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Abstract: With the emergence of deep learning-based semantic embedding models, it has become possible to extract
large-scale semantic spaces from text corpora. Semantic elements such as words, sentences and documents
can be represented as embedding vectors in these spaces, allowing their use in many applications. However,
these semantic spaces are very high-dimensional and the embedding vectors are hard to interpret for humans.
In this paper, we demonstrate a method for obtaining more meaningful, lower-dimensional semantic spaces,
or cognitive maps, through the semantic clustering of the high-dimensional embedding vectors obtained from
a real-world corpus. A key limitation in this is the presence of semantic noise in real-world document corpora.
We show that pre-filtering the documents for semantic relevance can alleviate this problem, and lead to highly
interpretable cognitive maps.

1 INTRODUCTION

One of the most important recent advances in natu-
ral language processing is the development of high-
quality methods for embedding semantic entities such
as words (Mikolov et al., 2013; Pennington et al.,
2014), sentences (Conneau et al., 2017; Cer et al.,
2018; Reimers and Gurevych, 2019), and even en-
tire documents (Beltagy et al., 2020; Le and Mikolov,
2014) in semantic vector spaces. This is the key step
enabling applications such as document classification
(Devlin et al., 2019), text summarization (Pang et al.,
2022), text segmentation (Lo et al., 2021), and – most
notably – generative language models such as Chat-
GPT (OpenAI, 2023a) and GPT-4 (OpenAI, 2023b).
However, almost all the embedding methods use large
(and deep) neural networks, resulting in semantic
spaces that are extremely high-dimensional and ab-
stract in the sense that the individual dimensions have
no semantic interpretation. We have recently devel-
oped an approach to building interpretable semantic
cognitive maps from domain-specific text corpora us-
ing document embedding and clustering, but that ap-
proach has been validated only on small, noise-free
corpora with very short documents (Choudhary et al.,
2021; Choudhary et al., 2022; Fisher et al., 2022). In

this paper, we show that semantic cognitive maps can
also be inferred from large corpora of longer, more
noisy documents by using sentence-level embedding
and relevance filtering.

2 MOTIVATION

Cognitive maps (Tolman, 1948) are mental frame-
works that allow a set of entities, e.g., locations,
concepts, etc., to be represented such that the rela-
tionships between the entities are captured. While
the semantic spaces constructed by language mod-
els such as BERT (Devlin et al., 2019), Universal
Sentence Encoder (USE) (Cer et al., 2018), MPNet
(Song et al., 2020), and XLM (Lample and Conneau,
2019) provide powerful representational frameworks,
they cannot be considered human-interpretable cog-
nitive maps because of their high dimensionality and
abstractness. Also, these models are typically pre-
trained on very large, generic datasets, and are thus
not always suitable for domain-specific representa-
tions (though some can be fine-tuned for this pur-
pose).

The immediate motivation for the research re-
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ported in this paper is the application of tracking ideas
expressed during brainstorming sessions (Coursey
et al., 2019) in real-time, and using this to track the
generated ideas in real time. This requires a seman-
tic space in which the expressed ideas can be repre-
sented in terms that the human participants can un-
derstand and that is appropriate for the domain of the
brainstorming session, i.e., a semantic cognitive map.
One way to build such a cognitive map is to infer it
from a sufficiently large reference corpus of domain-
specific documents. A broader motivation for our re-
search comes from the rapid growth in the use of large
language models (LLMs) (OpenAI, 2023a; OpenAI,
2023b), which work by creating a series of embedding
vectors for text and image inputs that can then be used
for inference. Analyzing the semantics of these ab-
stract embedding vectors is an essential part of inter-
preting the internal functionality of trained LLM net-
works, and the clustering-based approach presented
in this paper is a step in that direction.

