
Out of the Cage: How Stochastic Parrots Win in Cyber Security
Environments

Maria Rigaki1 a, Ondřej Lukáš1 b, Carlos Catania2 c and Sebastian Garcia1 d

1Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
2National Scientific and Technical Research Council (CONICET), Argentina

Keywords: Reinforcement Learning, Security Games, Large Language Models.

Abstract: Large Language Models (LLMs) have gained widespread popularity across diverse domains involving text
generation, summarization, and various natural language processing tasks. Despite their inherent limitations,
LLM-based designs have shown promising capabilities in planning and navigating open-world scenarios. This
paper introduces a novel application of pre-trained LLMs as agents within cybersecurity network environ-
ments, focusing on their utility for sequential decision-making processes. We present an approach wherein
pre-trained LLMs are leveraged as attacking agents in two reinforcement learning environments. Our pro-
posed agents demonstrate similar or better performance against state-of-the-art agents trained for thousands of
episodes in most scenarios and configurations. In addition, the best LLM agents perform similarly to human
testers of the environment without any additional training process. This design highlights the potential of
LLMs to address complex decision-making tasks within cybersecurity efficiently. Furthermore, we introduce
a new network security environment named NetSecGame. The environment is designed to support complex
multi-agent scenarios within the network security domain eventually. The proposed environment mimics real
network attacks and is designed to be highly modular and adaptable for various scenarios.

1 INTRODUCTION

From text generation to summarization, LLMs have
exhibited an exceptional capacity to replicate human-
like linguistic capabilities. However, their potential
extends beyond these conventional applications. Re-
cently, LLMs have demonstrated planning and open-
world exploration abilities, hinting at their potential
to extend their original boundaries (Park et al., 2023).

One such domain where these emerging capabil-
ities hold significant promise is cybersecurity. Au-
tomation of network security testing (penetration test-
ing) has been part of the research agenda in the past,
mainly centered around reinforcement learning (RL)
agents and environments. Fusing LLMs with sequen-
tial decision-making processes introduces an interest-
ing new exploration avenue.

This paper delves into the intersection of LLMs,
cybersecurity, and sequential decision-making. We

a https://orcid.org/0000-0002-0688-7752
b https://orcid.org/0000-0002-7922-8301
c https://orcid.org/0000-0002-1749-310X
d https://orcid.org/0000-0001-6238-9910

present a novel approach that uses pre-trained LLMs
as agents within cybersecurity environments. By in-
troducing LLM agents, we seek to explore whether
these models can not only match but potentially out-
perform conventional RL agents in network security
scenarios. To evaluate the effectiveness of our pro-
posed approach, we tested it in two different secu-
rity environments: Microsoft’s CyberBattleSim (Mi-
crosoft, 2021) and our new network security environ-
ment named NetSecGame. In addition to the compar-
ison with other RL-based agents, we performed ex-
periments to select the best agent design and the best-
performing pre-trained LLM.

Experiments showed that pre-trained LLM agents
can succeed in different scenarios with win rates of
100% when there is no defender present and 50%
when a defender is present in the most challenging
scenario (80% win rate in the easier scenario). When
comparing pre-trained LLMs, we found that GPT-
4 (OpenAI, 2023) outperforms GPT-3.5-turbo signif-
icantly. The main contributions of the paper are:

• The use of pre-trained LLM agents designed for
network cybersecurity scenarios. The agent’s per-
formance is comparable to or better than rein-

774
Rigaki, M., Lukáš, O., Catania, C. and Garcia, S.
Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments.
DOI: 10.5220/0012391800003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 774-781
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

forcement learning agents that require thousands
of training episodes.

• A new network security RL modular environ-
ment, called NetSecGame, that implements real-
istic conditions, including a defender.

