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Abstract: Clinical notes in Electronic Health Records (EHRs) contain large amounts of nuanced information. Healthcare 
professionals, e.g., clinicians, routinely review numerous EHR notes, further burdening their busy schedules. 
To capture the essential content of a note, they often quickly review its content, which can contribute to 
missing critical clinical information.  Highlighting important content of EHRs enable clinicians to fast skim 
by reading only the highlighted words. Furthermore, effective highlighting of EHRs will support new research 
and interoperability. In this paper, we design a Cardiology Interface Terminology (CIT) dedicated for the 
application of highlighting cardiology EHRs to support their fast skimming. Once successful, Transfer 
Learning can be used to design an interface terminology for other specialties. In EHRs, we observe phrases 
of fine granularity containing SNOMED CT concepts. In our previous work, we extract such phrases from 
EHR notes to be considered as CIT concepts. This early CIT serves as training data for Machine Learning 
(ML) techniques, further enriching CIT and improving EHR highlighting. We describe the methodology and 
results of curating CIT with ML techniques. Furthermore, we introduce the coverage and breadth metrics for 
measuring the efficacy of highlighting EHRs, and discuss future improvements, enhancing the coverage of 
highlighted important content.  

1 INTRODUCTION 

Clinical notes in Electronic Health Records (EHRs) 
contain large amounts of nuanced information that is 
not captured by problem lists (Agrawal et al., 2013; 
Elkin et al., 2006) . Healthcare professionals, 
particularly physicians and nurses, are routinely 
engaged in reviewing numerous EHR notes, further 
burdening their busy schedules (Apathy et al., 2023; 
Dymek et al., 2021). For brevity, we will refer only to 
clinicians instead of Healthcare professionals. In their 
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quest for capturing most essential content, they do not 
read a whole note, but often quickly review its content 
(Cui et al., 2022; Yada & Aramaki, 2023). Such 
cursory review, without studying it in detail, can 
contribute to missing critical clinical information, 
leading to improper or risky treatment. The 
prevalence of quick reviewing is higher for 
overworked healthcare workers such as interns and 
nurses.  

Highlighting facts and important content of an 
EHR note enables clinicians to fast skim EHRs, by 
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reading only the highlighted words, since it draws 
attention to the essential information of the note. 
When a clinician skims only the highlighted text, time 
is saved by concentrating attention on the important 
content. Reading only a highlighted portion of a 
larger text also saves the implicit mental effort for 
selecting the essential parts to read. Currently, 
unstructured EHRs are not highlighted. Clinical notes 
in the broad medical domain and its specialties, such 
as cardiology, are generally entered as free text using 
a complex and nuanced medical dialect, including 
localized and even personalized syntax, expressions, 
and acronyms. This complexity is rarely captured by 
terminologies such as the popular SNOMED CT 
(SNOMED-CT, 2021) (SCT) clinical terminology. 
Figure 1 shows an example of highlighting with SCT 
concepts, which captures only part of the  important 
content. 

In addition to fast skimming, effective 
highlighting of cardiology EHR notes will enable new 
research and interoperability. For example, “severe 
fluid retention (edema)” is not listed as adverse effect 
of Tacrolimus, an anti-rejection drug. Out of more 
than 72,000 adverse events reported in the FDA’s 
FAERS (Dashboard.) repository about Tacrolimus, 
only 135 are relate to edema. Hypothesizing that this 
is an under-reported adverse event, this association 
may be missed, since edema is not likely to be 
recorded in the structured EHR, especially because it 
is not relevant to billing. However, the highlighting 
of clinical notes of post-transplant patients who were 
prescribed Tacrolimus, can enable research into 
identifying the terms that might be used to describe 
 

 
Figure 1: An excerpt of a MIMIC III EHR note highlighted 
by SNOMED. 

edema in various forms, and also establish the 
association with the offending medication(s). 

Since highlighting with the best reference clinical 
terminology, SCT, does not provide sufficient 
highlighting of EHRs, as demonstrated in Figure 1, 
we propose to design an interface terminology 
dedicated for highlighting.  An interface terminology 
is, by definition, designed to maximize utilization of 
a specific application by end users, including 
software applications(Jonquet et al., 2009). We select 
the domain of Cardiology to illustrate our technique, 
by curating the Cardiology Interface Terminology 
(CIT) for highlighting of EHRs of cardiology patients 
(cardiology EHRs). CIT will initially contain the 
Cardiology Component of SNOMED (CCS). We 
observe that EHRs contain phrases of finer 
granularity than SCT concepts, and such phrases 
could provide insights if highlighted in fast 
skimming. Therefore, we include such phrases as 
concepts in CIT by introducing a Machine Learning 
(ML) technique to automatically mine EHRs for fine 
granularity phrases not-currently-recognized as 
concepts to enrich CIT, since the best source for 
concepts to highlight EHRs are the notes themselves. 

