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Abstract: The conventional convolutional U-Net model was originally designed to segment images. Enhanced versions
of the architecture with timestep embedding and self-attention inspired by transformers were proposed in
the literature for image classification tasks. In this paper, we investigate a U-Net–encoder architecture for
deepfake detection that involves two key features, the use of self-attention blocks to capture both local and
global content representation, and the integration of timestep embedding to capture the dynamic perturbation
of the input data. The model is trained and evaluated on FF++ dataset, comprising of real and deepfake syn-
thesized videos. Notably, compared to traditional models pretrained on ImageNet, our model demonstrates
superior performance. The experimental results highlight the effectiveness of our approach in achieving im-
proved classification results for the challenging task of distinguishing real and deepfake images. The achieved
performances suggest that the model aims to leverage both spatial information and dynamic perturbation for
improved detection performance.

1 INTRODUCTION

The remarkable progress in artificial neural network
(ANN)-based technologies and particularly in genera-
tive AI has played a crucial role in manipulating mul-
timedia content. These advancements have made it
increasingly feasible to generate highly realistic syn-
thetic images, surpassing previous capabilities. In
recent years, generative models have witnessed re-
markable advancements in their ability to generate
human-like natural language (Brown et al., 2020),
high-quality synthetic images (Karras et al., 2020),
and diverse human speech and music. These models
find utility in various domains, such as image gen-
eration from text prompts and feature representation
learning.

As a result, numerous captivating applications
have emerged in the realms of entertainment and ed-
ucation. Through all this capability, the term deep-
fake has emerged and refers to multimedia content
generated or altered by artificial intelligence models
(Gomes et al., 2020; Lattas et al., 2020). Noteworthy
examples include FaceApp (FaceApp, 2023), a popu-
lar application that leverages an autoencoder-decoder
architecture to seamlessly swap faces between two
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images. DeepFaceLab (DeepfakeVFX.com, 2023),
an enhanced framework specifically designed for
face-swapping, pushes the boundaries of deepfake
technology. Another notable application is Face
Swapping GAN (FSGAN) (Nirkin et al., 2019), an
improved version of deepfake that employs Genera-
tive Adversarial Networks (GANs) to refine segmen-
tation masks, resulting in remarkably higher qual-
ity output videos. Additionally, several other tools
are employed for deepfake content generation. Dis-
coFaceGAN (Deng et al., 2020), based on Style-
GAN structure (Karras et al., 2019), generates syn-
thetic face images of virtual individuals with dis-
tinct characteristics, while FaceShifter enables high-
fidelity face swapping. The recent emergence of a
new generation of models, the so–called Denoising
Diffusion Models (DDMs), has raised great concern
for the spread of fake data, as they proved capable of
generating even more realistic and convincing fakes
than their predecessors, Generative Adversarial Net-
works (GANs). Models like Stable Diffusion (Rom-
bach et al., 2022) and DALL-E 2 (Ramesh et al.,
2022) are some of the best image generators available
and are renowned state-of-the-art Diffusion Models
(DMs) that excel in text-to-image translation.

Given the significant threats posed by deepfakes,
such as the spread of misinformation, damage to rep-
utation, and invasion of privacy, it is crucial to de-
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velop advanced technologies for detecting deepfake
content. Humans often struggle to identify manipu-
lated videos, particularly in terms of spatial aspects,
and lack the ability to pinpoint the specific locations
and techniques used for manipulation. This highlights
the necessity for high-quality algorithms capable of
detecting manipulated videos on a large scale.

In this paper, we tackle the problem of detect-
ing facial manipulation. In particular, we focus on
all the manipulation techniques reported in (Rossler
et al., 2019) (i.e., deepfakes, Face2Face, FaceSwap
and NeuralTextures). We consider exploring a U-
Net–encoder architecture for deepfake detection that
involves two key features, the use of self-attention
blocks to capture both local and global spatial infor-
mation, and the integration of a predicted timestep
embedding to capture the dynamic perturbation of the
input data.