2 RELATED WORK

2.1 LLMs for Planning and
Reinforcement Learning

Pre-trained LLMs face challenges in long-term plan-
ning, occasionally leading to irrelevant or unhelpful
actions. However, frameworks such as ReAct (Yao
et al., 2023), Reflexion (Shinn et al., 2023), and
DEPS (Wang et al., 2023b) demonstrated that LLM
agents can become better planners through reasoning
and self-reflection. ReAct (Yao et al., 2023) com-
bines reasoning with action and excels in question-
answering tasks that demand multiple logical steps.
Reflexion (Shinn et al., 2023) introduces a sequential
decision-making framework that incorporates self-
reflection and evaluation components to assess the
quality of actions the agent takes and short-term and
long-term memory. In this work, we used the ReAct
agent architecture in the NetSecGame environment
(4.2) which provided good results while retaining
speed and simplicity compared to other frameworks
such as Reflexion and DEPS. In non-security envi-
ronments, LLM agents have showcased exploratory
capabilities (Wang et al., 2023a; Du et al., 2023;
Wu et al., 2023) in gaming environments such as
Minecraft and Crafter. While these environments re-
quire a series of actions to reach a goal, they are not
adversarial, at least in the current studies.

2.2 Cybersecurity Reinforcement
Learning Environments

Currently, there exist several environments for train-
ing and testing agents in network-based cybersecurity
scenarios using RL principles (Elderman et al., 2017;
Hammar and Stadler, 2020; Microsoft, 2021; Standen
et al., 2021; Andrew et al., 2022; Janisch et al., 2023).
One of the main issues with prior work is that the au-
thors of each environment make different decisions
about network behavior and goals, the presence of a
defender or not, and how rewards are counted. Even
though these decisions are essential to determine if
an agent can be used in a real network, most en-
vironments do not discuss or justify them in detail.
Regarding scalability, most environments support the

OpenAI Gym (Brockman et al., 2016) API, enabling
off-the-shelf RL libraries and algorithms to train the
agents. However, these environments mostly rely on
naive vectorization of the state space using adjacency
matrices plus additional feature vectors to hold in-
formation about services, versions, and possible ex-
ploits for each service. Given the amount of hosts,
the services that are running within an entreprise en-
vironment, their respective versions, and the applica-
ble exploits, can lead to a combinatorial explosion of
the state vector’s dimensionality. We believe that the
state and action representation of cyber security en-
vironments in a large scale is not a currently solved
problem.

3 NetSecGame

NetSecGame, our innovative simulated network se-
curity environment for training and testing attack and
defense strategy agents, is accessible through a pub-
lic repository 1. Distinguished from previous work,
it aligns more closely with actual attacks by offering
modularity for easy topology extension, restricting
agent information to what an actual attacker would
receive, employing a realistic goal of exfiltrating data
to the Internet, introducing a defender, and utiliz-
ing generic, non-engineered rewards. Following a
reinforcement learning model, agents interact with
NetSecGame through a Python API, engaging in ac-
tions and receiving new states, rewards, and end-
of-game signals. The environment’s configurabil-
ity spans diverse network topologies, encompassing
hosts, routers, services, and data. NetSecGame en-
capsulates six main components: (i) configuration,
(ii) action space, (iii) state space, (iv) reward, (v) goal,
and (vi) defensive agent, aiming to provide a realistic
yet high-level depiction of network security attacks.

3.1 Configuration of NetSecGame

NetSecGame uses two configuration files—one for
defining the network topology and another for defin-
ing the behavior of the environment.

The network topology configuration uses a con-
figuration file from the CYST simulation environ-
ment (Drašar et al., 2020). CYST was used since
it is a flexible simulation engine based on network
events. Different configuration files for the topol-
ogy define different ’scenarios’ as described in Sub-
section 3.1. The network topology configuration file
defines Clients, Servers, Services, and Data.

1https://github.com/stratosphereips/NetSecGame/

Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments

775

The second configuration file determines the ini-
tial placement of the agent, as well as if a defender is
present or not, the specific scenario used, the maxi-
mum amount of actions allowed (steps), and for each
action, the probability of success and the probability
of detection (if there is a defender present).

NetSecGame includes the option to have a de-
fender in the environment that represents the concept
of a security operations team that has visibility of the
whole network. The agent is called StochasticDefend-
erWithThreshold and detects repeated actions using a
probabilistic approach combined with various thresh-
olds per action type and time interval.

