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Abstract:

We previously proposed a novel system composed of GI (ghost imaging) and OCT (optical coherence tomog-

raphy) to solve the problem of scattering and absorption by OCT measuring within scattering media. It is
named GI-OCT. And we successfully obtained images of scattering media and target separately in a 2 X 2mm.
In this paper, we improve a new computational approach to deal with the significant computational demands
arising from increased image resolution. Using DIP (deep image prior) technique, we obtained images with
minimal measurement data compared to traditional computational methods. In the simulation, the number of
measurements required to obtain a clear image was reduced to 10%.

1 INTRODUCTION

Optical Coherence Tomography (OCT) is an ad-
vanced imaging technique capable of generating
high-resolution tomographic images through a non-
contact, non-invasive approach in non-homogeneous
mediums (Huang et al., 1991). Operating on the prin-
ciple of low-coherence interference, OCT combines
reflected light from measurement and reference paths
to reconstruct the optical property distribution of an
object in the depth direction. Widely employed in
commercial applications, OCT has demonstrated re-
markable success in ophthalmology, providing intri-
cate images of the inner retina. Recently, its applica-
tion has extended to cardiology and dermatology for
diagnostic purposes (Gambichler et al., 2005; Sinclair
etal., 2015; Schwartz et al., 2017; Spaide et al., 2018;
Vabre et al., 2012). Furthermore, OCT finds utility
in various biomedical scenarios, particularly in mul-
tilayer scattering media such as organs and skin (Kir-
illin et al., 2008). This imaging technique is crucial
in early skin cancer detection and other biomedical
applications.

In recent years, ghost imaging (GI) techniques
have attracted attention for their ability to separate
signals from noise. Since publishing “ghost imag-
ing using a single detector (Bromberg et al., 2009)”,
GI has been used in many fields (Lindell and Wet-
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zstein, 2020; Shapiro, 2008; Katkovnik and Astola,
2012; Ryczkowski et al., 2016; Devaux et al., 2016;
Zhao et al., 2012; Chen and Chen, 2013; Olivieri
et al., 2020; Miot et al., 2019). Researchers in this
paper demonstrated that a single probe can illuminate
a sample multiple times with different light patterns,
and reconstruct an image based on the relationship be-
tween the reflected light total intensity and the illumi-
nated light pattern.

We previously proposed a novel system consisting
of GI and OCT to solve the scattering and absorp-
tion challenges encountered in OCT measurements
in scattering media, named GI-OCT (Huyan et al.,
2022). This challenge refers to the fact that during
OCT measurements in scattering media, the target
signal is always affected by light attenuation and scat-
tering in the scattering media when the measured light
propagates in the depth direction. The scattering me-
dia may change the direction of the measured light,
causing a time delay. This makes it difficult to ob-
tain the exact shape of the target and a proper image
of the target in the scattering media. GI-OCT uti-
lizes the ability of GI to reconstruct an image even
when the signal-to-noise ratio is low due to scatter-
ing. Using GI-OCT, obtaining an image of the target
without scattering effects is possible. We successfully
obtained no scattering effects images of the target in
a scattering media in the range of 2 x 2mm (Huyan
et al., 2023). In practical OCT applications, high res-
olution and quick calculation are required for precise
and accurate results. However, in GI-OCT, a large
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number of single-pixel measurements are required be-
cause each sample contains only a small amount of
information about the object. Specifically, in the com-
putational method, the result that best obtains an im-
age of N pixels requires at least M = N measurements
to meet B = M /N = 100%, where P represents the
sampling rate. In our practical measurement situa-
tion, measurements of M > 4N are required to ob-
tain good-quality images. This leads to a positive cor-
relation between the number of pixels of the object
and the data acquisition time, which is almost impos-
sible to accomplish for instantaneous high-resolution
images. Therefore, an important and long-term goal
of advancing GI-OCT is to reduce the value 3 while
maintaining good resolution, thus reducing the bur-
den of data acquisition and obtaining better imaging
quality.

