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Abstract: In this paper, we present a synthetic dataset generation to create large-scale datasets for various image restora-
tion and registration tasks. Illumination changes, shadows, occlusions, and perspective distortions are added to
a given image using a 3D rendering pipeline. Each sequence contains the undistorted image, occlusion masks,
and homographies. Although we provide two specific datasets, the data generation itself can be customized
and used to generate an arbitrarily large dataset with an arbitrary combination of distortions. The datasets al-
low end-to-end training of deep learning methods for tasks such as image restoration, background subtraction,
image matching, and homography estimation. We evaluate multiple image restoration methods to reconstruct
the content from a sequence of distorted images. Additionally, a benchmark is provided that evaluates keypoint
detectors and image matching methods. Our evaluations show that even learned image descriptors struggle to
identify and match keypoints under varying lighting conditions.

1 INTRODUCTION

Many classical computer vision tasks deal with the
problem of image alignment and homography esti-
mation. This usually requires detecting sparse key-
points and computing correspondences across multi-
ple images. In recent years, increasingly more meth-
ods have been using neural networks for feature ex-
traction and matching keypoints (Sarlin et al., 2020;
DeTone et al., 2018). However, there still is a lack
of datasets that provide sufficient data and variety to
train models. In order to train end-to-end image align-
ment models, large datasets of high-resolution im-
ages are necessary. Existing end-to-end deep learn-
ing methods, therefore, utilize datasets containing
sparse image patches (Balntas et al., 2017), dense
correspondences from structure-from-motion (SfM)
datasets (Li and Snavely, 2018; Schops et al., 2017)
or optical flow datasets (Butler et al., 2012a). Image
patches only provide sparse correspondences between
images, SfM datasets often lack a variety of scenes,
and optical flow data has a high correlation between
images with small displacements.

A synthetic data generation for image alignment
and restoration (SIDAR) is proposed. A planar ob-
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ject is generated, and a texture is added to its surface
to simulate an artificial painting. Randomized geo-
metric objects, lights, and cameras are added to the
scene. By rendering these randomized scenes, chang-
ing illumination, specular highlights, occlusions, and
shadows are added to the original image. The data
generation uses images from the WikiArt dataset (Tan
et al., 2019) to create a large variety of content. How-
ever, the data generation can take any image dataset
as input. For each image, several distorted images
are created with corresponding occlusion masks and
pairwise homographies. The datasets can be used for
multiple objectives, such as homography estimation,
image restoration, dense image matching, and robust
feature learning. The rendering pipeline can be con-
figured to generate specific artifacts or any combina-
tion of them. It can be used as a data augmentation
to any existing datasets to further improve the perfor-
mance and robustness of existing methods.

Our dataset and rendering pipeline provide the fol-
lowing contribution:

• Data quantity: An arbitrary number of distortions
can be generated for each input image. Arbitrar-
ily, many scenes can be generated with an arbi-
trarily long image sequence each.

• Data variety: The input images and the image dis-
tortions can create a significant variation in con-
tent and artifacts.
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Figure 1: A visualization of the randomized rendering
pipeline in Blender. An image is added as texture to a
plane. Randomized cameras are positioned into the scene,
described by the white pyramids. The yellow rays describe
light sources, such as a spotlight and an area light. Geomet-
ric objects serve as occlusions and cast shadows onto the
plane.

• Customizability: The rendering pipeline can be
configured to control the amount and type of ar-
tifacts. For example, custom datasets can be cre-
ated that only contain shadows or occlusions.

In addition to the rendering pipeline itself, two
fixed datasets are provided. One dataset is gener-
ated that only consists of image sequences from front-
parallel view with various distortions, such as chang-
ing illumination, shadows, and occlusions. Another
dataset is generated that, in addition to the aforemen-
tioned distortions, contains perspective distortions. In
order to reconstruct the underlying signal from a se-
quence of distortions, the information needs to be
aligned first. Shadows and illumination change the
original signal but do not eradicate the information
completely. Occlusions cover the underlying con-
tent in parts of the image. However, for all these
cases, using additional images allows us to identify
and remove distortions using pixel-wise or patch-wise
comparisons along the temporal dimension. Perspec-
tive distortions create misalignment that makes recon-
struction more complicated. For this reason, we treat
misaligned images as a categorically different prob-
lem.