Network Scenarios. NetSecGame offers three pre-
defined network scenarios of increasing complexity,
each differing in the number of clients, servers, ser-
vices, and data. However, its extensibility allows easy
customization. The attacker’s goal in each scenario is
defined as a specific state, with victory achieved upon
reaching that state undetected. This goal-setting en-
ables users to define diverse objectives; for instance,
discovering a particular service becomes a winning
state when linked to a host. NetSecGame’s flexibil-
ity allows randomizing network elements such as IP
addresses and data positions, and, crucially, random-
izing the goal per episode. This feature is essential for
both human players and agents, preventing the estab-
lishment of repetitive patterns in human gameplay and
testing the adaptability of agents to diverse scenarios.
In simulated environments, where real attackers may
attack only once on the same network, randomization
ensures a fair and dynamic gaming experience.

State Representation. NetSecGame represents
states as a collection of assets known to the attacker:
known networks, known hosts, controlled hosts,
known services, and known data. Note that the agent
can compute all this data, and the environment only
facilitates it. There is no extra help in understanding
the environment. After each action, the agent receives
a new state of the environment. This design is based
on the fact that the attackers often have limited
knowledge about the network and gradually discover
it throughout interactions.

Action Representation. Currently, NetSecGame
only supports attacker agents and actions (the de-
fender is not an agent). Actions define the transition
between states. There are five types of actions avail-
able, each with parameters: ScanNetwork, FindSer-
vices, ExploitService, FindData, and ExfiltrateData.
The list of valid actions is never sent. The agents de-
termine which valid actions based on the current state.

Reward Function. The reward function in Net-
SecGame consists of three non-exclusive parts. First,
there is a reward of -1 for taking any step in the en-
vironment. Second, the reward for reaching the goal,
which results in the termination of the episode, is 100.
Last, when the defender detects the agent, which also
terminates the episode, it is awarded with -50. No re-
wards are given for intermediate states.

Differences with Existing Security Environments.
The main differences between NetSecGame and other
environments are the design based on real attacks and
to run the agents in real networks in the future. In
particular:

• The network topologies represent small to
medium organizations. Clients and servers are in
separate networks, with one connection to the In-
ternet.

• The parameters for each action are not sent to the
agent. The basic actions are known, but the ac-
tion space is not sent to the agents. NetSecGame
is then incompatible with the Gym environment,
but it is more representative of what an attacker
knows. Other environments send to the agent the
complete set of valid actions.

• The goal of NetSecGame is to exfiltrate data as an
APT attack. Other environments’ goals are ’con-
trolling more than half the network’, which is not
representative of real attackers.

• NetSecGame has an internal defender that detects,
blocks, and terminates the game.

4 LLM AGENTS FOR NetSecGame

LLM agents are similar to other RL agents in their in-
teraction with the environment. At time t, the agent
receives the state st and the reward rt , processes the
state and proposes a new action at+1. The main dif-
ferences between LLM and traditional agents are that
they use a textual representation of the state and that
they do not learn a policy. They select actions based
on the knowledge accumulated during training and by
using prompt techniques such as ”one-shot” learning.

4.1 Single-Prompt Agents

These agents have a single prompt and a simple mem-
ory. The prompt had multiple elements, such as sys-
tem instructions and rules, a list of previous actions
(memory), a text representation of the state st , a ”one-
shot” example of each action, and the text query ask-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

776

Figure 1: The ReAct agent prompt structure and workflow.

ing for the next action. Detailed prompts can be found
in the public repository.

4.1.1 Temperature Variant

The temperature variant of the single-prompt agent
uses three memory strategies to prevent repetitions.
These include maintaining a list of the last k non-
repeated actions (memory-a), a list of repeated actions
(memory-b) with counts, and presenting the previ-
ous action separately in the prompt (memory-c). The
temperature variant prompt includes initial system in-
structions, rules, the last k non-repeated actions, re-
peated actions, the current state st , an example of
each action, the last action taken (memory-c), and a
query to select the best action. For certain pre-trained
LLMs, the memory strategy alone may not prevent ac-
tion repetition. To address this, the agent adjusts the
LLM’s temperature parameter based on the number
of repeated actions in the last k actions. This pushes
the LLM to generate more diverse outputs.