We have recently proposed an approach for build-
ing cognitive maps from reference corpora (Choud-
hary et al., 2021; Choudhary et al., 2022). In this
approach, the reference documents are embedded us-
ing a model such as MPNet or USE, compressed to a
somewhat lower dimensionality using principal com-
ponents analysis retaining 95% variance (PCA95),
and then clustered adaptively to identify distinct re-
gions in the (still quite high-dimensional and ab-
stract) PCA95 space where reference document data
is dense, indicating that these regions are meaningful
for the domain. The clusters of reference data are each
characterized in terms of their keywords to provide in-
terpretability, and the centroids of these clusters are
used as the meaningful landmarks of the cognitive
map. We have shown that the approach works well if
the reference corpus consists of short, semantically-
focused, domain-specific, noise-free documents such
as descriptions of specific items in a domain-specific
list. However, such corpora are not easily available
for most domains. The work reported in the present
paper adapts the approach to work with large refer-
ence corpora comprising long, real-world documents.
This raises two problems: 1) In contrast to small doc-
uments, each long document contains a multiplicity
of topics, so embedding whole documents will not
produce meaningful clusters; and 2) Long documents
often include text that is not relevant to the domain
but is present only for stylistic reasons, thus adding
semantic noise to the documents. We address prob-
lem 1 by decomposing documents into individual sen-
tences and treating each sentence as a semantic ele-
ment for clustering, while problem 2 is addressed by
filtering out sentences deemed irrelevant to the corpus

as whole. The results show that this approach works
well on substantial real-world corpora, one of which
is used as the reference corpus for this paper.

An important aim of the method we report is that it
should be systematic, i.e., it produces cognitive maps
with a quantitative quality metric, and allows a prin-
cipled selection of dimensionality. We achieve this by
defining a cluster semantic coherence metric and us-
ing it to select the optimal number of clusters and to
evaluate the final set obtained. We also use the clus-
tering process to remove additional semantic noise
from the dataset, which could be useful for other ap-
plications.

3 METHODS

3.1 Source Dataset

While we have evaluated our method on several
datasets, the results in this study are based on the
United States Presidential Speeches dataset avail-
able on Kaggle (Lilleberg, 2020), which contains a
comprehensive collection of speeches delivered by
all the U.S. presidents from Washington to Trump.
Our analysis focused specifically on the period from
Ronald Reagan to Donald Trump, encompassing 229
speeches and 45,639 sentences. Thus, each speech
consists of 200 sentences on average, which is a sig-
nificant document length. Also, the speeches are all
from the domain of governance and politics, so the
corpus is domain-specific, albeit from a rather diverse
domain.

3.2 Overview

The process followed in the construction and evalu-
ation of the cognitive maps comprises the following
steps:

Sentence Embedding: All the documents in the
reference corpus are separated into individual sen-
tences, giving the sentence corpus (SC). Each sen-
tence in the SC is embedded into a semantic vector
space using a sentence embedding model. Based on
our previous work that considered and compared sev-
eral models for this (Choudhary et al., 2021; Choud-
hary et al., 2022), we use the MPNet model (Song
et al., 2020) for the embedding without any fine tun-
ing. This produces a 768-dimensional vector for each
sentence in the SC. The set of all sentence vectors in
the SC is termed the unfiltered sentence set (USS).

Short Sentence Removal: The number of tokens
in each sentence are counted. All sentences with three
or fewer word tokens are omitted, and the rest are all
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combined to form the sentence corpus (SC), which is
the basis of the cognitive map. While some short sen-
tences may be meaningful and omitting these would
cause some loss of information, on balance this is
not critically important because the goal here is to
identify clusters comprising many semantically sim-
ilar sentences in a large corpus, and no useful cluster
would – or should – depend critically on the inclusion
of a few specific sentences. Very short sentences (e.g.,
sentences such as “Ladies and gentlemen!”, “Thank
you”, etc.) often represent semantic noise and their
removal is expected to decrease the overall noise level
in the corpus.

Relevance Filtering: While the omission of very
short sentences removes some semantic noise from
the corpus, many longer sentences also contribute to
the noise, and must be removed by a more semantics-
aware filtering process to remove sentences deemed
less relevant. In this paper, we consider two simple
filtering methods:
1. Method C: This method uses a public-

domain system proposed by Kuan and
Mueller (Kuan and Mueller, 2022) (see also
https://cleanlab.ai/blog/outlier-detection/), which
assigns a relevance score between 0 and 1 to
each sentence. The method uses a K-nearest
neighbors (KNN) approach to assign the score,
so that sentences with larger distances from their
K nearest neighbors in the embedding space get
lower scores. Once all the scores are obtained,
the embedding vectors for sentences below a
relevance threshold θr are removed to give the
(smaller) filtered sentence set (FSS).