The following paragraphs discuss related datasets
and compare their advantages and shortcomings. The
rendering pipeline is described in detail. Finally,
we benchmark several methods for image registration
and image restoration. Our code is publicly avail-
able.1

1https://github.com/niika/SIDAR

2 RELATED WORK

In this section, we review some existing datasets and
compare them with our dataset. We discuss the appli-
cation of SIDAR.

2.1 Image Restoration & Background
Subtraction

Our data generation allows the creation of image se-
quences containing various distortions. In the case
of a static camera, this is similar to tasks such as
background subtraction or change detection. Exist-
ing datasets for background subtraction use videos of
static scenes (Vacavant et al., 2013; Goyette et al.,
2012; Jodoin et al., 2017; Toyama et al., 1999; Kalso-
tra and Arora, 2019). Each individual frame can con-
tain deviations from an ideal background image. The
variance can be due to changes in the background,
such as illumination changes, weather conditions, or
small movement of background objects. Addition-
ally, distortions can be caused by foreground objects
or camera noise. The goal is to extract a background
model of the scene, which can be further used for seg-
mentation into background and foreground.

When training deep learning models, one can
differentiate between scene-dependent models and
scene-independent models (Mandal and Vipparthi,
2021). Scene-dependent models learn a background
model on a specific scene and must generalize on
new images of the same scene. In contrast, scene-
independent models are evaluated on new scenes.
Many existing datasets, such as CDNet (Goyette
et al., 2012) or SBMNet(Jodoin et al., 2017), con-
tain many individual frames but only a few different
scenes. Training a model end-to-end on these datasets
allows the development of scene-dependent models,
but the low variation in scenes limits the generaliza-
tion across different backgrounds. Our data gener-
ation can create arbitrarily many variations within a
specific scene and across different scenes. This can be
useful to train and evaluate scene-independent mod-
els. Compared to video sequences, SIDAR has much
more variation between each image, and there is no
correlation between each frame.

The proposed SIDAR dataset can be customized
to generate specific artifacts, such as changes in illu-
mination, occlusions, and shadows. It can also cre-
ate any combination of these artifacts. One can apply
our dataset to train models for various tasks, such as
detecting and removing shadows, specular highlights,
or occlusions. Existing datasets containing shadows
(Wang et al., 2017; Kligler et al., 2018; Qu et al.,
2017) or illumination changes (Butler et al., 2012b;
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Roberts et al., 2021) often deal with each artifact in-
dividually and provide less control over their combi-
nations.

The main shortcoming of our dataset is that it is
limited to perspective distortion and relies on syn-
thetic data generation. Certain artifacts caused by
the scene’s geometry or noise in the image formation
from real cameras cannot be synthetically replicated.

2.2 Homography Estimation

Homography estimation describes a fundamental task
in computer vision. However, few datasets provide
enough ground truth homographies between image
pairs to train a deep-learning model. A common ap-
proach to generate labeled data is to use any image
dataset, such as MS COCO (Lin et al., 2014), and ap-
ply perspective distortion (Chang et al., 2017; DeTone
et al., 2016; Erlik Nowruzi et al., 2017). These meth-
ods do not introduce any additional challenges or ar-
tifacts. Other methods apply perspective distortion to
video sequences with static cameras (Le et al., 2020;
Cao et al., 2022). The video sequences introduce dy-
namic objects that can create outliers when computing
correspondences between images. In both cases, the
perspective distortion is rather simple and does not
follow a camera projection of a planar object.
Datasets that rely on structure-from-motion or oth-
erwise estimate homographies from natural images,
such as HPatches (Balntas et al., 2017), Oxford
Affine (Mikolajczyk and Schmid, 2005) or Adelai-
deRMF(Wong et al., 2011) only provide enough im-
age data to train deep learning models on smaller im-
age patches for feature detection. NYU-VP and YUD+
use detected planar objects in 3D scenes (Kluger
et al., 2020) to develop a large dataset that is used
for self-supervised training. However, both NYU-
VP and YUD+ only provide sparse correspondences
of line segments. HEB is a large-scale homography
dataset that contains image pairs with correspond-
ing homographies extracted from landmark images
(Barath et al., 2023). However, the image pairs also
only contain sparse keypoint matches.

For all of these datasets, there is little variation
in scenes, and each individual image does not con-
tain many distortions. Additionally, SfM datasets rely
on existing keypoint detectors, such as SIFT. Training
image descriptors on these datasets could add a bias
caused by the original descriptors.