The rest of the paper is organized as follows. Sec-
tion 2 provides a literature review of commonly used
algorithms for deepfake detection. Section 3 presents
details on the proposed approach. Section 4 provides
the results and discussions. Finally, Section 5 con-
cludes with implications, limitations, and suggestions
for future research.

2 RELATED WORKS

Deep learning techniques have emerged as the domi-
nant approach for deepfake detection, as evidenced by
a comprehensive analysis of 122 studies conducted by
Rana et al. (Rana et al., 2022). Approximately 77% of
these studies employed deep learning models, specif-
ically Convolutional Neural Networks (CNNs) (Tariq
et al., 2018) and Recurrent Neural Networks (RNNs)
mostly used for fake videos detection. These mod-
els have shown great promise in effectively detecting
deepfake content.

In (Afchar et al., 2018) MeSoNet is a CNN archi-
tecture which is used to detect Face2Face and deep-
fakes manipulations. XceptionNet which uses depth-
wise separable convolutional layers with residual con-
nections (Chollet, 2017) has given the best result
in (Rossler et al., 2019) in Faceforensics++ (FF++)
dataset and is the most used baseline.

Although the use of deeplearning different ap-
proach is used based on the knowledge of human
face. Authors in (Haliassos et al., 2021) proposes a
method of detecting high-level semantic anomalies in
mouth motion, leveraging the hypothesis that most
video generators display a degree of high-level se-
mantic irregularities near the mouth. In (Zhao et al.,
2021a; Zhao et al., 2021b), fine-grained classification

is applied to distinguish subtle differences in visual
appearance and patterns. The authors propose Fake-
Buster in (Hubens et al., 2021) to address the issue
of detecting face modification in video sequences us-
ing recent facial manipulation techniques. In (Ismail
et al., 2021), the YOLO face detector is used to ex-
tract the face area from video frames, while the In-
ceptionResNetV2 CNN is utilized to extract features
from these faces.

However detecting deepfakes in videos solely
based on counterfeit images can be difficult due to
the temporal features of videos and variation in frame
resolution. In (Ranjan et al., 2020), the CNN-LSTM
combo is used to identify and classify the videos as
fake or real.

FSSPOTTER (Chen et al., 2020), for instance,
uses spatial and temporal clues to detect swapped
faces in videos. These features are fed into the XG-
Boost, which works as a recognizer on the top level
of the CNN network. Physiological signals are also
used for deepfake detection. DFT-MF (Elhassan et al.,
2022) is a deep-fake detection model that uses deep
learning approaches to detect deepfake videos by iso-
lating, analyzing, and verifying lip/mouth movement.
Eye blinking based signal detection is also used to
determine if a video is real or a deepfake generated.
Deep Vision detects deepfake videos by focusing on
eye blink patterns. FakeCatcher (Ciftci et al., 2020)
is a method that addresses the challenge of detecting
deepfakes by exploiting the fact that biological sig-
nals obtained from facial regions are not positionally
and temporally well-preserved in synthetic content of
portrait videos.

In a recent study, U-Net has garnered significant
attention due to its computational and efficiency ad-
vantages in segmentation and feature extraction (Ron-
neberger et al., 2015). Eff-YNet, introduced in (Tjon
et al., 2021), is a noteworthy example of the syn-
ergy between an EfficientNet encoder and a U-Net
structure. This fusion enables the model to effec-
tively perform both classification and segmentation
tasks on deepfake videos. Similarly, the work pre-
sented in (Bhilare et al., 2022) aligns with this theme,
where authors introduce U-YNet. This model in-
tegrates segmentation and classification capabilities
by utilizing a U-Net Encoder and Decoder to gener-
ate segmentation maps, with a classification branch
seamlessly integrated at the end of the U-Net Encoder.
These innovations highlight the versatility and com-
putational efficiency of U-Net in addressing a wide
array of computer vision challenges. Moreover, in the
recent approach for deepfake generation U-Net is one
of the most important components of diffusion model
(Dhariwal and Nichol, 2021) because it facilitates the
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Figure 1: Architecture of proposed method. This model is refered as ClOneSelect.