2. Method S: This method filters documents based
on a very simple heuristic measure of semantic
specificity of sentences, calculated as follows. The
frequencies, fi, of 333K most used words, wi,
from the Google Web Trillion Word corpus (Tat-
man, 2017) are used to estimate the probability,
P(wi) of a word occurring in general English as
p(wi) = fi/∑ j f j, j = 1, ...,333,000. The seman-
tic specificity score of a sentence, sk with Lk word
tokens is calculated as: H(sk) =−∑

Lk
i=1 log p(wk

i ),
where wk

1 is the word corresponding to the ith
word token in sk. Short sentences or those with
a lot of commonly used words thus end up with
a lower specificity score than longer sentences or
those using uncommon words. Filtering removes
sentences with the lowest scores. To maintain
comparability with Method C, the number of sen-
tences retained is the same as that retained by the
equivalent case of Method C. This process also
gives a filtered sentence set (FSS) with the same
number of sentences as the one obtained through

Method C but not the same sentences.

Dimensionality Reduction: Since the 768-
dimensional embeddings often contain a lot of re-
dundancy, they are mapped to a lower-dimensional
space using principal components analysis with the
constraint of retaining 95% of the total variance. This
is done separately for the USS and FSS, resulting in
somewhat different reduced dimensionality for them.
The reduced sets of sentence vectors are called the
reduced unfiltered sentence set (RUSS) and the re-
duced filtered sentence set (RFSS). We have shown
previously that this dimensionality reduction retains
the pairwise spatial relationships between embedding
vectors very well (Choudhary et al., 2021).

Sentence Clustering: The embedding vectors in
the RUSS and RFSS are clustered separately using
K-means clustering. To determine the best value of
K (number of clusters), we use a semantic coherence
metric described in Section 3.3. This metric assigns a
value between -1 and +1 to each cluster based on the
semantic coherence between its M most significant
words. The mean cluster coherence is determined for
each value of K between 11 and 48, and the K giv-
ing the highest mean coherence is chosen. Thus, the
RUSS and RFSS yield different optimal numbers of
clusters. These optimal K values also depend on the
θr and M parameters as discussed below.

Evaluation: The clusterings obtained by the dif-
ferent methods and parameter values are compared
quantitatively using the cluster coherence metric de-
scribed described in Section 3.3.

Cluster Visualization: The final set of clusters is
visualized using wordclouds obtained from the set of
sentences assigned to each cluster. The process for
calculating word significance for the wordclouds is
described below in more detail.

3.3 Semantic Coherence Metric

The semantic coherence of a cluster is defined in
terms of the strength of semantic relatedness between
the most significant words in the sentences compris-
ing it. This depends crucially on how the significance
of words within a cluster is measured. Following cus-
tomary practice in the text analysis field, we consider
a word to be more significant in a cluster if it is used
with frequency disproportionately higher than its fre-
quency in other clusters. This principle – embodied
in the standard TF-IDF metric (Luhn, 1957; Jones,
1972) used in document classification – is adapted for
application to clusters as follows.

First, all the sentences in each cluster, Ci, are
combined to define a single virtual cluster document
(VCD), di, giving the set D = {di}, i = 1, ...,K, where
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Table 1: Performance Summary.

Method C1 C2 S1 S2 U1 C3 C4 S3 S4 U2

Total Clusters 32 21 47 34 25 40 21 19 30 23
Mean Coherence 0.258 0.293 0.239 0.240 0.255 0.201 0.222 0.196 0.170 0.198
Viable Clusters 28 19 42 32 23 34 19 16 26 18

Mean Coherence 0.306 0.340 0.276 0.274 0.295 0.239 0.255 0.248 0.197 0.265

Figure 1: Mean cluster semantic coherence values as a function of cluster sizes for all 10 cases.

K is the number of clusters. The M most significant
words in each VCD, di, are then identified by calcu-
lating TF-IDF scores for all words in di relative to all
the other VCDs.