Our proposed SIDAR dataset overcomes these
shortcomings by generating strong distortions within
each scene. Homographies can be computed regard-
less of the complexity of the scene and the amount of
artifacts.

As described in section 3.3, a homography can be
computed between any image pair if the relative po-
sition of cameras and plane are known. Furthermore,
we provide homographies between all images. This
allows for benchmarks where the relative orientation
of all images can be jointly estimated under various
distortions. It is possible to evaluate Bundle Adjust-
ment methods, and it could enable the development
of trainable Bundle Adjustment methods (Lin et al.,
2021; Lindenberger et al., 2021). Figure 3.2 illus-
trates a perfectly aligned image sequence in the pres-
ence of strong image distortions.

2.3 Descriptor Learning & Dense
Correspondences

Keypoint detection and image descriptors are fun-
damental methods in many computer vision tasks.
Structure-from-motion and other photogrammetric
methods rely on point correspondences computed
from sparse keypoints (Hartley and Zisserman, 2003).
A requirement for local feature detectors is to iden-
tify the location of distinct image points and com-
pute a robust feature representation. The features
should be invariant to various distortions, such as
noise, changing illumination, scale, and perspective
distortions. Recent developments in feature detec-
tors use a data-driven approach to learn robust feature
representations with deep learning (Mishchuk et al.,
2017; DeTone et al., 2018; Shen et al., 2020). The
descriptors are either trained on sparse image corre-
spondences from structure-from-motion methods (Li
and Snavely, 2018) or by applying randomized per-
spective transformations on any image dataset, such
as MS COCO (Lin et al., 2014), as described in sec-
tion 2.2.

SIDAR provides the ground truth homographies
between image pairs with arbitrarily complex arti-
facts. The dataset allows explicitly adding illumina-
tion changes, shadows, specular highlights, and data
augmentations to train more robust descriptors. Since
dense correspondences and occlusion masks are pro-
vided for each pixel, image descriptors can be com-
puted and matched for any image point. This also
allows the training of dense image matching models
(Truong et al., 2020; Truong et al., 2021). Structure-
from-motion datasets (Li and Snavely, 2018; Schops
et al., 2017) also provide dense correspondences, but
they often contain a limited amount of scenes, distor-
tions, and only a few occlusions. By changing the
texture of the image plane, SIDAR adds an arbitrarily
large variety of patches and keypoints.
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Figure 2: The first row shows a sequence of images with perspective distortions. The second row shows the images warped
into the reference frame of the first image using the precomputed homographies.

Table 1: Comparison of existing homography datasets and the proposed SIDAR dataset.

Dataset #Image pairs Camera poses Scene type Illumination Occlusions Real
HPatches 580 ✗ walls ✓ ✗ ✓

HEB 226 260 ✓ landmark photos ✓ ✗ ✓
SIDAR [55 000,∞) ✓ paintings / arbitrary ✓ ✓ ✗

3 RENDERING PIPELINE

Figure 1 illustrates the data generation process. We
use paintings from the Wiki Art dataset (Tan et al.,
2019) as our ground-truth labels. Any other image
dataset could also be used, but Wiki Art contains an
especially large variety of artworks from various pe-
riods and art styles. We believe that the diversity of
paintings makes the reconstruction more challenging
and reduces biases towards a specific type of image.
We take an image from the dataset and use it as a tex-
ture on a plane in 3D.

Furthermore, we generate geometric objects and
position them approximately in between the plane and
the camera’s positions. We utilize Blender’s ability to
apply different materials to textures. We apply ran-
domized materials to the image texture and occluding
objects. The appearance of an occluding object can
be diffuse, shiny, reflective, and transparent. The ma-
terial properties also change the effect lighting has on
the plane. It changes the appearance of specularities,
shadows, and overall brightness.
Finally, we iterate over the cameras and render the im-
ages. Blender’s physically-based path tracer, Cycles,
is used for rendering the final image. Path tracing en-
ables more realistic effects compared to rasterization.
It allows the simulation of effects, such as reflections,
retractions, and soft shadows.