4.2 ReAct Agent

The ReAct design is used for NetSecGame in two
stages. First, the agent asks the LLM to reason about
the environment’s state; second, the LLM is asked to
select the best action. Figure 1 shows the prompts’
structure and workflow. The first stage has:

1. Instructions and rules about the environment.

2. A textual representation of the state st .

3. A query to evaluate the status and the possible ac-
tions (Q1 prompt):

List the objects in the current status and
the actions they can be used. Be specific.

The second stage has:
1. Instructions and rules about the environment.
2. A textual representation of the state st .
3. One example for each possible action.
4. The response to the first stage prompt.
5. A list of the last k actions (memory)
6. A query to select the best possible action (Q2

prompt):

Provide the best action and its parameters
in the correct JSON format. Action:

If the processed response in the proposed action
at is valid, it is sent to the environment. The action
and its validity are stored in the memory, along with
an indication of usefulness. Since the environment of-
fers sparse rewards, an action is labeled useful if the
environment’s new state st+1 differs from the previ-
ous one. This is a form of agent’s intrinsic reward.
The new state st+1 is used to construct the prompts
for the next step. The process continues until either
the goal is reached, the maximum steps are reached,
or the agent is detected. Examples of the full prompts
are presented in the public repository.

5 LLM AGENT FOR
CyberBattleSim

The LLM agent designed for the CyberBattleSim en-
vironment follows a single-prompt approach, as de-
tailed in Section 4.1, with modifications to the prompt
component order. Due to a distinct goal and action
space in the chain scenario, the agent necessitates dif-
ferent instructions and rules. In initial experiments,
an issue arose where the agent would stop searching
after discovering all nodes except the last one. To ad-
dress this, we introduced a prompt that tricks the LLM
into perceiving more than 20 hosts in the network.

You are a competent pentester. There are
more than 20 computers in the network.
Your goal is to discover and own
all of the computers.

The final prompt consists of the following five
components: the initial system instructions, a ”one-
shot” example of each action, a list of the last k ac-
tions (memory), a textual representation of the state

Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments

777

Figure 2: Setup of both NetSecGame topology versions:
small scenario with the blue parts and full scenario in green.

st , the rules of the game, and the query for select-
ing the next action. Since the single-prompt approach
performed well in our experiments (Section 7.4), we
decided not to design and test a ReAct LLM agent.

6 EXPERIMENTAL SETUP

6.1 NetSecGame Configuration

Figure 2 shows the two scenarios we used in Net-
SecGame (”small” and ”full”). The ”small” scenario
has five servers, one client in a separate network, a
main router connecting both networks, and an Inter-
net router providing access to an external C&C host
for data exfiltration. The servers have one or two ser-
vices each, while the clients have one. Data quantities
on servers vary from three to zero. The ”full” scenario
mirrors the small one but includes five clients.

In all experiments, the goal was to exfiltrate spe-
cific data to the C&C server. Success requires the at-
tacker to discover hosts and services, exploit services,
locate data, and transmit them to the correct server.
The LLM agents operated in dynamically config-
ured environments with randomized networks, IP ad-
dresses, and data locations. The smaller scenario was
designed for testing strategies, while both were used
to compare the best LLM agent against baselines,
with and without a defender. All LLM agents exper-
iments were repeated 30 times with max steps = 30,
then 60, and 100. Each episode is independent.

Figure 3: Network topology of the chain scenario in Cyber-
BattleSim solved with the minimum amount of actions.

6.1.1 Baselines

For the baseline comparisons, we selected a random
agent, a random agent with a no-repeat heuristic,
and a tabular Q-learning agent (Watkins and Dayan,
1992). We ran five trials for each baseline, averaging
results. The Q-learning agent was trained for 50,000
episodes in all scenarios while the random agent ex-
periments were run for 2,000 episodes.

