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Abstract: The food analysis from images is a challenging task that has gained significant attention due to its multiple
applications, especially in the field of health and nutrition. Ontology-driven deep learning techniques have
shown promising results in improving model performance. Food ontology can leverage domain-specific in-
formation to guide model learning and thus substantially enhance the food analysis. In this paper, we propose
a new ontology-driven multi-task learning approach for food recognition. To this end, we deal multi-modal
information, text and images, in order to extract from the text the food ontology, which represents prior knowl-
edge about the relationship of food concepts at different semantic levels (e.g. food groups and food names),
and apply this information to guide the learning of the multi-task model to perform the task at hand. The pro-
posed method was validated on the public food dataset named MAFood-121, specifically on dishes belonging
to Mexican cuisine, outperforming the results obtained in single-label food recognition and multi-label food
group recognition. Moreover, the proposed integration of the ontology into the deep learning framework al-
lows providing more consistent results across the tasks.

1 INTRODUCTION

Food recognition from images has gained significant
attention due to its various applications, including diet
tracking (Ming et al., 2018), food recommendation
(Deldjoo et al., 2020), and health analysis (Allegra
et al., 2020). Despite this, food recognition remains a
challenging task due to the complexity of food im-
ages, which can vary in terms of their appearance,
size, shape, texture, and color (Jiang et al., 2019). Ad-
ditionally, food may be presented in different settings,
such as plates, bowls, or trays, adding another layer
of complexity to the classification task. Therefore,
a well-complied deep learning model are required to
correctly address the classification of food images.

In recent years, the use of ontologies in the classi-
fication of food images has shown promising results
(Zhao et al., 2021; Wang et al., 2022), which has led
to the development of ontology-based image classifi-
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cation techniques. However, the lack of a standard-
ized food ontology is a major problem to food be-
tween different systems and applications. This can
lead to ambiguity and confusion in how food is classi-
fied and described, making it difficult to integrate with
different systems. Additionally, it can have a nega-
tive impact in areas such as public health, nutrition re-
search, agriculture, and the food industry, among oth-
ers, where accurate and complete information about
food is important.

The integration of the food ontology into a deep
learning framework could provide several benefits
such as: a) Relating the food concepts predicted by
the model to specific diseases to prevent damage to
the health of people suffering from it (Donadello and
Dragoni, 2019); b) Relating the food concepts pre-
dicted by the model with allergens to prevent food al-
lergy or intolerance; c) Training of multi-task model
being aware of the coexistence and exclusion of food
concepts at different semantic levels (Wang et al.,
2022), just to mention a few.

Ontology-based deep learning models (Popovski
et al., 2020) have been proposed that provide an
overview and comparison of named entity recog-
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nition methods in the food domain, which can be
used for automated information extraction about food
from text, where four methods are discussed: FoodIE
(Popovski et al., 2019), NCBO (SNOMED CT),
NCBO (OntoFood) and NCBO (FoodON) (Stojanov
et al., 2020). The comparison is performed us-
ing a dataset of 1000 recipes taken from Allrecipes
(Song et al., 2023). They have also been proposed
on extracting food information from text (Popovski
et al., 2020) or substituting ingredients in recipes
(Ławrynowicz et al., 2022). Although these ap-
proaches are interesting, they do not directly focus on
classifying food images.

In the area of large-scale visual recognition, sev-
eral approaches have been proposed that combine on-
tologies and deep learning (Kuang et al., 2018; Zhang
et al., 2019). In particular, in the field of food image
recognition, lately, there has been a growing interest.
In (Divakar et al., 2019), the problem of predicting
Type 2 Diabetes Mellitus is addressed by proposing
an ontology-based model to improve the accuracy of
food recognition algorithms. In (Wang et al., 2022)
proposes an ingredient ontology and joint learning, in
(Zhao et al., 2021) presents a fusion learning frame-
work with semantic embedding, in (Donadello and
Dragoni, 2019) focuses on ontologies and deep neu-
ral networks, and in (Kuang et al., 2018) introduces
multi-level deep learning.

Our method differs from previous approaches in
that it focuses on building a well-structured food on-
tology to enable knowledge transfer from it to a neu-
ral network, with the aim of leveraging multi-modal
data (text and image) for uni-modal multitask recog-
nition of food images. The idea behind this work is
that an adequate ontology is essential for the accurate
classification of foods. By building a strong ontol-
ogy, a clear and coherent structure can be established
to represent knowledge about food and its properties.
This ontology can be used to guide the classification
of foods through a neural network, allowing greater
precision and a better understanding of the character-
istics of each food. Moreover, transferring knowledge
from the ontology to the neural network can also help
improve the generalization capability of the network.