With the development of deep learning, more
and more methods are being used to solve GI com-
putations. For example, deep learning-based GI
(GIDL)(Lyu et al., 2017) and Deep Image Prior
(DIP)(Lempitsky et al., 2018). This GIDL technique
uses a deep neural network (DNN) to learn from a
large number of input-output data pairs in order to es-
tablish mapping relationships between them. How-
ever, the experiments require access to huge train-
ing sets, which is both time-consuming and laborious,
and the trained models can only reconstruct objects
similar to the training set well, and the generalization
challenge is the major problem.

DIP uses an untrained neural network as a con-
straint for image processing tasks such as denois-
ing, inpainting, and super-resolution. The genera-
tor network can be used without prior training, thus
eliminating the need for tens of thousands of la-
beled data. At the same time, this technique is used
for GI computation, Deep neural network Constraint
(GIDC) (Wang et al., 2022), which inputs the differ-
ential ghost imaging (DGI) reconstruction results into
a randomly initialized neural network (untrained) to
reconstruct remarkably high signal-to-noise ratio GI
images at very low sampling rates f.

Inspired by the GIDC concept, we install here the
DIP technique for GI-OCT, where the GI-OCT re-
construction results are input into a randomly initial-
ized neural network, and the results are computed by
the DIP technique to obtain good images at a small
number of measurements. This enables the GI-OCT
technique to obtain high resolution while reducing
the number of measurements accomplishing fast and
high-resolution measurements of biological samples.

In this paper, we have accomplished the applica-
tion of the DIP technique in a simulation to confirm
the results for 64 x 64 at f = 10%, obtaining a clear

image. The calculation of 64 x 64 at B = 10% and
25% was accomplished in experiments, and a better
target image was obtained.

2 METHOD

2.1 Concept of GI-OCT

GI-OCT is the solution to the problem of scattering
media. The target in the scattering media (scatter-
ing sample) is simplified into two parts in OCT mea-
surements. The former part is the scatter layer be-
fore the light hits the target. The latter part is the tar-
get layer. By changing the reference path (A-scan)
and moving the probe orthogonally (B-scan), conven-
tional OCT can construct a 3-dimensional image of
the target layer in the scattering sample, as shown in
Figure 1. However, the measured intensity distribu-
tion from the target layer has been affected because
the image always has some uneliminated effects from
the former scattering layers. When OCT measures the
optical properties (transmittance and absorbance) of
the target layer, the former scattering layers’ distri-
bution may change the light direction, or delay the
received signal of the target layer due to the scatter’s
influence. As a result, the optical properties with the
scattering effect of the target layer are detected.
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Figure 1: Setup of a conventional OCT, that produces the
target image with scattering influence.

The GI-OCT concept is shown in Figure 2, where
light passes through an expander and a spatial light
modulator (SLM), and light patterns are generated to
illuminate the target layer within the scattering sam-
ple. A single detector collects light intensity from the
target and scatter layers. Each illuminated light pat-
tern in GI-OCT produces an A-scan signal, which is a
series of light intensities in the depth direction. With
the OCT axial resolution, these series of light intensi-
ties can be separated as the summed intensity of each
layer distribution. With the GI method, the correlation
between the different light patterns and the summed
intensity of each separated layer is calculated after re-
peated measurements using different light patterns.
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Figure 2: Setup of GI-OCT, that produces the scatter image
that can be used to generate the target image without the
scattering influence.

Instead of conventional OCT setups using a point
measurement, GI-OCT uses a 2D measurement. This
detector can simultaneously measure lights going in
other directions or the signal delayed by scattering
media. The results show them as scatter distributions.
After this, we can compute the distribution of the tar-
get layer using the GI method and the distribution of
the former scattering layer using the same method.
The former scatter layer distribution can be used to
correct the optical properties of the target layer.

2.2 The Calculation of GI-OCT

Figure 3 shows the schematic diagram of the GI-OCT
method for detecting the distribution of sample layers.
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Figure 3: Setup of GI-OCT, that produces the scatter image
that can be used to generate the target image without the
scattering influence.