6.2 CyberBattleSim Environment

CyberbattleSim provides three scenarios, and we
chose the ”chain” scenario (Figure 3) with ten nodes
due to its complexity and distinct goals compared
to NetSecGame. Agents must traverse ten nodes to
reach the final host, using local or remote attacks, in-
cluding a ”connect and infect” action. Positive re-
wards are given for owning a new host, discovering
credentials, and reaching the final host. Negative re-
wards penalize repeated attacks, failed exploits, and
invalid actions. CyberBattleSim features an ”interac-
tive mode” for human or Python program interaction,
used by the LLM agent. Our tests found discrepan-
cies between the interactive mode and the Gym imple-
mentation, where the negative rewards were removed
from the Gym environment. This allows Gym agents
to perform actions without costs. We decided to keep
the negative rewards in all environments.

6.2.1 Baselines

The baseline agents for the CyberbattleSim tests were
a random agent, a random agent with a heuristic
that greedily exploits any credentials found, and a
Deep Q-learning Network (DQN) agent (Mnih et al.,
2013). All agents used 100 max iterations per training
episode. The DQN agent was trained for 50 training
episodes. All agents were evaluated in 10 episodes.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

778

Table 1: Average win rates and returns of all LLM agents
in the small scenario (randomized target) with 60 max steps
and 30 episodes. The asterisk indicates that some episodes
were not computed due to issues with the OpenAI API.

GPT-3.5 turbo GPT-4
Agent Win Rate Return Win Rate Return

S-Prompt 0.0% -100.0 100.0%* 78.4
S-Prompt(T) 26.67% -24.8 43.33% 3.0
ReAct 33.33% -13.3 100.0% 83.1

7 RESULTS

7.1 LLM Agents Comparison

Table 1 shows the win rates (wonepisodes
#episodes) and returns

for the single-prompt and ReAct agents using both
GPT-3.5-turbo and GPT-4 in the small NetSecGame
scenario without a defender. The single-prompt GPT-
4 agent was stopped in two of the 30 runs due to the
OpenAI API’s rate limitations. This happened before
the expiration of the 60 max steps, which means that
the agent may have had a slightly lower win rate.

There is a large difference between GPT-4 and
GPT-3.5-turbo since the latter repeats actions. An
agent with variable temperature was created to solve
this problem, improving from 0 to 26% win rate.
However, the design did not work well with GPT-
4. The ReAct architecture works well with GPT-4,
and it improves the GPT-3.5-turbo win rate from 0 to
33%. The ReAct agent is more stable than the Single-
Prompt agent, requiring fewer steps on average in an
episode. Therefore, it was used for the subsequent
experiments.

7.2 NetSecGame Small Scenario

The win rates of the baselines and the ReAct agent
in the small scenario with and without a defender are
presented in Figure 4. The figures show the results
in different max steps settings. Without a defender,
the ReAct agent wins 100% of the time in the 60 and
100 max steps setting and outperforms the baselines.
When the max steps are limited to 30, it wins 80%
of the time, which is still the best performance. The
random agent with the no-repeat heuristic shows that,
given enough steps, it eventually wins.

Table 2 shows the average returns and detection
rates on the small scenario with 60 max steps. The
average returns show a similar view as the win rates.
The lowest detection rate is reported by the ran-
dom no-repeat agent (15.81%), with the ReAct agent
closely following at 16.67%

7.2.1 Human Performance

We also conducted tests with eight human experts
playing the game in interactive mode, resulting in
22 sessions. Despite the informal evaluation, it gave
insights into the performance of agents. Without a
defender, humans solved the small environment in
an average of 17.68 moves and an average return of
82.32, comparable to the ReAct agent’s performance.
Humans found patterns in the environment, such as a
relevant subnet, leading to more efficient solutions.