Training ML models requires high quality 
training data. Manual mining of EHRs for additional 
CIT concepts, which will serve for preparing training 
data, is expensive and time consuming. We observe 
that high granularity phrases found in EHRs typically 
contain shorter SCT concepts.  In (Koohi H. Dehkordi 
et al., 2023), we leveraged this observation to develop 
an initial version of CIT utilizing a semi-automatic 
mining method, which serves as the training data for 
this study. Earlier versions of such research about 
EHRs of Covid patients were described in (Keloth et 
al., 2021; Keloth et al., 2020). 

A concept classification ML method was trained 
with phrases accepted (concepts) in Phase 1 as 
positive samples, and phrases rejected (non-concepts) 
as negative samples. The CIT yielding from this 
process presumably captures some of the important 
aspects of an EHR note needed for fast skimming and 
research of EHRs. After validating with cardiology 
domain, Transfer Learning (Francis et al., 2019; 
Giorgi & Bader, 2018; Sun & Yang, 2019; Weiss et 
al., 2016) can be used for curating interface 
terminologies for highlighting EHRs in other 
specialties, e.g., pulmonology. 

Our research hypothesis, based on a review of 
many highlighted EHRs, is that an average 
highlighting coverage of about 75% captures almost 
all important information of EHR notes. Such 
coverage could be obtained after the ML-based Phase 
2 adds to CIT the concepts that were missed in Phase 
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1. A trained ML classifier is used to identify extracted 
concepts from build dataset B, which will be added to 
CIT to obtain CITML. A ML classifier method was 
trained with CIT concepts of Phase 1 as positive 
samples, and phrases rejected as negative samples. 
Phrases classified as CIT concepts by the ML 
classifier presumably will capture most of the 
important aspects of an EHR note needed for fast 
skimming and research of EHRs. 

2 METHODS 

In this section, we describe Phase 2 of the curation of 
the Cardiology Interface Terminology (CIT) for the 
highlighting of Cardiology EHRs. Phase 2 
concentrates on enriching CIT using ML techniques.  
Phase 1, described in Background Section, resulted in 
a training dataset for Phase 2, encompassing a) The 
Cardiology Interface Terminology (CIT) as positive 
samples, b) The reject list R which includes rejected 
phrases that either violated our predefined rules or 
failed in manual review, as negative samples. The 
phrases of the training dataset were embedded 
(Kusner et al., 2015) using Clinical BioBERT. 

We trained a Neural Network (NN) model to 
classify phrases based on positive and negative 
samples. For a newly extracted phrase from EHRs, 
we generated word embeddings (Kusner et al., 2015) 
using Clinical BioBERT, and then employed the 
trained NN model to classify whether this phrase fits 
as a concept of CIT or not. The phrases that were 
assigned a label “1” (positive instances) were added 
to CIT, forming CITML. This new terminology was 
then used to highlight the dataset B. We further 
enriched CITML with concepts of SNOMED that did 
not appear in CITML, using a DIFF operation, yielding 
CITML+. CITML+ is then used to highlight the test 
dataset T. We evaluated the efficacy of the proposed 
process by calculating coverage and breadth metrics 
for both highlighted datasets B and T. A flowchart 
describing the components of Phase 2 is displayed in 
Figure 2. Section headers, in red, are added manually 
to improve readability of an EHR note. This is a 
general description for orientation of the flowchart. 
The internal steps within Phase 2 are described as 
follows. 

We define two performance metrics: Coverage, 
as the percentage of words being highlighted (using 
(1)). Assuming that the CIT concepts reflect 
meaningful phrases in EHRs, the coverage is 
typically correlated with the extent the highlighting 
captures the important content of the note. Breadth, 
is the average number of words per highlighted 

concept (using (2)). For example, for the highlighted 
note shown in Figure 1, the coverage is 35% and the 
breadth is 1.21. Note that using high granularity 
concepts, rather than SCT concepts, increases 
breadth. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = # 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠# 𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑠  ×  100 (1)

𝐵𝑟𝑒𝑎𝑑𝑡ℎ = # 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑤𝑜𝑟𝑑𝑠# 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 (2)