3.1 Virtual Painting

We first generate a 2D image plane. The plane lies on
the xy-plane, i.e., the plane is described as:

0 · x+0 · y+ z = 0 (1)

The center of the plane also lies precisely in the ori-
gin (0,0,0). The plane is described by its four corner
points. Let w,h be the width and height of the plane,
then the corners are defined as:

X1 =

w/2
h/2

0

 ,X2 =

−w/2
h/2

0

 , (2)

X3 =

 w/2
−h/2

0

 ,X4 =

−w/2
−h/2

0

 (3)

We scale the plane along the x and y direction to fit
the image’s aspect ratio. We apply the given image as
a texture to the plane.

3.2 Fronto-Parallel View

To render the scene, we add virtual cameras. We dif-
ferentiate between a camera that is aligned with the
painting’s plane and a setup that adds perspective dis-
tortions. To enforce a fronto-parallel view, we use a
single static camera that perfectly fits the image plane.
The camera’s viewing direction is set perpendicular
to the image plane and centered on the image plane.
Our goal is to adjust the vertical and horizontal field
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Figure 3: An Illustration of changing the principal distance between the projection center C and the image plane I . The
position of the plane π and the projection center are fixed. In a) the image plane I captures all of the content from the painting
plane π and nothing more. In b), the camera’s field of view is larger than the image plane. In c), the camera only sees parts of
the image.

of view such that only the image can be seen. Figure
3 illustrates this problem.

The camera’s projection center is set to the con-
stant C = (0,0,10)T , and we also fix the size of the
sensor. We set the resolution and aspect ratio of the
sensor equal to the painting’s resolution. As can be
seen in figure 3, the alignment only depends on the
principal distance.

Figure 4: Illustration of a camera sensor with width w′ that
is aligned with the image with width w. The principal dis-
tance is given as f , and the distance between the camera and
image is given as d.

Let f be the principal distance, w the image width,
w′ the sensor width, and d the distance between the
projection center and image as illustrated in figure 4.
The optimal f can be computed from the intercept

theorem:

f
d
=

w′

w
(4)

⇔ f = d
w′

w
(5)

3.3 Perspective Distortions

To create perspective distortions, we randomize the
generation of cameras by sampling from a range of
3D positions. The camera’s field of view is also ran-
domly sampled to create varying zoom effects. This
also creates a variety of intrinsic camera parameters.
Additionally, we center the camera’s viewing direc-
tion into the image center. This is done to guarantee
that the image is seen by the camera. Otherwise, the
camera might only see empty space.

Since we project a planar object onto image
planes, all images are related by 2D homographies.
This relationship is illustrated in figure 5.

A point with pixel coordinates (x,y) in image i is
projected onto the coordinates (x′,y′) in image j with

Figure 5: Illustration of a homography induced by a plane.
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the homography Hi j:

λ

x′

y′

1

= Hi j

x
y
1

 (6)

The homographies can be computed from the ori-
entation of the cameras and plane (Hartley and Zis-
serman, 2003):

Hi j = K j

(
R+

1
d

t⃗⃗nT
)

K−1
i (7)

Here R,⃗ t describe the rotation matrix and translation
between cameras. Ki and K j describe the calibration
matrices. n⃗ ·X = d parameterizes the plane.
Alternatively, the homography can be computed from
point correspondences using the Direct Linear Trans-
form (Hartley and Zisserman, 2003). We decided to
use the Direct Linear Transform since it does not re-
quire traversing the scene graph and transforming the
objects relative to a new coordinate system. We com-
pute correspondences x(k)i ↔ x(k)j by projecting the
corners of the painting into the images respectively:

x(k)i = PiXk k = 1, ..,4 (8)

Here Pi describes the projection matrix of the i− th
camera.

Unlike when working with real datasets, these
methods can always compute the corresponding ho-
mographies regardless of overlap and distortions.
Real datasets rely on more complicated photogram-
metric methods that try to find point correspondences
between images and optimize the orientation of cam-
eras using bundle adjustment (Balntas et al., 2017;
Hartley and Zisserman, 2003; Li and Snavely, 2018).
Regardless of the complexity of the scene, the homo-
graphies can be precisely computed.