7.3 NetSecGame Full Scenario

Figure 4 shows win rates in the full scenario with and
without a defender for different max steps. Without
a defender, the ReAct agent wins 100% of the time
using 60 and 100 max steps. With a defender, the Q-
learning agent has the best performance, and it seems
that the detections helped the agent learn a good pol-
icy. This highlights that learning from the past can
prevent ”bad” behaviors.

The ReAct agent has a winning rate of 50% for
max steps >= 60 and positive returns. (Table 3).
None of the prompts has instructions to avoid the
defender. The ReAct agent sometimes follows a
breadth-first approach, scanning hosts for services,
which can trigger the defender.

7.4 CyberBattleSim Chain Scenario

Table 4 presents results for win rate, return, and
episode steps for agents in the ”chain” scenario (av-
erages over ten runs). The LLM agent with GPT-4
and a simple ”one-shot” prompt won all runs with
few steps. The DQN baseline also won all trials. The
random agents won only if the number of maximum
steps was higher than 1,000, while the LLM and DQN
agents performed well with 100 steps.

A ”quirk” of the ”chain” scenario is that the mini-
mum number of steps to solve the game is 22 (return
of 6,154). However, agents can score higher by per-
forming ’unnecessary’ actions with a positive reward.

8 LIMITATIONS AND FUTURE
WORK

We discovered several limitations during the design
and experimentation of LLMs as agents. GPT-3.5 hal-
lucinated, proposing actions with unknown objects.
Additionally, it repeated invalid actions in a verbose
manner and deviated from the format. The cost of us-
ing the GPT-4 API was substantially higher, being 30

Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments

779

(a) No defender. (b) With stochastic-threshold defender.
Figure 4: For the NetSecGame small scenario, win rates for different numbers of max steps.

Table 2: NetSecGame small scenario: average win rates, returns, and detection rates of all agents with random target per
episode. With a maximum of 60 max steps per episode and 30 episodes of repetition in LLM-based agents.

No Defender Defender
Agent Win Rate Return Win Rate Return Detection Rate

Random 13.21% -37.18 2.99% -64.30 18.68%
Random (no-repeat) 54.76% 8.47 16.28% -43.49 15.81%
Q-learning 67.41% 47.55 77.96% 54.91 16.28%
ReAct 100.0% 83.10 83.33% 58.83 16.67%

(a) No defender. (b) With stochastic-threshold defender.
Figure 5: For the NetSecGame full scenario, win rates in different numbers of max steps.

Table 3: Avg returns and detection rates of agents in the full scenario with random target per episode. With 60 max steps per
episode and 30 episodes of repetition in LLM-based agents.

No Defender Defender
Agent Win Rate Return Win Rate Return Detection Rate

Random 19.43% -44.46 2.18% 65.11 93.95%
Random (no-repeat) 41.32% -9.19 9.63% -52.96 83.63%
Q-learning 58.74% 48.0 71.0% 45.38 24.58%
ReAct 100.0% 77.13 50.0% 8.20 43.33%

Table 4: Average win rate, return, and episode steps of all
agents in the chain scenario of CyberBattleSim.

Agent Win Rate Return Episode steps

Random 0.0% -726.98 100.0
Random (cred.) 0.0% -998.25 100.0
DQN 100.0% 6154.2 22.3
LLM 100.0% 6160.7 31.0

times more expensive than GPT-3.5. GPT-4 is cur-
rently the only model capable of handling multiple

scenarios without fine-tuning. Open-source models
will be fine-tuned next.

The instability and evolution of commercial mod-
els made it hard to reproduce results. The art-like
nature of prompt creation is challenging, as small
changes impact model behavior, making evaluation
complex. Current agents do not learn from past
episodes, a feature to incorporate later. For Net-
SecGame, future work includes adding a trainable de-
fender and adding multi-agent capabilities.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

780

9 CONCLUSIONS

This work designed agents with pre-trained LLMs to
solve cybersecurity environments. The LLM agents
solved two security environments without additional
training steps and without learning between episodes,
differing from traditional RL agents that require tens
of thousands of training episodes.