Calculation of Gl

Result of GI-OCT

In order to obtain the OCT light intensity, different
patterns of light from the digital micromirror device
(DMD) chip illuminate the sample layer, as defined
in Eq. (1),

I, = o, B(sample) ()
where o, is the light pattern with m x m speckles
illuminated from the DMD chip; B(sample) is the
transmittance distribution of the sample layer; I, is
the received light intensity summed from all speck-
les’ intensities, which is the OCT interference light
intensity. P (sample) is the reconstructed image of
the sample layer’s transmittance distribution using the
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computational ghost imaging (CGI) method by calcu-
lating the correlation between o, and [, as
1 N

B (sample)cgr = N Z (o, — (o)), 2)
n=1

where (a,) = & XN, o, is the average of light pat-
terns.
The DGI is calculated using Eq. (3),
1Y a

B (sample)or = 3. (@ = (o)t = 1,

Al .
= N;(an - <0‘n>)[n

where I,/Z is the total light intensity of each light pattern
without sample, and I;; is called the light transmission
relative variance. Depending on the light transmission
relative variance, DGI can have signal-to-noise ratios
several orders of magnitude higher than CGI.

2.3 Faster Calculation

Because DGI requires a large amount of data, we use
the GIDC technique in order to increase the computa-
tional speed and reduce the measurement time. GIDC
provides the resulting DGI reconstruction into a ran-
domly initialized neural network (untrained). After
that, the output of the neural network is used as esti-
mated values of the high-quality GI image. Finally,
the weights of the neural network are updated to min-
imize the error between the measured and estimated
values. As the error is minimized, the output of the
neural network converges to a high-quality image.
For the proposed GIDC, the function for reconstruct-
ing the object image is as Eq.(4) and (5).

0" = argmingeo|| fo(z) — B (sample)par|® (@)

B (sample)Gipe = for (2) &)

Where f is the neural network, ® is the network
parameter (obtained by random initialization at the
beginning), z is a fixed random code initially inputted
into the network, 6™ is the optimal solution of the pa-
rameter obtained by training, and B/ (sample)gipc is
the optimal output of the network, which is the re-
constructed high-quality image. argmingce is the ar-
gument of the minimum, which makes the value of
the variable when the formula obtains the minimum
value.

Figure 4 shows the results obtained from the ex-
periment using the original data from GIDC (data
from GIDC)(Wang et al., 2022). Figure 4 shows the
results of GIDC iterations on DGI reconstructed im-
ages. Figure 4 (a) shows the DGI results, in 64 x 64
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size, computed 400 times. Figure 4 (b) results from
training O times using the neural network. Figure 4
(c) and (d) are the results of iterations 100 and 200
times

(@ DGl () GIDC

-

(d GIDC

0 25 50 0 25 50

Figure 4: The results of (a) is DGI uses 64 x 64 to compute
400 times. (b), (c) and (d) are the results of training 0, 100
and 200 times.

3 SIMULATION

This simulation utilizes the GIDC network structure
derived from the U-network. Algorithm 1 describes
the main progress. The weights in the neural network
are updated using an Adam optimizer with a learning
rate oo = 0.05. The leakage parameter of Leaky ReLLU
is 0.2. The regularization parameter of TV is 10710,
L refers to the number of iterations.

Data: DGI’s result, o = 0.05, Leaky
ReLU=0.2, TV=10"10, L=400
Result: GI reconstruction with GIDC
initialization: a randomly initialized
parameters © in neural network (untrained).;
while Step=1,2,3... L do
fo(z) =0 €6;
Lo = MSE(fo(z) — B (sample)pcr);
0 = ADAM (Lg, )
end
Algorithm 1: The algorithms of GIDC.

The sample used for the simulation is the character
’E’, as shown in Figure 5.

Firstly, the corresponding light intensity ( /) was
obtained after illuminating the sample () with 64 x

64 size random pattern (o). Then, using the DGI cal-
culation method of Eq. (3), the calculated result of
the sample ([3/) was obtained by employing the pat-
tern () and the light intensity ( 7). Finally, the calcu-
lated results were applied to the GIDC to obtain the
results for 0, 100, and 200 iterations.

Figure 6 (a) shows the DGI results for character
E’ at 400 calculations with size 64 x 64. Figure 6
(b) shows the result of O times training using neural
network. Figure 6 (c) and (d) show the results for
100 and 200 iterations. We succeeded in getting clear
images from only recognizable DGI images.