Our main contributions are:

• Careful building of a specialized food ontology
from textual data retrieval in public food recipes.

• Ensure consistency in multi-tasking results by in-
tegrating prior knowledge extracted from the on-
tology into a food image classification model.

• The proposed ontology-driven method improved
performance at both the dish and food group level
compared to the baseline approach.

Figure 1: Ontology creation diagram.

2 METHODOLOGY

This section describes the process of building a food
ontology and its application in the classification of
food groups and dishes.

2.1 Food Ontology

Food ontology is governed as a fundamental pillar of
this methodology. In the building of the proposed
food ontology, we focus on two semantic levels of
food concepts: the dish name (e.g., caesar salad, gua-
camole) and the food groups (e.g., vegetables, bread).
An illustration of the stages involved in the proposed
process can be seen in Fig. 1. First, information is
collected from various web sources, including food
websites. From these resources, lists of recipes cover-
ing a wide range of food dishes are obtained. To carry
out the construction of the ontology, the most repre-
sentative recipes for each dish are extracted. The on-
tological hierarchy is established by grouping ingre-
dients at different semantic levels that allow classify-
ing and relating food groups to dishes. This process
involves converting ingredients into more general cat-
egories, following the guidance provided by the He-
lis food ontology (Dragoni et al., 2018). This step
significantly simplifies the organization and search of
the food data. The resulting ontology is nourished
with precise and coherent relationships between food
groups and dishes.

Each stage is described in more detail in the fol-
lowing subsections.

2.1.1 Recipe Crawler and Assignment

The first stage consists of collecting recipes related
to a specific dish from food web pages enriched with
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google recipes metadata such as Yummly (Yummly,
2023) and AllRecipes (Allrecipes, 2023), to identify
the ingredients commonly used in its preparation. The
retrieval is performed with Beatiful Soup Python li-
brary using web scraping strategies and taking benefit
of the structured information. From that, a list of R
recipes is compiled for each food dish taking into ac-
count the similarity between the dish name and the
recipe title.

2.1.2 Unification of the Ingredients List

Once all the recipes are linked to the dishes belonging
to the target dataset, the next step is to extract a list of
the ingredients from the information provided in the
recipes. For this purpose, natural language processing
techniques (available in the NLTK library) are applied
to analyze the text, including the removal of anything
that differs from the ingredient names as part of the
normalization process (e.g. stopwords, verbs, culi-
nary measurements, etc.). As a result, a unique list of
ingredients is created. This list is generated to facili-
tate the construction of the ontology and to normalize
the data, which is essential for the subsequent stage.
Finally, the unique list of ingredients is subjected to
a further refinement process. Selective removals are
manually made on ingredients that are not visible or
would not be used in the experiments (e.g., salt, pep-
per, Vinegar). This process is essential to ensure that
the ontology is composed of only relevant ingredients.

2.1.3 Building Ontology

In this stage, the recipes and their corresponding in-
gredients are linked to each dish. In fact, the ingredi-
ents are grouped into a high-level food concept (food
groups) such as ”meat,” ”vegetables,” ”fruits,” ”cere-
als,” ”dairy products,” ”spices,” among others identi-
fied through SPARQL queries on the Helis ontology
(Donadello and Dragoni, 2019) with the GraphDB
tool (Güting, 1994). These food groups may be differ-
ent from those available in the target dataset. There-
fore, an additional step linking the food group to the
available annotations is necessary. This step is per-
formed manually in our experiments where for exam-
ple food groups such as ’beans’ and ’fruits’ were con-
sidered vegetables to preserve the original annotations
of the target dataset.

2.1.4 Making a Relationship Ontology Matrix

To deepen the analysis and exploitation of the ontol-
ogy, a coexistence matrix is created. This matrix cap-
tures the relationship between food groups and dishes.
However, it is highlighted that this structure can be

Figure 2: The framework of the proposed method.

scaled to include more semantic levels, which would
allow a more detailed and granular representation.
The central purpose of the matrix is to quantify the
presence of food groups in each of the dishes. Each
cell in the matrix stores the number of times a specific
food group appears in a particular dish. This provides
a quantitative view of the composition of each dish in
terms of food groups.

The relationship between semantic levels is re-
flected in the structure of the relationship matrix (see
equation 1). The columns represent the names of the
dishes, while the rows refer to the food groups. The
values in the cells of the matrix indicate the strength
of the relationship between food groups and dishes.
This reflects not only how many times a food group is
found in a dish, but also the diversity of food groups
present on it. The matrix also allows to understand the
relationship between the semantic levels of the food
groups and their distribution in the dishes.