Pre-trained LLMs have limitations and costs, in-
cluding shortcomings in reproducing the results of
black-box commercial models. However, there is po-
tential in using LLMs for high-level planning of au-
tonomous cybersecurity agents. Future work will fo-
cus on more complex scenarios and environments.

NetSecGame is designed to be realistic while pro-
viding a high-level interaction API for agents. It im-
plements a modular configuration for topologies, a
goal definition, and a reward system without leaking
information to the agents. It also implements a de-
fender for the testing of agents in adversarial settings.

ACKNOWLEDGMENTS

The authors acknowledge support by the Strategic
Support for the Development of Security Research
in the Czech Republic 2019–2025 (IMPAKT 1) pro-
gram, by the Ministry of the Interior of the Czech
Republic under No. VJ02010020 – AI-Dojo: Multi-
agent testbed for the research and testing of AI-driven
cyber security technologies.

REFERENCES

Andrew, A., Spillard, S., Collyer, J., and Dhir, N. (2022).
Developing Optimal Causal Cyber-Defence Agents
via Cyber Security Simulation. arXiv:2207.12355.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nAI Gym. arXiv:1606.01540 [cs].

Drašar, M., Moskal, S., Yang, S., and Zat’ko, P. (2020).
Session-level Adversary Intent-Driven Cyberattack
Simulator. In 2020 IEEE/ACM 24th International
Symposium on Distributed Simulation and Real Time
Applications (DS-RT), pages 1–9. ISSN: 1550-6525.

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T.,
Abbeel, P., Gupta, A., and Andreas, J. (2023). Guid-
ing Pretraining in Reinforcement Learning with Large
Language Models. In Proceedings of the 40th Inter-
national Conference on Machine Learning, Honolulu,
USA.

Elderman, R., J. J. Pater, L., S. Thie, A., M. Drugan, M., and
M. Wiering, M. (2017). Adversarial Reinforcement
Learning in a Cyber Security Simulation:. In Proceed-
ings of the 9th International Conference on Agents

and Artificial Intelligence, pages 559–566, Porto, Por-
tugal. SCITEPRESS.

Hammar, K. and Stadler, R. (2020). Finding Effective Se-
curity Strategies through Reinforcement Learning and
Self-Play. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–
9. ISSN: 2165-963X.

Janisch, J., Pevný, T., and Lisý, V. (2023). NASimEmu:
Network Attack Simulator & Emulator for Train-
ing Agents Generalizing to Novel Scenarios.
arXiv:2305.17246.

Microsoft (2021). CyberBattleSim. Microsoft Defender
Reasearch Team.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing Atari with Deep Reinforcement
Learning. arXiv:1312.5602 [cs].

OpenAI (2023). GPT-4 Technical Report.
arXiv:2303.08774 [cs].

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R.,
Liang, P., and Bernstein, M. S. (2023). Generative
Agents: Interactive Simulacra of Human Behavior.
arXiv:2304.03442 [cs].

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. (2023). Reflexion: Lan-
guage Agents with Verbal Reinforcement Learning.
arXiv:2303.11366 [cs].

Standen, M., Lucas, M., Bowman, D., Richer, T. J., Kim,
J., and Marriott, D. (2021). CybORG: A Gym
for the Development of Autonomous Cyber Agents.
arXiv:2108.09118.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. (2023a). Voyager:
An Open-Ended Embodied Agent with Large Lan-
guage Models. arXiv:2305.16291 [cs].

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. (2023b).
Describe, Explain, Plan and Select: Interactive Plan-
ning with Large Language Models Enables Open-
World Multi-Task Agents. arXiv:2302.01560 [cs].

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8(3):279–292.

Wu, Y., Min, S. Y., Prabhumoye, S., Bisk, Y., Salakhutdi-
nov, R., Azaria, A., Mitchell, T., and Li, Y. (2023).
SPRING: GPT-4 Out-performs RL Algorithms by
Studying Papers and Reasoning. arXiv:2305.15486.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2023). ReAct: Synergiz-
ing Reasoning and Acting in Language Models.
arXiv:2210.03629 [cs].

Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments

781