3.4 Illumination

We add varying illumination by randomizing the light
sources in the scene. The light is randomly sampled
from Blender’s predefined light sources: spotlight,
point light, and area light. We randomize the inten-
sity and color of the light. This randomization can
create a large variety in the appearance of shadows,
specularities, and the overall color scheme of the im-
age.
The color is sampled using the HSV color space. Let
c = (H,S,V ) be the color of the light. We sample
c using H ∼ U[0,1],S ∼ U[0,ε],V = 1. V is fixed
because the intensity of the color is already affected
by the light source itself. The hue is completely ran-
domized to create random colors. However, the range

of the saturation is limited to a small ε to generate
lights that are closer to white. Having too high satu-
ration creates strong global illuminations changes that
make the reconstruction of the content’s original color
very ambiguous, while low saturation still introduces
enough variance in the appearance of the painting.
Furthermore, we set the orientation of the light such
that its direction is centered on the images. By de-
fault, Blender sets the orientation of the lights along
the z-axis.

3.5 Occlusions & Shadows

Randomized geometric objects are added in the space
between light sources and the image plane. The
purpose of these objects is to create occlusions and
shadows. The objects obfuscate image content from
the cameras and block light from reaching the image
plane. The material of the object is also chosen from
Blender’s shaders. Depending on the material, light is
either completely blocked, refracted, or color-filtered.
As can be seen in figure 6, the material affects the
appearance of the image content and casts a shadow.
Some materials create hard shadows and solid occlu-
sions, while others create softer shadows and even
change the shadow’s color. Transparent materials also
do not entirely obfuscate the image content.

Figure 6: A randomly generated torus under the same light-
ing conditions but with varying materials.

3.6 Rendering

After a scene is configured with randomized light-
ing, occlusions, and cameras, an image is rendered
using path tracing. Blender’s path tracer is used to
render the image from the perspective of a specific
camera. Path tracing allows the creation of more real-
istic shadows and lighting effects compared to rasteri-
zation; especially effects such as transparency, reflec-
tion, and refraction can be realistically modeled us-
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ing path tracing by sampling light rays. Path tracing
simulates the physical image formation process much
closer than rasterization techniques. Rasterization re-
quires the use of various techniques, such as texture
maps and shadow maps, to approximate the same ef-
fects.The number of rays cast to estimate the light dis-
tribution of the scene and the resulting image can be
limited using a time constraint. A time limit is set to
balance the image quality and the amount of data that
can be efficiently generated. Figure 7 illustrates the
effect of rendering time on the resulting image. The
results do not differ too much. Shadows, illumination,
and occlusions are visualized correctly, even when us-
ing fewer rays. A low amount of sampling can create
aliasing effects, as can be seen on the glassy material.
In comparison, more sampling creates more realistic
effects.

Each rendered image describes a distorted data
point of the original image. Path tracing is also used
to generate the ground truth label. It is possible to
use the original image as a ground truth label. How-
ever, the rendering pipeline can create a bias and a
slight misalignment. For this reason, the label is cre-
ated under similar conditions as the distorted images
using ambient illumination without occlusion. A vir-
tual camera that is aligned with the image as described
in chapter 3.2 is used. The resulting image is free of
artifacts.

In order to differentiate between distorted parts of
the image (caused by lighting, shadows, and specu-
lar highlights) and occlusions, a segmentation mask is
computed that separates foreground and background
pixels. The mask should be aligned with the corre-
sponding camera. After rendering any scene, a corre-
sponding occlusion mask is rendered using the same
camera and geometric objects. For any given scene,
the plane’s material is changed to a diffuse black.
All objects are changed to a diffuse white material.
We also use ambient illumination. The segmentation
mask is rendered using regular rasterization. Figure
8 shows a mask generated from a given scene. The
resulting image is binary, with black pixels describ-
ing parts of the painting and white pixels describing
occlusions or background.

4 DATASETS

Using the rendering pipeline from chapter 3, we cre-
ate two datasets. By aligning the camera with the im-
age, we create a dataset of aligned sequences without
perspective distortion. Another dataset is created with
perspective distortions. In this chapter, we present the
two datasets and discuss some applications.

4.1 Fronto-Parallel Dataset

Figure 9 shows an example sequence of distorted im-
ages with the corresponding ground truth label. The
dataset contains ∼ 15000 image sequences each with
10 distorted images, ground-truth label and occlusion
masks. Since the image data is already aligned, it is
especially useful for image-to-image tasks, such as
image restoration, segmentation or autoencoders.