The relationship matrix RM is formally defined as
follows:

RM =


∑
|R1 |
r=1 |FG1∈R1

r |
|R1 |

...
∑
|RD|
r=1 |FG1∈RD

r |
|RD|

...
∑
|Rd |
r=1 |FGg∈Rd

r |
|Rd |

...

∑
|R1 |
r=1 |FGG∈R1

r |
|R1 |

...
∑
|RD|
r=1 |FGG∈RD

r |
|RD|


(1)

where |Rd | corresponds to the number of recipes
linked to the d-th dish, Rd

r - the list of food groups
for the r-th recipe linked to the d-th dish and FGg -
the g-th food group.

2.2 Ontology-Driven Multitask Food
Recognition

The proposed ontology-driven deep learning method
for performing multi-task food recognition is illus-
trated in Fig. 2. In deep learning, a multi-task ap-
proach can be performed from a generic network,
where all parameters are shared to extract features, to
a specific network, where independent networks are
used for each task (Misra et al., 2016). For multi-task
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food recognition, a generic network is considered due
to the similarity of the task at hand (food recognition
and food groups recognition), where both can benefit
from the extracted general features from the backbone
(e.g., ResNet50 (He et al., 2016)). At the top of the
backbone, a dropout layer is considered to avoid over-
fitting, followed by a specific fully connected layer for
each task.

For food recognition, softmax activation is ap-
plied on the logits layer to provide a probability of
the most likely dish. For food group recognition, like
any multi-label task, a sigmoid activation is applied
on the logits layer to provide independent probability
for each group. Afterwords, the probability of each
food concept belonging to each task, ois obtained. An
essential component of this network is the integration
of a food ontology, specifically the relationship ma-
trix, which acts as an additional layer that reflects the
hierarchical and semantic relationships between food
groups and dishes. The output of this layer is aggre-
gated to the output of the food groups to provide a
refined probability of them. This ontology provides
contextual information to the network, allowing a bet-
ter understanding of the composition of the dishes and
a more precise classification. The interaction between
the ontology and the network is achieved by a custom
layer, which weights the model predictions based on
the relationships established in the ontology.

The probability of the refined food groups is for-
mally defined as follows:

p(yg|W,RM) = λ · p(yg|W)+

(1−λ) ·
D

∑
d=1

p(yd = d|W) · p(yg|yd = d)
,

(2)

p(yg|W) =
1

1+ e fW
g (x)

, (3)

p(yd |W) =
e fW

d (x)d

∑
K
k=1 e fW

d (x)k
, (4)

p(yg|yd) = RM[g,d], (5)

where p(yg|W) represents the conditional probability
that a specific ingredient yg is present in the image; W
- the model weights; f W

g (x) - the logits outputs for the
food groups; p(yd |W) - the probability that a specific
dish yd is the correct class; f W

d (x)d - the d-th logits
output for the dishes; p(yg|yd) - the probability, ex-
tracted from the relationship matrix of having a food
group yg given the dish yd ; K and D - the number of
dishes; x - the input image; and λ - a hyperparameter
to weight the contribution of the both terms.

For the model learning, two equally weighted loss
functions are used: Cross-Entropy Loss (CELoss) for
dish task and Binary Cross-Entropy Loss (BCELoss)
for the food groups task. The equation representing
CELoss function for a single input image is expressed
as follows:

CELoss =−
D

∑
d=1

ŷd · log(p(yd |W )), (6)

where ŷd is the Ground Truth (GT) label in one-hot
encoding and p(yd |W ) is the probability given by the
model for the d-th dish. The CEloss is calculated in-
dividually for each image and then averaged.

Regarding the BCELoss, it is formally defined as
follows:

BCELoss =
G

∑
g=1

ŷg · log(p(yg|W,RM))+

G

∑
g=1

(1− ŷg) · log(1− p(yg|W,RM))

(7)

where G represents the number of food groups; ŷg is
the GT in one-hot encoding for g-th food group, indi-
cating whether food group g is present or not in the
sample; and p(yg|W,RM) is the refined probability
given for g-th food group. The BCEloss is calculated
individually for each image and then averaged over
the total images and food groups.

It is interesting to note that although the pro-
posed method explicitly refines the prediction of food
groups, the fact of using the probability of the dish,
together with the relationship matrix, for the refine-
ment also indirectly results in the predictions for the
dishes being refined.

3 VALIDATION

In this section, we present the dataset, the experimen-
tal setting, and the different evaluation metrics.