2.1 Training Ml Model 

Embedding the training dataset using Clinical 
BioBERT: We employed word tokenization (Huang 
et al., 2007) on the phrases of the training dataset to 
generate input sequences with a maximum length of 
16 tokens.  
There are several pretrained language models such as 
BERT(Devlin et al., 2018) , BioBERT(Lee et al., 
2020), RoBERTa(Liu et al., 2019), ALBERT(Lan et 
al., 2019), and Clinical BioBERT(Alsentzer et al., 
2019). Given our target dataset consists of EHR 
notes, we chose the Clinical BioBERT model to 
generate word embeddings for the tokenized phrases 
of training dataset. The reason is that Clinical 
BioBERT has been pretrained on a large corpus of 
clinical text, including approximately two million 
notes of the MIMIC-III v1.4 database (Alimova & 
Tutubalina, 2020). The list of the embedded phrases, 
generated using Clinical BioBERT, was converted to 
PyTorch tensors as the input for the ML model. 
Training the ML model: The training dataset is 
randomly split into 80% for training and validation, 
and 20% for testing. We opted for a Neural Network 
to be trained. Following a grid search (Liashchynskyi 
& Liashchynskyi, 2019) to fine-tune the 
hyperparameters, we ended up having an NN model 
with one hidden layer, 100 neurons, Relu (Agarap, 
2018)  as the activation function, and Adam (Jais et 
al., 2019) as the optimization algorithm. To optimize 
our model’s performance, 5-fold cross-validation 
(Fushiki, 2011) process is employed while training 
the model. Also, to address overfitting, a dropout rate 
of 0.2 has been implemented. The NN model 
achieved an accuracy of 86%, precision of 88%, 
recall of 88%, and F1 of 88% on the test set. 

2.2 Enriching CIT and CITML 

The average length of the concepts added to CIT in 
Phase 1 is 3.58 words. Out of 18,749 CIT concepts 
extracted form EHRs, only 1081 concepts (5.7%) 
have 7-9 words, and only 191 (1%) have more than  
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Figure 2: The flowchart of Phase 2. It consists of three parts: (1) Training the ML model. (2) Enriching the terminology using 
the trained ML model to obtain CITML and CITML+, respectively, where CITML+ is obtained by enriching CITML with SCT 
concepts of T which are missing in B. (3) Evaluating the highlighting with terminologies CITML and CITML+ of datasets B 
and T, respectively. 

nine words. We chose a parameter L for the 
maximum number of words in a phrase extracted 
from dataset B for assessing their suitability for CIT. 
In this study, we experimented with the values 6 and 
9 for L (see Discussion Section for the trade-off in 
results). Hence, to enrich CIT, all subsequences of 
one to L words within each sentence of the 500 EHRs 
in dataset B are extracted. If a sentence has X words, 
where X<L, then the subsequences will have only up 
to X words, denoted by “n” number of words in the 
dataset B. The total number of phrases generated by 
all subsequences is less than L*n. Hence, the 
complexity of the number of generated phrases is 
linear with the number of words in B.   

These newly generated phrases were compared 
with our existing training dataset. Many of these 
phrases were eliminated since they appeared in the 
training dataset as positive (CIT) and negative (R) 

samples. Additional rules, such as removing phrases 
ending with adjectives or stop words, were applied to 
remove further phrases. The remaining phrases were 
embedded using Clinical BioBERT. The previously 
trained NN model was applied to classify these 
embedded phrases. Phrases predicted to be labelled 
“1” (valid concepts) were added into CIT, resulting in 
a new interface terminology, CITML. 

To test the effectiveness of the highlighting of a 
dataset by CIT, we evaluate its coverage and breadth 
metrics, which were introduced in the Background 
section. The dataset B is highlighted by CIT and 
CITML for Phase 1 and Phase 2, respectively. 
However, for the evaluation of the dataset T, we need 
to enrich CITML with concepts of SCT which appear 
in T, but not in B. The reason is that such concepts are 
not included in CIT in Phase 1 unless they were in 
CCS. 
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For adding such concepts, we first define a DIFF 
operation as a set difference. The DIFF operation is 
calculated using (3). 𝐷𝐼𝐹𝐹 𝑇 , 𝑆𝐶𝑇, 𝐶𝐼𝑇= {𝑇 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝐶𝑇}− {𝑇 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝐶𝐼𝑇 } 

(3)

Let DIFF’ (DIFF prime) be the set resulting from 
the DIFF operation.  We obtained a new interface 
terminology CITML+ for highlighting of the dataset T. 
CITML+ is calculated using the union operation (4). 𝐶𝐼𝑇 = 𝐶𝐼𝑇 ∪ 𝐷𝐼𝐹𝐹′ (4)

3 RESULTS 

Table 1 displays the results of coverage and breadth 
metrics for highlighting the build dataset B and test 
dataset T for the various terminologies: SCT, CIT, 
CITML and CITML+. The results for SCT and for CIT 
relate to Phase 1 in the Background section, described 
here to enable comparison with current results. We 
have two versions for CITML and CITML+ denoted by 
(6) and (9), according to the maximum number of 
words per concept allowed to be added in Phase 2. 