Image Restoration

Using the aligned dataset, a model can be trained to
remove artifacts from images. This can be done by
a sequential model that learns to aggregate informa-
tion from multiple images, such as Deep Sets (Za-
heer et al., 2017; Kwiatkowski and Hellwich, 2022)
Alternatively, a model can be trained to remove arti-
facts from single images, e.g., single-image shadow
removal (Qu et al., 2017). Existing methods often
deal with each type of artifact individually, whereas
this dataset allows combining multiple artifacts simul-
taneously. The data generation can be configured to
generate specific artifacts or combinations of them.
Using the occlusion mask, inpainting methods can be
trained to reconstruct the content of occluded regions.

Background Subtraction

The dataset can be used for background subtraction
tasks. The artifact-free image describes the under-
lying background, while lighting and occlusion cre-
ate distortions. A model can be trained to detect
occlusions and variations from the underlying back-
ground model. The generated occlusion masks can
be used for learning foreground-background segmen-
tation. Existing datasets consist of videos with a few
scenes, such as CDNet (Goyette et al., 2012). Al-
though the videos provide a lot of data, there is lit-
tle variation within each scene. Our dataset genera-
tion allows the creation of a large variety of different
scenes and also increases the variation within each
scene. This is useful to enable models to general-
ize over different backgrounds and make the back-
ground modeling more robust to changing lighting
conditions.

Representation Learning

Data augmentations, such as noise, blurring, random
cropping, and geometric transformations, are used to
create more robust representation learning or self-
supervised training (Chen et al., 2020; Bansal et al.,
2022). Using our dataset, a representation can be
learned that is invariant to illumination and occlu-
sions. Alternatively, a representation can be learned
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(a) 0.1s (b) 1s (c) 10s (d) 5min

Figure 7: The images show the same scene rendered with different time limits. The first row shows the whole image, while
the second and third rows show specific parts of the image.

Figure 8: The left image shows a randomized scene. The
right image shows the same scene after changing the plane
to a diffuse black and changing all geometric objects to a
diffuse white color. The rendered image is binary.

that disentangles the image content from lighting,
shadows, occlusions, etc.

4.2 Misaligned Dataset

In addition to the aligned dataset, we generate images
with perspective distortions. For each randomly gen-
erated camera, we render an image. In order to evalu-
ate the image alignment with reconstruction, we also
generate a single ground truth image as described in
section 3.2 under ambient lighting conditions. Figure
10 shows a sequence of distorted images. The last

image contains no distortions and is aligned with the
camera’s field of view. We generate a dataset with
1000 sequences each containing 10 distorted images,
ground-truth label, segmentation masks. For each im-
age pair (Ii, I j), the corresponding homography Hi j
is computed using DLT. The dataset contains 110000
homographies or 55000 if you exclude the inverse
mapping for each image pair.
It is possible to warp the image Ii : R2 7→ R3 into the
reference frame of any other image I j : R2 7→ R3 us-
ing the warp function described by the homography
Wi j : R2 7→ R2,Wi j(x) = Hi jx. The warped image Î j
is calculated as:

Î j(x) = Ii(W −1
i j (x)).

Figure 2 shows a sequence of images under perspec-
tive distortion. Using the estimated homographies, all
images can be aligned with the first image.

The dataset containing perspective distortions ex-
tends all tasks mentioned in section 4.1, but it also
creates new challenges and applications. The follow-
ing chapters discuss some potential applications of
our dataset.
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Figure 9: The top row shows four generated images without perspective distortions and with the corresponding label. The
bottom row shows the occlusion mask for each image.

Figure 10: The top row shows four generated images with perspective distortions and the corresponding label. The bottom
row shows the occlusion mask for each image.

Homography Estimation

Our dataset provides ground-truth homographies for
any image pair within a sequence, making it possi-
ble to train and evaluate deep homography estima-
tion methods. Let Ii and I j be two images, let Hi j be
their corresponding perspective transformation, and
let fθ(Ii, I j) ∈ R9 be a deep learning model that esti-
mates a homography from two images. The learning
objective can be described by a regression problem:

Ĥi j := fθ(Ii, I j)

The homography parameters can be directly esti-
mated from two images.

Bundle Adjustment

Many existing homography estimation methods com-
pute the alignment from image pairs only. This can
be extended to sets of images. The problem can
be described as a bundle adjustment problem. The
SIDAR dataset can be used for neural bundle adjust-
ment methods, such as BARF (Lin et al., 2021). It
could be possible to learn neural priors for bundle ad-
justment. Larger image sets also enforce more con-
sistency across images compared to image pairs.

