., 2015). Despite their
improved performance, 3D CNNs came with high
computational costs, prompting the development of
various optimized variants (Feichtenhofer, 2020; Sun
et al., 2015; Szegedy et al., 2016; Tran et al., 2018;
Xie et al., 2018; Li et al., 2020; Lin et al., 2019; Qiu
et al., 2019; Feichtenhofer et al., 2019; Duan et al.,
2020).

In parallel, self-attention based architectures
gained prominence in image recognition with the in-
troduction of the Vision Transformer (ViT) model
(Dosovitskiy et al., 2021). These models were subse-
quently adapted for video recognition, initially com-
bining Vision Transformers with CNNs to model
long-range context (Wang et al., 2018; Wang et al.,
2020; Kondratyuk et al., 2021). Later advancements
introduced fully transformer-based architectures (Liu
et al., 2022; Arnab et al., 2021; Bertasius et al., 2021;
Yan et al., 2022; Zhang et al., 2021; Patrick et al.,
2021; Fan et al., 2021; Li et al., 2022b), surpassing
previous methods across multiple benchmarks.

Recently, hybrid methods were proposed, combin-
ing elements from both CNNs and Vision Transform-
ers, achieving competitive performance compared to
state-of-the-art fully transformer-based methods (Li
et al., 2022a; Wasim et al., 2023a).

2.2 Visual Prompting

Prompting, a concept introduced in the field of Nat-
ural Language Processing (NLP) (Liu et al., 2021a;
Jiang et al., 2020), involves generating task specific
instructions to elicit desired behavior from language
models. These instructions can either be manually
crafted (Brown et al., 2020) or acquired through train-
ing with discrete (Gao et al., 2020; Jiang et al., 2020;
Rohrbach et al., 2017; Schick and Schütze, 2020) or
continuous vectors (Lester et al., 2021; Li and Liang,
2021). Recently, prompt learning has extended to
vision-related problems to transfer knowledge from
large-scale models to downstream tasks. Presently,
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the techniques of prompting are applied in both uni-
models, such as Vision Transformers (ViTs) trained
on images (Dosovitskiy et al., 2021), and multimodal
models like CLIP (Radford et al., 2021).

In the context of ViTs, researchers like (Jia et al.,
2022b; Bahng et al., 2022) have employed learn-
able prompts to guide pretrained vision transform-
ers (Dosovitskiy et al., 2021; Liu et al., 2021b). In
a different approach, methods such as (Zhou et al.,
2022b; Zhou et al., 2022a; Sun et al., 2022) have
introduced learnable vectors into the text encoder of
CLIP to enable transfer learning for image recogni-
tion tasks. Additional methods such as (Khattak et al.,
2023) and (Wasim et al., 2023b) employed multi-
modal prompts for image and video recognition tasks
respectively.

3 METHODOLOGY

Our work, AR-VPT, adapts the pretrained image-
based vision model for videos using a prompting
scheme in the visual space while keeping the trans-
former backbone frozen. We want to introduce recur-
rence in the original VPT architecture to perform tem-
poral learning only while keeping the spatial attention
frozen. AR-VPT allows the utilization of the existing
pretrained transformer model rather than training one
from scratch for videos.

This section presents our approach. We begin with
the architecture of the transformer model followed
by the adaptation of ViT for visual prompting in 2D
space. Basically, in this section, we explain the ar-
chitecture of VPT and then gradually build upon it to
provide a detailed explanation of our Auto-Regressive
Visual Prompt Tuning (AR-VPT) scheme.

3.1 Overview of Visual Prompt Tuning
(VPT)

Consider a video V ∈ RT×H×W×3 of spatial size H ×
W with T frames. Each frame t ∈ {1...T} is divided
into N non-overlapping patches of size P×P. Hence,
the total number of patches would be N = H ×W/P2.
Each patch of shape P×P×3 in each frame t is flat-
tened which is represented as {xt,i ∈ R3P2}N

i=1, where
t is the frame and i is the patch number. The vectors
are then projected to form token embeddings using
a linear projection layer Pemb ∈ R3P2×D where D is
the output dimension for each token. A CLS token
xcls ∈RD is always prepended to the embedded token
sequence for each frame. Hence, the final frame-level

token sequence is given as:

z(0)t = [xcls,Pembxt,1, ...,Pembxt,N ]+ e, (1)

where e represents positional encodings.
To adapt a pretrained frozen Vision Transformer