actual diffusion process and improves sample qual-
ity for denoising score matching (Jolicoeur-Martineau
et al., 2020). In (Dhariwal and Nichol, 2021), the au-
thors found that a pre-trained diffusion model can be
conditioned using the gradients of a classifier, further
underscoring the significance of U-Net as classifier in
guiding and improving the diffusion process for im-
age generation tasks. In our research, we investigate
the use of a U-Net encoder in conjunction with tech-
niques derived from the diffusion approach to detect
deepfake generated faces. Results is compared to the
traditional method such as Xception (Rossler et al.,
2019) and EfficienceNet (Bonettini et al., 2021) used
in other works.

3 METHOD

The model consists of 3 blocks: one block containing
a layer that predicts the timestep t of the input image,
a block that adds noise ε to the image x0 based on
the timestep, an encoder that takes an image as input
and provides vector of 1000 values, and finally, the
classifier layer which maps 1000 to 1. In Figure 1, we
present the architecture of our method.

3.1 Timestep Predictor

The forward process in a diffusion model works by
gradually adding noise to an initial clean or observed
image to generate a sequence of increasingly noisier
images. This process simulates the generation of sam-
ples in a probabilistic model where the final sample
represents the output of interest.

Diffusion models generate samples by reversing a
gradual process of introducing noise. Essentially, the

sampling process begins with noisy xT and progres-
sively creates less noisy samples xT−1, xT−2, ... until
reaching a final sample x0. Each timestep, denoted
as t, corresponds to a specific noise level, and xt can
be viewed as a combination of a signal x0 with some
noise ε, where the signal-to-noise ratio is determined
by the timestep t. In Figure 2, a sample of images is
shown at different timestep using a linear scheduler
for adding noise.

The authors of guided diffusion (Radford et al.,
2021) demonstrated the effectiveness of incorporat-
ing a projection of the timestep embedding into each
residual block of the U-Net encoder. This addition
serves to guide the diffusion model towards the de-
sired class, effectively transforming the architecture
as if we have multiple models in one. This adaptation
occurs in accordance with the timestep, allowing for
dynamic adjustments in classification.

In our context, to take advantage of all those mod-
els, we have incorporated a Linear layer that takes the
input of 1000 possible timesteps and selects a single
value t, representing the most suitable timestep for
improved classification. This value t represents the
impact of the noise ε to be applied to the image x.

3.2 U-Net Encoder

The UNet model uses a stack of residual layers and
downsampling convolutions. In addition, they use a
global attention layer at different 32×32, 16×16 and
8x8 resolutions with a single head, and add a pro-
jection of the timestep embedding t into each resid-
ual block. Timestep t embedding capture the dy-
namic perturbations present in the input data. By
learning embeddings specific to each timestep, the
model gains the ability to make accurate predictions
regarding whether an image belongs to the ”fake” or
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Figure 2: Example of images with corresponding timestep using a linear scheduler.

”real” class, taking into account the level of the intro-
duced noise. This integration empowers the model
to dynamically adapt its processing strategy, effec-
tively leveraging the unique characteristics and dy-
namic variations observed at different time points
within the input data. The model, denoted as C, using
the noisy images xt for t ∈ {0, ...,T}. Each timestep t
corresponds to a certain noise level where T refers to
the highest noise level. This encoder is trained to pre-
dict the class label of the input image x according to
the level t of the added noise. Where x0 is the image
at timestep t = 0.