Terms that occur with a disproportionately high
frequency in di relative to the set D as a whole are
deemed as more significant, and therefore more rep-
resentative of the cluster. These word TF-IDF values
are also used as weights in the cluster wordclouds.

Next, the pairwise cosine similarities between
vector space embeddings of all M significant words
are calculated. The word embeddings used are
those given by the GloVe algorithm pre-trained on
Wikipedia data with 6 billion tokens and a 400,000
word vocabulary (Pennington et al., 2014) (down-
loaded from https://nlp.stanford.edu/projects/glove.)
A weighted average of these M(M−1)/2 cosine simi-
larities is then used as the cluster semantic coherence.
The weighting is necessary to suppress the role of
common words and amplify that of uncommon ones.
This is based on the frequency rank, r j, of the words,
w j, in the GloVe embedding database, where less fre-
quent words have a higher value (occur later in the
ranking). The weight for a word pair (w j,wk) is cal-
culated as:

w jk =
w jk

∑
p,q

wpq
(1)

where w jk = (r j + rk)/2. The coherence score Qi of a
cluster Ci with VCD di is then calculated as:

Qi = ∑
j,k∈di

w jksim( j,k) (2)

where sim( j,k) is the cosine similarity between the
GloVe vectors of words w j and wk.

4 RESULTS AND DISCUSSION

To evaluate the approach described above, we applied
it to the corpus of US presidential speeches from Rea-
gan to Trump. These were chosen because: a) The
speeches are in modern English with no archaic us-
ages; and b) They cover a period that most readers
today would be familiar with, so the semantic quality
of clusters would be easier to determine.

Ten cases were considered as listed below :

1. Case C1: M = 10, Method C with θr = 0.5.

2. Case C2: M = 10, Method C with θr = 0.6.
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Figure 2: Rank plots of semantic coherence values for clusters. Top: M = 10 case; Bottom: M = 20 case. The horizontal red
line indicates a coherence value of 0.1 that is designated as the minimum necessary for a meaningful cluster (see text).

Figure 3: Wordclouds for the 4 most coherent clusters found in the S1 case. The legend at the top of each wordcloud indicates
cluster ID, cluster size, and the cluster semantic coherence value.

3. Case S1: M = 10, Method S matched with C1.

4. Case S2: M = 10, Method S matched with C2.

5. Case U1: M = 10, unfiltered text.

6. Case C3: M = 20, Method C with θr = 0.5.

7. Case C4: M = 20, Method C with θr = 0.6.

8. Case S3: M = 20, Method S matched with C3.

9. Case S4: M = 20, Method S matched with C4.

10. Case U2: M = 20, unfiltered text.
The quality of clustering depends significantly on

both the θr parameter (for the filtered cases) and the
M parameter (for all cases, since M is used in deter-
mining the optimal cluster number in every case). Af-
ter exploring several values for each parameter, we
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Figure 4: Wordclouds for the 4 most coherent clusters found in the C3 case. The legend at the top of each wordcloud indicates
cluster ID, cluster size, and the cluster semantic coherence value.

Figure 5: Wordclouds for the 4 least coherent clusters found in the S1 case. The legend at the top of each wordcloud indicates
cluster ID, cluster size, and the cluster semantic coherence value.

Figure 6: Wordclouds for the 4 least coherent C3 clusters that post-clustering filtering at a coherence of 0.1 would remove.
The legend at the top of each wordcloud indicates cluster ID, cluster size, and the cluster semantic coherence value.

decided to use θr values of 0.5 and 0.6, and M val-
ues of 10 and 20. A value θr = 0.5 corresponds
roughly to 1.5 standard deviations below the mean,
while θr = 0.6 is slightly above the mean. When com-
bined with the removal of short sentences, the 0.5 case
removes about 10% of all sentences (light filtering),
while the 0.6 case removes about 60% (extreme filter-
ing). The goals are: a) To see if filtering with either
or both methods produces better clusters than the cor-
responding unfiltered cases; and b) Whether extreme
filtering can help enhance performance.