(ViT) (Dosovitskiy et al., 2021) to downstream
tasks, VPT employs trainable prompt tokens that
are prepended to the above token sequence z(0)t .
More specifically, in the VPT Deep architecture, we
prepend a few learnable prompts {M(l)

t,i }num
i=1 in each

layer l of the image encoder, where num is the number
of prompts added for frame t. Hence, the frame-level
token sequence with learnable prompts is now given
as follows:

z(0)t ,{M(0)
t,i }

num
i=1 =

[xcls + e,Pembxt,1 + e, ...,Pembxt,N + e,M(0)
t,0 , ...,M

(0)
t,num],

(2)

Note that for the VPT architecture, the prompts
for each frame are the same as the previous and sub-
sequent frames. Hence, {M(l)

0,i =M(l)
1,i = ...=M(l)

T,i}num
i=1

From the Lv layered image encoder in the ViT
model, the frame-level representation for each frame
t in VPT deep architecture is obtained as follows:

z(l)t = f (l)
θv
(z(l−1)

t ,{M(l−1)
t,i }num

i=1 ), l ∈ 1, ...,Lv, (3)

where f (l)
θv

is the l-th layer of the frozen ViT image
encoder. The final video-level representation is then
formed by averaging across all frames:

z(l) = AVGPOOL(z(l)0 ,z(l)1 ...,z(l)t ), (4)

where AVGPOOL is the aveage pooling operator.

3.2 AR-VPT Architecture

We have seen the architecture of VPT deep for video
recognition in the previous section. We will now ex-
plain the AR-VPT scheme which basically introduces
a form of auto-regression in prompts and re-uses the
prompts updated after layer l in frame t − 1 for the
layer l in the frame t of the image encoder. Hence, the
frame-level token sequence representation with learn-
able prompts for the first layer l = 0 of the first frame
t = 0 is the same as VPT Deep as follows:

z(0)0 ,{M(l)
0,i}

num
i=1 =

[xcls + e,Pembx0,1 + e, ...,Pembx0,N

+ e,M(0)
0,0 , ...,M

(0)
0,num], (5)

For layer l = 0 of frame t = 1, it would be:
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Figure 1: The AR-VPT architecture: We show for a single layer of the Frozen ViT - denoted by ( ) - of the AR-VPT
architecture. Prompts for the layer L = 0, are updated at the output of layer L = 0 for frame 0 which are then used as input for
layer L = 0 for frame 1.

z(0)1 ,{M(0)
1,i }

num
i=1 =

[xcls + e,Pembx1,1 + e, ...,Pembx1,N

+ e,M(0)
1,0 , ...,M

(0)
1,num], (6)

where {M(0)
1,i }num

i=1 are the output prompt tokens pro-
duced after the transformer layer l = 0 for frame t = 0.

Therefore, for the Lv layered video encoder, the
frame-level representation for each frame t in AR-
VPT is given as follows:

z(l)t ,{M(l)
t+1,i}

num
i=1 =

f (l)
θv
(z(l−1)

t ,{M(l−1)
t,i }num

i=1 ), l ∈ 1, ...,Lv, (7)

where f (l)
θv

is the l-th layer of the image encoder. This
is also represented in Figure 1. Similar to VPT, the
final video level representation is then formed by av-
eraging across all frames:

z(l) = AVGPOOL(z(l)0 ,z(l)1 ...,z(l)t ), (8)

where AVGPOOL is the aveage pooling operator.

4 RESULTS AND ANALYSIS

4.1 Experimental Setup and Protocols

4.1.1 Datasets

We present results for video recognition on three
datasets: UCF-101 (Soomro et al., 2012), Diving-
48 (Li et al., 2018) and Something-Something-v2

(SSv2) (Goyal et al., 2017). UCF-101, a coarse-
grained video dataset, consists of a total of 13,320
videos with 9,573 training videos and 3,783 testing
samples across 101 classes. Diving-48 consists of
18k total temporally fine-grained videos with 16k
training and 2k testing videos across 48 classes.
SSv2 is another fine-grained dataset of 220,847 la-
beled video clips with 169k training and 24.7k valida-
tion videos across 174 classes. For all three datasets,
we report the Top-1 accuracy and compare it against
the relevant baselines.

4.1.2 Training

We train our models for 15 epochs using SGD with an
initial learning rate of 0.005, which is divided by 10 at
epochs 11, and 14. During training, we first resize the
shorter side of the video to a random value in [256,
320]. We then randomly sample a 224 × 224 crop
from the resized video. We randomly sample clips
from the full-length videos with a frame rate of 1/32.
The batch size is set to 64. The momentum is set to
0.9, while the weight decay is set to 0.0001. We use a
patch size P = 16, and the number of prompts (num)
added in AR-VPT are 5.

In all our experiments, we use the “Base” ViT
model with layers L = 12 (Dosovitskiy et al., 2021).
Attention layers in each block are initialized with the
same weights.