For build dataset B, the average coverage 
increased by 16% (relatively 47%) for CIT vs SCT, 
and further, increased by 16% (relatively 31%) with 
CITML+(6) or 18% (relatively 35%) with CITML (9). 
All in all, the average coverage with CITML (9) is 
about double of the one with SCT. The average 
breadth increased by 1.14 for CIT vs SCT, but then 
decreased by 0.29 for CITML+(6) or by 0.22 for 
CITML(9). 

Similarly, for test dataset T, the average coverage 
increased by 9% (relatively 26%) for CIT vs SCT, 
and further increased by 15% (relatively 37%) with 
CITML+(6) or 16% (relatively 41%) with CITML+(9). 
All in all, the average coverage with CITML+(9) is 
78% higher than with SCT. The average breadth 
increased by 0.55 for CIT vs SCT, but then decreased 
by 0.18 for CITML+( 6) or by 0.16 for CITML+(9). 

Nevertheless, we have chosen to display in Figure 
3 the highlighting of a note from T because the 

purpose of our work is not only to highlight the build 
dataset, but any other unseen datasets. T is a sample 
of such unseen datasets. Figure 3(a) displays the 
highlighting of a note in testdata highlighted with CIT 
following the process of Phase 1 which is described 
in (Koohi H. Dehkordi et al., 2023).  Figure 3(b) 
displays the highlighting of the same note using 
CITML+ which is obtained in Phase 2. Comparing 
Figure 3(a) and Figure 3(b) demonstrates the progress 
obtained by the ML technique. The Discussion 
Section contains more detailed analysis. 

4 DISCUSSION 

In this paper, we have reported on a project that uses 
Machine Learning techniques to curate an interface 
terminology dedicated to highlighting EHRs of 
patients of a specific medical specialty. The reason 
for this is that using a single interface terminology to 
highlight general EHRs, similar to SCT, would be too 
unwieldy to manage. Although our project 
concentrates on cardiology, we plan on using 
Transfer Learning in order to curate interface 
terminologies for other disciplines e.g., 
Pulmonology.  

Limitations: On one side, Figure 3 demonstrates 
the progress we made in achieving the ultimate target 
of highlighting all and only the important content of 
a clinical note required for a clinician in order to be 
informed of a patient’s condition and the course of 
his/her disease. On the other side, Figure 3(b) exposes 
a shortcoming of the current process. Elements which 
are not highlighted include numbers (e.g., 49), 
abbreviations (e.g., MPGN, PO, PTSD, ROS), and 
different verb tenses (e.g., discharged, feels, reports, 
etc). Highlighting them is required for understanding 
the important content. For example, the difference 
between continued and discontinued, or between 
reports and denies, is critical. Another important issue 
is identifying all negation expressions. For example, 
in Figure 3(b), we highlighted “No”, while we missed 
“neg”. Regarding medications, they are highlighted in 
Figure 3(b), but not in Figure 3(a). We will address 
those issues in our Future Work Section.  

Table 1: Average metrics of highlighting with various terminologies for datasets B and T of EHR notes. 

 Build Dataset B Test Dataset T 

SCT CIT CITML (6) CITML (9) SCT CIT CITML+ 
(6) 

CITML+ (9) 

Coverage 34.5% 50.7% 66.4% 68.3% 35.3% 44.7% 61.4% 62.9% 
Breadth 1.24 2.38 2.09 2.16 1.25 1.8 1.62 1.64 
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Figure 3: An excerpt of the MIMIC III EHR note highlighted by (a) CIT with 43.7% coverage and 1.59 breadth. (b) CITML+ 
with 63.3% coverage and 1.39 breadth. Figure 1, the same note highlighted by SCT, is with 35% coverage and 1.2 breadth. 

The efficiency of the highlighting depends on the 
size of CIT, which in turn depends on the size of the 
dataset from which the additional CIT concepts are 
extracted. The proposed method was trained and 
validated using 500 notes while more human 
highlighted notes are warranted to improve the 
performance of our ML models. 