0 10 20 30 40 50 60
Figure 5: The character 'E’ is utilized in the simulation.
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Figure 6: The results of (a) is DGI uses 64 x 64 to compute
400 times. (b), (c) and (d) are the results of training 0, 100
and 200 times.
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4 EXPERIMENT AND SETUP

Figure 7 illustrates the experimental setup for GI-
OCT.

In the GI-OCT, the axial resolution is equivalent to
coherence length, defined as 8z = 0.44A3 /AL, where
Ao = 856nm is the central wavelength of a high-
power Superluminescent diodes (SLD) light source
with Gaussian distribution, and the equipment spec-
ifications are shown in Table 1.

Table 1: SLD specification of GI-OCT.

Manufacturer THORLABS
Model number SLD850S-A20W
Center wavelength 860 nm
Spectral band width 28 nm
Coherence length 11.6um
Optical power[ MAX] 30 mW

To make illumination patterns, the GI-OCT beam
must spread and reflect part of the light. In this study,
a high-power SLD was prepared in order to validate
the new GI-OCT algorithm. The reference path length
scanning mechanism is composed of a steady rotat-
ing motor and a fixed mirror that completes the axial
scanning process(Shiina et al., 2003). The measure-
ment path is equipped with an optical probe, and a
varifocal collimator makes a beam of 2 mm diameter.
Meanwhile, the high-speed DMD chip is set in the
measurement path, and its specifications are shown in
Table 2.

Table 2: DMD specification of GI-OCT.

Manufacturer TI
Model number DLP2010LC
Illumination wavelength | 860 nm (90%)
Array diagonal 5.29 mm
Output frame rate 240 Hz

On the DMD chip, micromirrors are arranged in
a matrix of 854 x 480, with a total size of 4.61 x
2.59mm. Each micromirror has a size of 5.4 x 5.4um
and a deflection angle of 17 degrees on the diagonal
axis, divided into two states, “on” and “off”’. In or-
der to reflect pattern light back to the collimator, the
DMD chip is tilted +17 degrees along the diagonal.
The DMD chip was controlled to display a speckle
pattern within a 1.5 x 1 mm? DMD chip area, 64 x
64 were applied in this experiment.

The character ”E” also shown on the DMD, which
overlaps the illumination pattern, was used as the tar-
get object for this experiment to be able to focus on
the reconstruction effect, as shown in Figure 5. In ad-
dition, the DMD chip was placed in the interference
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region of the OCT so that the OCT measurements are
efficient in terms of light reflection and stable in terms
of light intensity, which makes it easy to reconstruct
the results from the images.

In this paper, different number of measurements
were prepared: 410 and 1000 measurements. In ac-
tual measurements, there will be a lot of noise and
bias affecting the experimental results. It is not pos-
sible to get the B=10% in the simulation results and
the number of measurements needs to be increased to
enhance the results.

High power
SLD 856nm

“ Photodiode

Reference path

- ocT

Intensity

[ T reconsin
Reconstruction

DMD

Collimator

Figure 7: Experiment setup of GI-OCT.

5 RESULT

We have used the character "E’ of Figure 5 as the
target image. Figure 8 shows the results at different
numbers of iterations with the GIDC method and the
DGI results, with the reconstructed image of the GI-
OCT device at the actual number of measurements of
410, with a measurement pattern size of 64 x 64. Fig-
ure 8 (a) shows the results of the DGI method. In this
result, little information is obtained for each pattern, a
large number of measurements are required to obtain
arecognizable target image, and the reconstructed im-
age has the shape of the target image. Figures 8(b),
(c), (d), and (e) show the results for 0, 100, 200, 300,
and 400 iterations. Among these results, the Oth result
is the worst, which is consistent with the simulation
result (Fig.6 (a)). However, from the 100th iteration,
the iteration results hardly change anymore and the
reconstructed image is hardly visible as the target im-
age.

Figure 9 shows the results using the GIDC method
at different numbers of iterations and the DGI results
with the reconstructed image of the GI-OCT device
at the actual number of measurements of 1000, with
a measurement pattern size of 64 x 64. Figure 9 (a)
shows the results of the DGI method. This result is
almost identical to the DGI result in Figure 8 (a). Fig-
ures 9 (b), (¢), (d), and (e) show the Oth, 100th, 200th,
300th, and 400th iteration results. Among these re-
sults, the same Oth result is the worst. The character
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GIDC

(d) 200 (e) 300 (f) 400

Figure 8: The results of each iteration by GIDC method and
DGI method in 410 measurements.