The output of the U-Net encoder architecture is
the downsampling trunk of the model with an atten-
tion pool at the 8x8 layer to produce the final output
of 1000 which correspond to the thousand classes of
ImageNet. In our case, we added a classifier layer to
map the 1000 to 1. The encoder can be represented as
in Equation 1.

ŷ =C(xt ;θC) (1)

where ŷ represents the predicted class label, xt is the
input image at timestep t, and θC denotes the optimiz-
able parameters of the classifier network.

4 EXPERIMENT AND RESULTS

To assess the effectiveness of our proposed approach,
we conducted extensive experiments on the FF++
dataset (Rossler et al., 2019). The FF++ dataset stands
out as a large-scale facial manipulation dataset cre-
ated through state-of-the-art video editing techniques.
In particular, it combines classical computer graph-
ics methods, such as Face2Face (Thies et al., 2016)
and FaceSwap, with learning-based strategies, includ-
ing deepfakes and NeuralTextures (Thies et al., 2019).
Each of these methods was applied to 1000 high-
quality pristine videos downloaded from YouTube,

Table 1: Performance Evaluation on FF++ Dataset. Meth-
ods labeled with ”ClOne” are proposed by us.

Method AUC
EfficienceNet-B4 (Bonettini et al., 2021) 96

Xception (Rossler et al., 2019) 94.98
ClOne 95.26

ClOneMixXcept 95.72
ClOneMixB4 96.68
ClOneSelect 96.21

carefully selected to ensure that the subjects faces
were nearly frontal and free from occlusions. These
video sequences consist of at least 280 frames each.
Ultimately, this dataset comprises over 1.8 million
images obtained from 4000 manipulated videos.

To ensure a fair comparison, in our experiment we
adopted the evaluation protocol defined in (Rossler
et al., 2019).

We used similar splits, selecting 720 videos for
training, 140 for validation and 140 for test from the
pool of original sequences taken from YouTube. The
corresponding fake videos are assigned to the same
split. We primarily focus on the subject face region
for analysis. We use the BlazeFace extractor for pre-
processing, extracting the best-confidence face from
each frame. Our network input image shape is 256 ×
256. During training and validation, we enhance the
model robustness with data augmentation, including
downscaling, flipping, brightness, contrast, hue, sat-
uration adjustments, noise addition, and JPEG com-
pression.

A total of 230302 frames were extracted from the
dataset for training, 26879 frames were set aside for
validation and 26879 for testing purposes.

During experiments, we utilized the Adam opti-
mizer with an initial learning rate of 0.0001 and cross-
entropy loss. Batch size of 32 is used and the model
is validated every 500 iteration on 6000 sample ran-
domly selected in validation set. Our model was ex-
posed to diverse and challenging conditions during
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training, allowing it to learn and adapt to various types
and levels of noise commonly encountered in real-
world scenarios. To optimize the training process, we
performed fine-tuning on the U-Net encoder, which
was initially pretrained on ImageNet with the specific
purpose of guiding the conditional image synthesis in
diffusion models (Radford et al., 2021).

To evaluate the performance of our proposed
method, we conducted various tests including com-
parisons with various models and cross-data vali-
dation. Our method was compared with Xception
(Rossler et al., 2019) and EfficienceNet-B4 (Bonettini
et al., 2021), both employed in deepfake detection.

Furthermore, we conducted an ablation study of
the model. Initially, we removed the timestep predic-
tor and trained the model with only a timestep of 0.
In other words, the model was directly trained with
the original image as input, without adding noise dur-
ing the training process. We refer to this model as
ClOne throughout the paper. Additionally, we de-
veloped hybrid versions by combining Xception and
EfficienceNet-B4 with the U-Net encoder model, re-
ferred to as ClOneMixXcept and ClOneMixB4, re-
spectively. Hybrid models performed feature extrac-
tion from the initial U-Net encoder blocks and used
them as input for Xception. Similar to ClOne, the im-
age was not corrupted by noise.