Descriptor Learning

Given the correspondences between images, local de-
scriptors can be learned. Correspondences exist even
under very strong distortions, which allows the de-
velopment of descriptors that are invariant or equiv-
ariant to the given perturbations. The methodology
of HPatches (Balntas et al., 2017) could also be ex-
tended to the SIDAR dataset to add more variety in
image patches.

Dense Correspondences

SIDAR also provides dense correspondences between
each image point with high accuracy and outlier
masking. Correspondences can be estimated not only
for sparse keypoints but for every pixel with a sub-
pixel accuracy. The neighborhood of points remains
mostly unchanged under perspective distortions. This
puts additional constraints on image-matching tasks.
The occlusion masks also provide regions of out-
liers, while the other distortions can add robustness
to image descriptors. Image matching models can be
trained to densely detect image regions under various
perturbations and also detect outliers as points with
no matches.
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Figure 11: A visualization of dense correspondences be-
tween two images.

5 EXPERIMENTS

We study the performance of image alignment and
image restoration methods in the presence of signif-
icant distortions.

5.1 Image Restoration

Let D = {x1, · · · ,xn} be a set containing distorted im-
ages. We compare several image restoration tech-
niques that involve reconstructing an image from dis-
torted image sequences. We use pixel-wise statisti-
cal methods, such as mean and median. Additionally,
we evaluate Robust PCA (Candès et al., 2011; Bouw-
mans et al., 2018), which decomposes the data matrix
M = [vec(x1), · · · ,vec(xn)], that contains the vector-
ized images, as:

M = L+S
where L is a low-rank matrix and S is a sparse ma-
trix. RPCA assumes that distortions appear sparsely
described by the matrix S, whereas the content is very
similar in each image, resulting in a low-rank data ma-
trix L.
Furthermore, we use a maximum likelihood estima-
tion (MLE) for intrinsic image decomposition (Weiss,
2001). MLE assumes that image gradients approx-
imately follow a Laplace distribution. Under these
assumptions, the optimal image is reconstructed from
the median of the gradients.
In addition to the unsupervised methods, we
also train two models on our dataset. We use
Deep Sets (Kwiatkowski and Hellwich, 2022) and
DIAR(Kwiatkowski et al., 2022). We follow the orig-
inal implementations, but we removed any downsam-
pling layers. This led to a significant improvement in
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Figure 12: Comparison of image restoration methods using
SSIM with different sequence lengths.
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Figure 13: Comparison of image restoration methods using
RMSE with different sequence lengths.

the cost of higher memory consumption. Both archi-
tectures use convolutional residual blocks. Deep Sets
apply average pooling over the sequential dimension,
whereas DIAR uses Swin-Transformers to aggregate
spatio-temporal features. Both models were trained
on a fixed sequence length of 10 images.
Our evaluation set contains 100 sequences with 50
images each. As evaluation metrics, we use Struc-
tural Similarity Index Measure (SSIM), Root Mean
Squared Error (RMSE), and Peak signal-to-noise ra-
tio (PSNR). We evaluate each method on various se-
quence lengths. Figures 12,13 and 14 show the re-
sults.

The evaluations confirm that the supervised meth-
ods have an overall superior performance. The graphs
show that all methods improve with increasing im-
age sequences. Even the supervised models general-

10 20 30 40 50
Sequence length

14

16

18

20

22

24

26

PS
NR

PSNR

DeepSet
DIAR
MLE
RPCA
Mean
Median

Figure 14: Comparison of image restoration methods using
PSNR with different sequence lengths.
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ize well beyond their training length. DIAR has the
overall best performance. The spatio-temporal atten-
tion of the 3D-Swin-Transformer outperforms aver-
age pooling. Figure 15 shows an example sequence
with corresponding outputs and metrics.

5.2 Image Alignment

In order to evaluate image alignment methods, we
generate 1000 image sequences containing perspec-
tive distortions. Each sequence contains the orig-
inal image and ten distortions. This also results
in 55 homographies for each image sequence. We
use the available keypoint detectors and matchers
provided by OpenCV (Bradski, 2000) and Kornia
(Riba et al., 2020) for benchmarking. This includes
the unsupervised methods SIFT (Lowe, 1999), ORB
(Rublee et al., 2011), AKAZE, and BRISK (Tareen
and Saleem, 2018) and supervised methods LoFTR
(Sun et al., 2021), Superglue (Sarlin et al., 2020), and
AffNet-HardNet (Dmytro Mishkin, 2018). LoFTR
has weights for indoor scenes (LoFTR-i) and an out-
door scenes (LoFTR-o). Kornia also provides an im-
plementation of SIFT, denoted as SIFT-Kornia. For
each image pair, we detect and match keypoints.
Then, we compute the homography using RANSAC.
We evaluate the estimation of the homography by
computing the mean corner error (MCE):