GIDC

Figure 9: The results of each iteration by GIDC method and
DGI method in 1000 measurements.

”E” is clearly visible in the 100th result image. After
200 times iterations, the iteration results progressively
worsen, probably due to overfitting.

6 DISCUSSION

In this paper, the structural similarity index method
(SSIM) is introduced for the purpose of evaluating
the reconstructed images. SSIM is a method for pre-
dicting the perceived quality of two images. SSIM is
close to 1, indicating that the perceived structure of
the two images is consistent, while SSIM is close to
0, indicating that the images are unrelated. The SSIM
results are used to make a subjective judgment of the

clarity of the image character ”E”, a positive SSIM
value means that the reconstructed image is positively
correlated and a negative value means that it is nega-
tively correlated. The SSIM is used to evaluate the
quality of the reconstructed image.

(ucpy+(K1L)?) (201y+ (K2 L)?)

(ug+us+(K1L)?) (05 +05+(K2L)?)
(6)
here, x and y indicate the expected result and
the comparison result. u is he mean value, G is the
standard deviation, Oy, is the covariance of x and y,
K1=0.01,K2=0.03, and L represents the maximum
possible pixel value in the image. The experimental
images are compressed between 0 and 1; here, L = 1.

We compared the SSIM results for different num-
ber of measurements with different number of itera-
tions.

By calculating the results of DGI and GIDC with
the SSIM values of Figure 5, we obtain Figure 10.
The SSIM of the DGI results for 410 measurements
is 0.003. The SSIM of the GIDC with each 100 itera-
tions, as shown by the blue line in Figure 10, reaches
a maximum of 0.004 at 100 iterations, and the re-
sults are negative after 200 iterations. The SSIM of
the DGI result for 1000 measurements was 0.005.
The SSIM of the GIDC with every 100 iterations, as
shown by the orange line in Figure 10, again reached
a maximum of 0.006 at 100 iterations, after which
they were all lower than 0.005 and did not change
much. The above two experiments proved that us-
ing the GIDC method enhanced the image results at
100 iterations. The experimentally obtained SSIM
has a very low value because the beam used in the
actual measurement of GI-OCT has a Gaussian distri-
bution. This resulted in a large difference between the
GI-OCT image and the character E’. There is a lot
of random noise, and it is impossible to achieve the
good results obtained in the simulation using B=10%.
A higher number of measurements is needed.

SSIM (x,y) =

0.008

0.006

0.004

0.002

SSIM

0

-0.002

-0.004

-0.006

0 100 200 300 400 500
Iterations

—=—-1000 measurements  —=—410 measurements

Figure 10: SSIM values of the GIDC results for different
numbers of iterations for 410 and 1000 measurements.
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7 CONCLUSION

In this study, we propose a new method applied to
GI-OCT to reduce the number of measurements. We
used the GIDC method, where the reconstruction re-
sults are added to a neural network, utilizing the fact
that neural networks are inherently low resistance to
natural signals and high resistance to noise.

We accomplished the reconstruction of GI-OCT
images in simulation and obtained clear images at
B=10%, greatly reducing the number of measure-
ments required for reconstruction in a size of 64 x 64.
It was experimentally verified that the method can en-
hance the reconstructed image at 100 iterations.

However, due to some problems, the SSIM values
could be better. This result is due to the background
light problem, which needs to be solved first in the fu-
ture to get more correct results. It may also be due to
the fact that different GI calculation methods can af-
fect the imaging results. Therefore, it is necessary to
compare the effects of different GI calculation meth-
ods on the reconstructed images, which are computed
ghost imaging (CGI), pseudo-inverse ghost imaging
(PGI), and differential pseudo-inverse ghost imaging
(DPGI) (Don, 2019; Ferri et al., 2010; Zhang et al.,
2014). In addition, the number of speckles in the GI-
OCT illumination pattern can also greatly impact the
results and is an issue we need to research in the fu-
ture.

In the next step, we are going to apply this new
technique to obtain real-time, high-resolution images
of multilayers in scattering media of GI-OCT mea-
surements.
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