Figure 1 shows the method for selecting the num-
ber of clusters in each of the 10 cases. Values of K
from 11 to 48 are considered. For each case, the mean
semantic coherence of the clusters found is plotted

against the number of clusters, K, and the K value
giving the highest mean coherence is chosen as the
number of clusters for that case. To keep compar-
isons fair, all clusterings are done using the same seed
value for centroid initialization in K-means cluster-
ing. This seed value is chosen empirically to be the
one that gives the least variance across cases. Across
the range of K, the mean coherence is much higher
for the C2 (M = 10, θr = 0.6) case than for any other,
though the other methods catch up when K becomes
large. In general, using M = 20 reduces mean coher-
ence of clusters compared to the equivalent M = 10
case. This reflects the fact that using a higher M re-
sults in a more inclusive measure of coherence be-
cause it includes some less significant words in the
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cluster. This tends to move the coherence values for
clusters somewhat closer because of an averaging ef-
fect. This is also why it is important to keep M limited
to a small value such as 10 or 20, and to evaluate the
M = 10 and M = 20 cases separately.

Table 1 shows how many clusters each method
produces at its optimal K (as determined from Fig-
ure 1), and the mean coherence of the clusters in each
case. It also shows how many clusters remain after
those with coherence below 0.1 are removed, and the
mean coherence of these viable clusters.

Figure 2 shows rank plots of cluster semantic co-
herence values obtained for all methods. The case
with the optimal number of clusters (based on Fig-
ure 1) is shown. The M = 10 and M = 20 cases are
plotted separately. The horizontal red line at a coher-
ence score of 0.1 indicates that clusters with coher-
ence value below this threshold are to be considered
of poor quality, and should be discarded. This repre-
sents an additional, post-clustering filtering step. A
justification for choosing 0.1 as the cutoff is that, as
Figure 1 shows, the mean cohesion of clusters across
all methods and K values stays above that level. Thus,
clusters with coherence below 0.1 can reasonably be
considered as falling below the worst-case mean.

For the M = 10 cases, the method giving the high-
est mean coherence in viable clusters is C2 (θr = 0.6).
However, it produces only 19 viable clusters – prob-
ably because too many relevant sentences have been
filtered away. C1, on the other hand, produces 28 vi-
able clusters with a good mean coherence of 0.307.
The largest number of viable clusters is produced by
S1 (42 clusters with a mean coherence of 0.276). S2
produces fewer clusters with lower mean coherence.
The unfiltered case produces 23 viable clusters with
quite a good mean coherence of 0.295, but the 23rd
cluster for S1 is twice as coherent (Q = 0.241) as the
corresponding cluster of U1 (Q = 0.111). The 23rd
clusters of C1 and S2 are also much better. For the
M = 20 case, C3 (θr = 0.5) is clearly the best. C4,
S3 and U2 produce few viable clusters, and S4 is also
dominated by C3 in both cluster number and mean
coherence. Thus, S1, C1 and C3 emerge as the best
options from this study. Figures 3 and 4 show the
wordclouds for the four most coherent clusters in the
S1 and C3 cases, respectively. For the same M value
in the coherence metric, a small amount of filtering
(Cases C1, C3, S1, S3) produces a greater number
of coherent clusters than no filtering (Cases U1 and
U2), though unfiltered data can produce a few very
coherent clusters (C2). However, extreme filtering
produces a lot fewer viable clusters.

One of the most interesting results to emerge from
the proposed method is the significance of non-viable

clusters. Figures 5 and 6 shows the four least coherent
clusters produced by S1 and C3, respectively. All of
them are clearly dominated by rather generic terms,
and looking at the actual sentences in these clusters
confirms that they have indeed swept up a large num-
ber of low relevance sentences that the other two fil-
tering stages had left in the corpus. Thus, the clus-
tering process can itself be seen as a third stage of
relevance filtering.

It is also notable that the lightly filtered cases
(C1, C3, S1, S3) identify more removable clusters
than the unfiltered case, even though the unfiltered
data has many more removable sentences. This im-
plies that the unfiltered clustering is smearing seman-
tic noise across some or all of its viable clusters, but
pre-filtering is removing some of it, allowing the clus-
tering process to squeeze out still more.