3.1 Dataset

The data set used in this research, known as MAFood-
121 (Aguilar et al., 2019), consists of a total of 21,175
images representing traditional dishes from eleven of
the most popular cuisines in the world. These dishes,
which reflect the richness and diversity of global gas-
tronomy, have been grouped into a dataset covering
121 dishes in total. Each of the images belonging to
these dishes is labeled with at least one of the ten food
groups previously defined: bread, egg, fried foods,
meat, noodles/pasta, rice, seafood, soup, dumpling
and vegetables.
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For the purposes of this research, it is decided to
focus on Mexican cuisine, selecting 11 representa-
tive dishes with a total of 2,242 images that encap-
sulate the essence and culinary variety of this tra-
dition. These dishes range from classics like ’cae-
sar salad’, ’enchiladas’ and ’tacos’, to delicacies like
’guacamole’, ’pozole’ and ’tostadas’. This meticu-
lous selection is carried out with the purpose of fo-
cusing the classification task in a specific and repre-
sentative context, which allows a detailed and precise
analysis of the Mexican gastronomic wealth. In the
experiments, we maintain the original division of the
dataset. Specifically, 73.6% of the images are used
for training, 12.44% for validation and the remaining
13.96% for testing.

3.2 Experimental Setup

For the implementation of the proposed method,
ResNet50 is selected as the backbone. This network
is also used as a baseline for comparison purposes.
ResNet50 is pretrained on ImageNet and then the
baseline and proposed method are retrained for a to-
tal of 20 epochs, using a set of empirically selected
hyperparameters. A learning rate (LR) of 0.001 is
used and the batch size is set to 64 to balance com-
putational efficiency and training stability. As part
of the regularization, a Dropout layer after the last
convolutional layer with a rate of 0.1 is included to
avoid overfitting in both methods. The inclusion of
this layer provides effective regulation and improves
the model’s ability to generalize to unseen data. The
Adam optimizer is used to minimize the loss function.
Additionally, a simple data preprocessing is applied
that included image resizing to 224x224 pixels and
normalization with a mean and standard deviation of
0.5. On the other hand, the number of recipes for each
dish is set at 20 (|Rd |= 20), because we detect that as
we increase this number, recipes are recovered that do
not represent well the dish consulted. Finally, λ is set
from 0.5 to 0.9 with a step of 0.1.

Traditional evaluation metrics were selected for
each of the target tasks. For the single-label food
recognition problem, whose aim is to classify the gen-
eral context of the images with the most likely food,
the Accuracy metric was used. For the multi-label
classification problem of food group recognition, that
involves categorizing food images with food groups
representing each ingredient contained in the food,
four metrics was selected: 1) Precision (P) which
corresponds the proportion of correctly predicted in-
stances relative to the total number of instances pre-
dicted under that label, 2) Recall (R) which measures
the model’s ability to capture all true labels, 3) F1

score which combines precision and recall into a sin-
gle metric, providing a comprehensive assessment of
model performance and 4) The Jaccard index which
evaluates the overlap between true and predicted la-
bels, quantifying the degree of similarity in the set of
labels. Furthermore, the metric Multi-task accuracy
(MTA) (Aguilar et al., 2019) was used to quantify the
consistency of model predictions across multiple clas-
sification tasks.

4 RESULTS

In this work, we evaluate the performance of the
multi-task classification methods applied to the chal-
lenge of identifying food dishes and their food groups
from images. For this purpose, ResNet50 and the
proposed ontology-driven ResNet50 (OD-ResNet50)
were evaluated on Mexican dishes belonging to the
MAFood-121 dataset. Regarding OD-ResNet-50, the
parameter λ is set after analysis of the results on
the validation set. Five experiments were performed
changing λ from 0.5 to 0.9. The results obtained for
the training and validation set can be seen in Fig. 3.
As observed, low λ tends to provide lower perfor-
mance than high λ. We identify that a λ of 0.8 or
0.9 are appropriate and are therefore used to evaluate
the performance of the model on the test set.

Table 1 summarizes the results obtained by eval-
uating the performance of three models: ResNet50,
OD-ResNet50 with λ equals to 0.9 and OD-ResNet50
with λ equals to 0.8. The evaluations were performed
on the Test set, Validation set and Training set. The
results are expressed in terms of Precision (P), Recall
(R), F1-Score (F1), Jaccard Index, Accuracy and the
MTA. In the Validation and Test sets, it is observed
that the proposed method outperforms the baseline in
all the metrics evaluated in both food recognition and
food groups recognition and also in the joint evalua-
tion (MTA). On the other hand, it can also be observed
that when we compare the proposed method using λ

equal to 0.8 with respect to λ equal to 0.9, we observe
that a low λ provides a better P for the food groups
while a high λ provides better results in all reaming
metrics. This suggests that the more strict the onto-
logical integration, the model tends to provide fewer
false predictions although it loses its ability to find all
food groups. As for the Training set, a different be-
havior is observed. In this case, the performance of
the food groups is slightly higher than the proposed
method, although the accuracy for food recognition is
still lower. These results demonstrate the ability of
the proposed method to generalize better, particularly
with respect to food groups.
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Figure 3: Performance of OD-ResNet50 on the training and validation sets using λ from 0.5 to 0.9.