4.1.3 Baselines

We define two baselines for this paper. The first is the
Frozen-ViT baseline. In this method, all the layers of
the standard ViT model, pretrained on ImageNet, are
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Table 1: Comparison with baseline methods on UCF-
101 (Soomro et al., 2012) dataset.

Method Top-1

Frozen-ViT (ICCV’21) 84.69
VPT-Deep (ECCV’22) 87.30

AR-VPT 88.10

Table 2: Comparison with baseline methods on Diving-
48 (Li et al., 2018) dataset.

Method Top-1

Frozen-ViT (ICLR’21) 63.8
VPT-Deep (ECCV’22) 67.5

AR-VPT 69.7

Table 3: Comparison with baseline methods on
SSv2 (Goyal et al., 2017) dataset.

Method Top-1

Frozen-ViT (ICCV’21) 15.5
VPT-Deep (ECCV’22) 16.1

AR-VPT 37.8

Table 4: Comparison with baseline methods on computa-
tional efficiency on videos with a spatial resolution of 256
× 256, temporal resolution of 8, 101 classes and batch size
of 1.

Method Trainable
Parameters (K)

FLOPs
(G)

Throughput
(FPS)

GPU
Memory

Used (GB/GPU)
Frozen-ViT
(ICLR’21) 77.6 140.65 32.87 11.61

VPT-Deep
(ECCV’22) 123.6 144.34 31.87 12.3

AR-VPT 123.6 164.84 22.21 12.3

frozen, and only a new head is trained. The second
is the VPT-Deep baseline where we add additional
trainable prompt tokens to the otherwise frozen ViT
model.

4.2 Comparison with Baselines

4.2.1 UCF-101

On the UCF-101 dataset, we report results for
AR-VPT comparing against Frozen-ViT model and
vanilla VPT-Deep in Table 1. It can be observed that
our model AR-VPT surpasses the Frozen-ViT model
and VPT-Deep model by 3.41% and 0.8% respec-
tively.

4.2.2 Diving-48

On the Diving-48 dataset, we report results for AR-
VPT comparing against the Frozen-ViT and vanilla
VPT-Deep in Table 2. Compared to Frozen-ViT and
VPT-Deep models, AR-VPT again surpasses both
these models by 5.9% and 2.2% respectively.

4.2.3 Something-Something-v2

On the SSv2 dataset, we again report results for
AR-VPT comparing against Frozen-ViT and VPT-
Deep model in Table 3. On this temporally chal-
lenging dataset, our model surpasses both Frozen-ViT
and VPT-Deep models by a significant difference of
22.3% and 21.7% respectively. This shows that our
model is able to learn sophisticated long-range tem-
poral dependencies effectively.

The reason why AR-VPT is performing signifi-
cantly better than the baselines on SSv2 is because
there is no temporal modelling in the baselines which
leads to their comparatively poorer performance on
temporally fine-grained datasets such as SSv2. How-
ever, we perform explicit temporal modelling in AR-
VPT via the recurrence of the prompts which enables
our architecture to perform better on fine-grained
video datasets.

4.2.4 Computational Efficiency Comparison

We evaluate each of the method on various compu-
tational efficiency metrics including No. of learnable
parameters, GFLOPs, Throughput, and Average GPU
Mem. Used, and report results in Table 4 to provide
a fair and transparent comparison between the mod-
els. Each of the efficiency metric was calculated with
the batch size of 1, except for GPU Mem. Used (it
was calculated with batch size of 64 while training).
Throughput was calculated with batch size of 1 and
averaged over 30 times on NVIDIA® TITAN RTX™
(24 GB/GPU). It can be observed that the number
of learnable parameters are identical for VPT-Deep
and AR-VPT, which is a unique feature of our model
as we extended the Vanilla VPT to perform tempo-
ral modelling, yet there is no increase in the num-
ber of learnable parameters. However, increase in
GFLOPs and less Throughput can be observed in AR-
VPT which can be attributed to the regressive nature
of the model. In terms of GPU memory used, there
is no significant difference in the performance of the
models which again shows the architectural superi-
ority of AR-VPT when we take its performance into
account.
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5 CONCLUSIONS

This paper presents a method to perform temporal
modeling effectively and efficiently for video recog-
nition tasks. This architecture, AR-VPT, is an exten-
sion of the original VPT architecture and adapts the
prompt-tuning technique in visual space to perform
temporal feature learning. We demonstrate that our
model is able to effectively learn long-range depen-
dencies in the spatiotemporal dimension via the eval-
uation on both coarse and fine-grained video datasets.
This method shows how effective a simple prompt-
ing mechanism can be when incorporating informa-
tion sharing across frames auto-regressively.
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