The results for both the best and worst clusters
also show that the coherence metric used in this study
is meaningful, and correlates well with human judge-
ments of coherence. A more systematic study of this
with human evaluators will be reported in future pa-
pers.

5 CONCLUSION

The primary conclusion from this study is that the
method described can produce good, interpretable,
domain-specific semantic cognitive maps from cor-
pora of long, real-world documents with semantic
noise. As a side-effect, the method also provides an
effective way of removing irrelevant text from doc-
uments, both through pre-filtering and further post-
clustering filtering. The wordclouds of the low co-
herence clusters obtained and removed show that
they perform a “garbage collection” function. The
very simple, purely lexical heuristic relevance filter-
ing method we tried (Method S) performed well, with
the S1 case producing the largest number of viable
clusters with a high mean coherence value, and S2
also performing well. Filtering with Method C gave
fewer, though higher-quality, clusters in the M = 10
case. The results in the M = 20 case were more am-
biguous, and produced fewer viable clusters. Future
work includes looking at varying the viability thresh-
old, applying the method to even noisier corpora, and
integrating it into an automated discussion tracking
and guidance system.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

748



ACKNOWLEDGEMENTS

This work was partially supported by Army Research
Office Grant No. W911NF-20-1-0213.

REFERENCES

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Long-
former: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Cer, D., Yang, Y., Kong, S.-Y., Hua, N., Limtiaco, N.,
St. John, R., Constant, N., Guajardo-Cespedes, M.,
Yuan, S., Tar, C., Strope, B., and Kurzweil, R. (2018).
Universal sentence encoder for English. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 169–174, Brussels, Belgium. Association
for Computational Linguistics.

Choudhary, R., Alsayed, O., Doboli, S., and Minai, A.
(2022). Building semantic cognitive maps with text
embedding and clustering. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 01–
08. IEEE.

Choudhary, R., Doboli, S., and Minai, A. A. (2021). A
comparative study of methods for visualizable se-
mantic embedding of small text corpora. In 2021
International Joint Conference on Neural Networks
(IJCNN’21), pages 1–8. IEEE.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. (2017). Supervised learning of universal
sentence representations from natural language infer-
ence data. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 670–680, Copenhagen, Denmark. Association
for Computational Linguistics.

Coursey, L., Gertner, R., Williams, B., Kenworthy, J.,
Paulus, P., and Doboli, S. (2019). Linking the di-
vergent and convergent processes of collaborative cre-
ativity: The impact of expertise levels and elaboration
processes. Frontiers in Psychology, 10:699.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Fisher, D., Choudhary, R., Alsayed, O., Doboli, S., and Mi-
nai, A. (2022). A real-time semantic model for rele-
vance and novelty detection from group messages. In
2022 International Joint Conference on Neural Net-
works (IJCNN), pages 01–08. IEEE.

Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28:11–21.

Kuan, J. and Mueller, J. (2022). Back to the basics: Revis-
iting out-of-distribution detection baselines. In 2022
ICML Workshop on Principles of Distribution Shift.

Lample, G. and Conneau, A. (2019). Cross-lingual
language model pretraining. arXiv preprint
arXiv:1901.07291.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In Xing, E. P. and Je-
bara, T., editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Pro-
ceedings of Machine Learning Research, pages 1188–
1196, Bejing, China. PMLR.

Lilleberg, J. (2020). United states presidential
speeches. https://www.kaggle.com/datasets/littleotter/
united-states-presidential-speeches. Accessed:2023.

Lo, K., Jin, Y., Tan, W., Liu, M., Du, L., and Buntine,
W. (2021). Transformer over pre-trained transformer
for neural text segmentation with enhanced topic co-
herence. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 3334–
3340, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Luhn, H. P. (1957). A statistical approach to mechanized
encoding and searching of literary information. IBM
Journal 1(4), pages 309–317.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In Bengio, Y. and LeCun, Y., editors,
1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, Work-
shop Track Proceedings.

OpenAI (2023a). ChatGPT: Optimizing language models
for dialogue.

OpenAI (2023b). GPT-4 technical report.
Pang, B., Nijkamp, E., Kryściński, W., Savarese, S., Zhou,
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