The results presented in Table 1 demonstrate that
ClOneMixB4 and ClOneSelect models present the
highest AUC values respectively 96.68 and 96.21.
ClOne also performs well, achieving an AUC of
95.26. EfficienceNet-B4 gives the third best result an
AUC of 96 and ClOneMixXcept achieves an AUC of
95.72. These results underscore the performance of
the proposed models.

We performed cross-dataset evaluation on Celeb-
DF (V2) (Yuezun Li and Lyu, 2020), an extensive
dataset designed to mimic the visual quality of online
videos. Unlike its predecessor, Celeb-DF (V1), which
contained only 795 deepfake videos, this updated
version includes 590 original videos from YouTube,
spanning various ethnicities. Additionally, Celeb-
DF (V2) encompasses 5639 corresponding deepfake
videos, making it a valuable resource for evaluation
and analysis. For testing purposes, 16,565 frames
were selected from a subset of 518 designated as test
videos.

In Table 2, the results indicate that ClOne and
ClOneMixXcept, show better performance compared
to Xception. This suggests that the proposed ap-
proach is robust to detect manipulated content in the
Celeb-DF (V2) dataset. Although ClOneSelect per-
forms slightly below EfficienceNet-B4 in terms of
AUC, it still demonstrates better performance than

Table 2: Cross-dataset evaluation on Celeb-DF (V2)
Dataset. Methods with ”ClOne” are proposed by us.

Method AUC
EfficienceNet-B4 (Bonettini et al., 2021) 77.66

Xception (Rossler et al., 2019) 73.06
ClOne 75.69

ClOneMixXcept 75.69
ClOneMixB4 74.06
ClOneSelect 74.85

Xception and ClOneMixB4 in this dataset.

5 CONCLUSION

In this paper we showcased the remarkable perfor-
mance of the U-Net model with attention and timestep
embedding in distinguishing between real and deep-
fake images. By capturing both local and global in-
formation and considering the dynamic perturbation
of the input data, our model outperformed the well-
established deepfake detection methods Xception and
EfficienceNet-B4 on the FF++ dataset in terms of
AUC.

As a future perspective, we intend to add a branch
of noise prediction from the input image in a multitask
learning setting. Additionally, we aim to explore the
utilization of other datasets to enhance the model’s
generalization capabilities.
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R. T., and Mitliagkas, I. (2020). Adversarial score
matching and improved sampling for image genera-
tion. CoRR, abs/2009.05475.

Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial net-
works.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. (2020). Analyzing and improving the im-
age quality of stylegan.

Lattas, A., Moschoglou, S., Gecer, B., Ploumpis, S., Tri-
antafyllou, V., Ghosh, A., and Zafeiriou, S. (2020).
Avatarme: Realistically renderable 3d facial recon-
struction ”in-the-wild”.

Nirkin, Y., Keller, Y., and Hassner, T. (2019). Fsgan: Sub-
ject agnostic face swapping and reenactment.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., et al. (2021). Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PMLR.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. (2022). Hierarchical text-conditional image gener-
ation with clip latents.

Rana, M. S., Nobi, M. N., Murali, B., and Sung, A. H.
(2022). Deepfake detection: A systematic literature
review. IEEE Access.

Ranjan, P., Patil, S., and Kazi, F. (2020). Improved general-
izability of deep-fakes detection using transfer learn-
ing based cnn framework. In 2020 3rd international
conference on information and computer technologies
(ICICT), pages 86–90. IEEE.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Om-
mer, B. (2022). High-resolution image synthesis with
latent diffusion models.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer.

Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Nießner, M. (2019). Faceforensics++: Learn-
ing to detect manipulated facial images. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 1–11.

Tariq, S., Lee, S., Kim, H., Shin, Y., and Woo, S. S. (2018).
Detecting both machine and human created fake face
images in the wild. In Proceedings of the 2nd interna-
tional workshop on multimedia privacy and security,
pages 81–87.
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