MCE(H,H ′) =
4

∑
i=1

∥Hxi −H ′xi∥2

where xi describes the corners of the image. Figure
17 shows the percentage of estimated homographies
below a given MCE. The results show that SIFT and
LoFTR consistently have better results depending on
the threshold. However, both are only able to find ho-
mographies in ∼ 50% of all cases. We did not visual-
ize larger MCE values since larger errors indicate in-
correct homographies, which do not provide a mean-
ingful numeric value. This shows that keypoint de-
tectors and image descriptors struggle with the given
distortions.
Furthermore, we evaluate the individual matches x ↔
x′ by computing the reprojection error:

L(x,x′) = ∥Hxi − x′i∥2

The error is measured in pixels. We compute the num-
ber of inliers based on the thresholds t ∈ {0.1,1,10}.
Figure 16 shows the distribution of inliers for each
method. The results show that SIFT has the most re-
sults with subpixel accuracy. For larger thresholds,
the supervised methods provide much more matches
compared to SIFT and other unsupervised methods.
LoFTR-o has significantly the most matches.

The benchmarks show that existing image match-
ing techniques struggle with changing illumination.
Since we did not finetune the supervised models,
the models might be biased towards keypoints from
SfM datasets. In future work we would like to fine-
tune image matchers and keypoint detectors, such as
Superpoint, SuperGlue and LoFTR on our dataset.
Specifically, we believe one can combine the tech-
nique of Homographic Adaption (DeTone et al.,
2018) with our dataset, since Homographic Adap-
tion originally uses self-supervised training with triv-
ial perspective data augmentations. Furthermore, in
future work it should be possible to extend the bench-
marks and trainable methods to include joint match-
ing of the whole sequence instead of image pairs.

6 CONCLUSION

In this work, we propose a data generation with a cor-
responding datasets based on 3D rendering that intro-
duces various disturbances, such as shadows, illumi-
nation changes, specular highlights, occlusions, and
perspective distortions, to any given input image. Al-
though it is a synthetic dataset, the data augmenta-
tions are not trivial, and they are customizable. To the
best of our knowledge, we provide the first large-scale
dataset containing ground-truth homographies with
dense image correspondences, which does not con-
sist of trivial perspective distortions. Our rendering
pipeline allows us to both generate new datasets and
augment existing data. We discuss several possible
applications. We discuss a range of computer vision
applications for which this dataset can be used. It can
contribute to the training of end-to-end deep learn-
ing models that solve image alignment and restoration
tasks such as deep homography estimation, dense im-
age matching, descriptor learning, 2D bundle adjust-
ment, inpainting, shadow removal, denoising, content
retrieval, and background subtraction.

The limitation of most synthetic datasets lies in
their deviation from real data. This can result in bi-
ased models and limit generalization. Compared to
existing augmentation methods that apply random-
ized homographies (DeTone et al., 2018) to images,
SIDAR adds additional complexity. Adding illumina-
tion changes, shadows, and occlusions can be espe-
cially helpful in improving the robustness of learned
descriptors and feature matching.

Future work could focus on developing bench-
marks to provide specific evaluation metrics for the
discussed tasks and compare the generalization across
different datasets. Additionally, future work could
further improve the realism of the data generation and
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Figure 15: An overview of image restoration methods with corresponding image metrics. The first row shows the input
sequence. The bottom row shows the reconstructed image by method.
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Figure 16: The box plots show the number of inliers based
on different thresholds of the reprojection error.

add new data modalities, such as videos. The data
generation can be adapted to include other distortions,
such as reflective surfaces, translucent occlusions, or
camera lens distortions. Many of these effects are
common artifacts in real imaging systems, but it is
difficult to create large-scale datasets for these cases.
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Figure 17: The graphs show the cumulative percentage of
image pairs below a given Mean Corner Error.

Our data generation can provide an effective way to
approximate these artifacts and provide a large-scale
dataset for training and evaluation. It can serve as a
baseline to study these effects in a more controlled
environment.
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