Table 1: Comparison of the performance of classification methods with single-label, multi-label and multitask metrics.

Method λ P R F1 Jaccard index Accuracy MTA
Test set

ResNet50 - 0.8439 0.8311 0.8374 0.7203 0.6741 0.5271
OD-ResNet50 0.9 0.8498 0.8356 0.8427 0.7281 0.7093 0.5536
OD-ResNet50 0.8 0.8562 0.8250 0.8403 0.7246 0.6997 0.5531

Validation set
ResNet50 - 0.8289 0.8034 0.8160 0.6891 0.7419 0.5820

OD-ResNet50 0.9 0.8333 0.8120 0.8225 0.6985 0.7527 0.5972
OD-ResNet50 0.8 0.8417 0.8000 0.8203 0.6954 0.7348 0.5826

Training set
ResNet50 - 0.8887 0.8685 0.8785 0.7833 0.8916 0.7477

OD-ResNet50 0.9 0.8847 0.8564 0.8703 0.7704 0.9055 0.7472
OD-ResNet50 0.8 0.8983 0.8539 0.8755 0.7786 0.9073 0.7570

Figure 4: Confusion matrix of the food recognition provided by ResNet50 (left) and OD-ResNet50 (right) with λ equals to
0.9.

Figure 4 shows the confusion matrix related to
food recognition provided by the baseline and the pro-
posed method. In general, it is observed that in most
dishes the OD-ResNet50 model provides equal or bet-
ter performance than ResNet50. We can also see that

OD-ResNet50 is less sensitive to class imbalance. In
particular, this can be noticed in the chilaquiles plate,
which contains the smallest number of images in the
data set. In this case, the model was able to miss-
clasify the images much less than ResNet50.
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Figure 5: Success and failure cases of OD-ResNet50 with λ equals to 0.9 on MAFood-121.

Qualitative results of ResNet50 and OD-ResNet50
model are presented in the Fig. 5. From this,
the positive influence of the ontology on the perfor-
mance of the classification models can be clearly ob-
served. In the results obtained by OD-ResNet50 for
the first three examples a significant increase in the
accuracy of the predictions for both food dishes and
food groups is observed. For example, in the case
of ’enchiladas’, the model with ontology achieves a
confidence score of 0.81, while the ResNet50 model
(without ontology) achieves a score of 0.80, indi-
cating a substantial improvement in prediction abil-
ity. This pattern is repeated in other examples, such
as ’huevos rancheros’ and ’pozole’, where the OD-
ResNet50 model clearly outperforms the ResNet50
model. This reinforces the idea that the inclusion of
an ontology provides additional and consistent infor-
mation that supports the classification process, thus
improving the accuracy of the predictions. However,
in few cases we noticed a negative influence of the
ontology. For example, in the case of ’guacamole’,
the ResNet50 model slightly outperforms the model
with ontology in food group classification. The rea-
son for this is that the food group bread is not common
for guacamole and for this reason the model must be
very secure so as not to lose that prediction due to
prior knowledge incorporated by the ontology.

In summary, the inclusion of an ontology in the
classification process brings substantial improve-
ments in most cases, suggesting its relevance in future

applications in the field of computer vision and
food classification.

5 CONCLUSIONS

This work highlights the relevance of ontologies in
food classification from images. Incorporating the on-
tology into the deep learning model resulted in a sub-
stantial improvement in accuracy in the classification
of food groups and food dishes. Additionally, greater
consistency in responses and more effective knowl-
edge transfer from the ontology to the learning model
were observed from the results, improving its general-
ization ability. Furthermore, the proposed multimodal
information integration, which combines text and im-
age data, enriches the model learning process. This
combination allowed the model to acquire knowledge
more accurately and effectively, resulting in greater
accuracy in food classification. In terms of future re-
search, a wide spectrum of possibilities opens up. In-
tegration of additional information, such as nutritional
data, could be explored in order to further improve
accuracy in food classification. Likewise, it could be
investigated how the ontology could be used in the
detection of allergens in food, which would have fun-
damental implications for food safety. Additionally,
the applications of ontology and multi-modal infor-
mation in food classification in various cultures and
regions of the world could be studied.
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