Data Analysis: Let us first demonstrate the 
performance of ML techniques in identifying 
concepts which were totally unhighlighted by CIT, 
whereas highlighted by CITML+. For example "lasix 
40mg PO QD". In other examples a phrase was 
partially highlighted by CIT but fully highlighted by 
CITML+. For example, “No melena or BRBPR”, “s/p 
renal transplant”, and “h/o pericarditis”. Note that the 
additional highlighting with CITML+ is clarifying the 
context of the partial highlighting with CIT. 

In contrast, we have examples where CITML+ 
missed certain highlighting important content which 
the reader of a note should see. For example, in 
“Reports tremulousness with myoclonic jerks 
occurring frequently”. In “Feels that he has lost 
weight”, the word “lost” is important to understand 
the message conveyed by the sentence. Note that by 
adding lists of verbs and medications to CIT, as 
described in Future Work Section, the last two cases 
will be properly highlighted. 

Performance: We experimented with two values (6 
and 9), for the maximum length of a newly extracted 
phrase from the dataset B. The resulting coverage 
differs slightly for those two values. The number for 

CIT concepts with length of 7-9 is small (15%). We 
expect a similar percentage for the number of 
concepts of length of 7-9 in CITML. Indeed, in CITML 
the number of concepts of length 7-9 is 17,046 (15%). 
Furthermore, the contribution of an L>9 is expected 
to be small due to the small number of concepts of 
such length in CIT (5%).  Therefore, we set the length 
of phrases fed into the NN model to 9, such that a 
concept longer than 9 words is not obtained.  

Comparing the coverage for B and T, we observe 
that the values for T are smaller than for B, for CIT as 
well as for CITML+ vs CITML. The reason is that the 
concepts of the interface terminologies CIT and 
CITML are solely extracted from the build dataset B. 
Hence, the likelihood of those concepts to appear in 
T is lower than in B.  

The breadth for SCT is low since most of the 
concepts in ICIT are of only one word. For B, the 
breadth for CIT is almost double than for SCT. The 
reason is that the additional concepts (extracted in 
Phase 1) are longer since they are obtained by the 
concatenation and anchoring operations. However, 
the breadth for CITML is smaller because most of the 
additional concepts extracted in the ML process are 
typically short.  

For T, the breadth for CIT is lower than for B 
because the likelihood of a concept extracted from B 
to appear in T decreases as the number of words for 
the concepts increases. The reason is the longer the 
phrase, the more granular it is, and subsequently, its 
frequency in a different dataset is lower. The reason 
for the decrease for CITML+ vs CITML in B is that SCT 
concepts from T which did not appear in B are added 
by DIFF operation to CITML+, and they lower the 
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average since none of them contain another concept 
(similar to the argument above). 

We experimented with the NN model with one 
and multiple hidden layers. We found that deepening 
NNs did not further improve the performance 
compared with simple structure NNs. A possible 
explanation for this is that for deeper NNs to yield 
better performance, more training data from larger 
datasets is required. We will revisit those experiments 
using larger datasets in the future. 

Future Work: In the next stage of our project, as a 
remedy to the shortcomings described in Limitations 
Section, we plan to take the following actions. In 
Phase 1, we will insert into the Initial CIT (ICIT) 
these components: 

1. Existing abbreviations in Cardiology 
(Heart.org, u.d; Utah, u.d) and in Medicine in 
general (Wikipedia, 2015). 

2. Numbers from the range expected in 
Cardiology EHRs.  

3. Verbs with different tenses 
(worldclasslearning, u.d). 

4. Medications used in Cardiology (Heart.org, 
u.d). 

5. Common forms of negation (learngrammar, 
u.d). 

6. We will enrich the low synonym coverage of 
CCS concepts (0.606) by migrating synonyms 
from UMLS(Bodenreider, 2004). 

As a result, we expect a more accurate 
highlighting of EHRs. 

5 CONCLUSIONS 

We describe a research project to curate a Cardiology 
Interface Terminology (CIT) dedicated for 
highlighting EHRs of patients. The purpose is to 
highlight all and only the important content of an 
EHR note which a clinician need to review. 
Highlighted EHRs will enable healthcare 
professionals to read only the highlighted important 
information of an EHR note rather than cursorily 
review it, risking missing critical medical 
information.  Machine Learning techniques are 
utilized for the design of CIT for the Cardiology 
specialty. Transfer Learning will be used to design 
interface terminologies for other specialties. As the 
training data required for machine learning, an early 
version of CIT (Koohi H. Dehkordi et al., 2023) 
designed with a semi-automatic mining method rather 

than slow manual mining is used. The results 
demonstrate significant progress over highlighting 
with SNOMED CT and with the early version of CIT. 
We discussed ideas to further improve the coverage 
of highlighting the important content of EHR to 
achieve a satisfactory highlighting. 
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