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Abstract: The focus of this paper is on an extension of the maximum capacity path problem, known as the generalized 
maximum capacity path problem. In the traditional maximum capacity path problem, the objective is to find 
a path from a source to a sink with the highest capacity among all possible paths. However, this extended 
problem takes into account the presence of loss factors in addition to arc capacities. The generalized maximum 
capacity path problem is regarded as a network flow optimization problem, where the network comprises arcs 
with both capacity constraints and loss factors. The main goal is to identify a path from the source to the sink 
that allows for the maximum flow along the path, considering the loss factors while satisfying the capacity 
constraints. The paper introduces a zero-one formulation for the generalized maximum capacity path problem. 
Additionally, it presents two efficient polynomial-time algorithms that can effectively solve this problem. 

1 INTRODUCTION 

Combinatorial optimization is a special class of 
mathematical program that consists of finding an 
optimal object among a finite set of specific-
structured objects. Some most prominent problems of 
this class are shortest path (SP) problems, maximum 
reliability path (MRP) problems, and maximum 
capacity path (MCP) problems. In these problems, the 
goal is to find an optimal path from an origin to a 
destination under a special objective function as 
follows: 

1. min௉∈ℙ ∑ 𝑙௜௝(௜,௝)∈௉  for SP problems, 
2. max௉∈ℙ ∏ 𝑝௜௝(௜,௝)∈௉  for MRP problems,  
3. max௉∈ℙ  min(௜,௝)∈௉ 𝑢௜௝  for MCP problems, 

where the set ℙ  consists of all paths from the 
origin to the destination. In this context, the variables 𝑙௜௝ , 𝑝௜௝ , and 𝑢௜௝  represent the length, reliability, and 
capacity of arc (𝑖, 𝑗) respectively. Fortunately, these 
problems are tractable and there exist polynomial-
time algorithms to solve them. For instance, the 
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shortest path problem can be solved using Dijkstra's 
algorithm with a Fibonacci-heap implementation, 
which has a complexity of 𝑂(𝑚 +  𝑛 log(𝑛) ) if the 
lengths, 𝑙௜௝, are nonnegative. In case the lengths can 
be negative, the best-known algorithm is a FIFO 
implementation of the Bellman-Ford algorithm, with 
a complexity of 𝑂(𝑚𝑛), where 𝑛 and 𝑚 represent the 
number of nodes and arcs, respectively. The 
maximum reliability path problem can be 
transformed into a shortest path problem by defining 𝑙௜௝ as − log(𝑝௜௝) for every arc (𝑖, 𝑗). Consequently, it 
can be solved similarly to the shortest path problem, 
especially when 𝑝௜௝ is less than 1. Additionally, both 
the maximum reliability path problem and the 
maximum capacity path problem can be solved 
directly by modifying the shortest path algorithms. 
This is because they share similar optimality 
conditions with the shortest path problem (refer to 
Ahuja, 1988 for more details). However, the best-
known algorithm for solving the maximum capacity 
path problem in an undirected network does not rely 
on this concept. Instead, it employs a recursive 
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algorithm with a linear complexity of 𝑂(𝑚) (Punnen, 
1991). 

The maximum capacity path problem finds its 
application in various domains. For instance, let us 
consider a network that represents connections 
between routers on the Internet. In this context, each 
arc in the network denotes the bandwidth of the 
corresponding connection between two routers. With 
the maximum capacity path problem, our objective is 
to discover the path between two Internet nodes that 
offers the highest possible bandwidth. This network 
routing problem is well-known in the field. Apart 
from being a fundamental network routing problem, 
the maximum capacity path problem also plays a 
crucial role in other areas. One noteworthy 
application is within the Schulze method, which is 
utilized for determining the winner of a multiway 
election (Schulze, 2011). In this method, the 
maximum capacity path problem aids in resolving ties 
and determining the strongest path among multiple 
alternatives. Additionally, the maximum capacity 
path problem finds application in digital compositing, 
wherein it assists in combining multiple images or 
video layers into a final composite image or sequence 
(Fernandez, 1998). By identifying the path with the 
maximum capacity, the compositing process can 
ensure the most efficient allocation of computational 
resources. Moreover, the problem contributes to 
metabolic pathway analysis, which involves studying 
chemical reactions within biological systems. In this 
context, the maximum capacity path problem aids in 
understanding the flow of metabolites through 
various pathways and identifying the most influential 
pathways in terms of capacity (Ullah, 2009). In 
summary, the maximum capacity path problem has 
extensive applications ranging from network routing 
on the Internet, multiway election methods, digital 
compositing, to metabolic pathway analysis. Its 
capability to identify and utilize paths with the 
highest capacity proves valuable across these diverse 
domains. 

In this paper, a new combinatorial optimization 
problem called the generalized maximum capacity 
path (GMCP) problem is introduced. It is a more 
intricate version of the problem that involves finding 
a directed path from a given source node s to a given 
sink node t, with the minimum loss among all 
available directed paths from s to t (Deaconu, 2023). 
The GMCP problem is defined on a network where 
each arc is characterized by two attributes: capacity 
and loss factors. 

The capacity of an arc represents the maximum 
flow value that can be transmitted through it. On the 
other hand, the loss factor of an arc indicates the flow 

value that arrives at the tail node when one unit of 
flow is sent through the arc. The objective of the 
generalized maximum capacity path problem is to 
discover a path that is capable of transmitting the 
maximum flow while considering the loss factors. 

This problem is inspired by an extension of 
maximum flow problems that incorporates loss 
factors, known as the generalized maximum flow 
problem (Ahuja 1993). Therefore, the algorithms 
developed for solving the GMCP problem can also be 
utilized as subroutines for addressing generalized 
maximum flow problems. 

Moreover, the GMCP problem can be viewed as 
an extension of the maximum reliability path (MRP) 
and maximum capacity path (MCP) problems. It 
becomes equivalent to the MRP problem when 
capacities are infinite and transforms into the MCP 
problem when the loss factors are equal to 1. Thus, 
the GMCP problem expands upon the scope of both 
MRP and MCP problems, encompassing their 
characteristics and generalizations. 

Overall, the GMCP problem introduces a novel 
combinatorial optimization problem that extends the 
concepts of maximum flow, MRP, and MCP by 
incorporating loss factors. The algorithms developed 
for GMCP can be utilized for generalized maximum 
flow problems, making it a versatile and applicable 
problem in various contexts. 

The rest of this paper is organized as follows. In 
Section 2, we provide the necessary background 
information and definitions to lay the foundation for 
the research work. Section 3 clearly defines the 
research problem and outlines its significance. 
Section 4 describes in detail the proposed algorithms 
to solve the problem. Section 5 presents the 
experiments conducted to validate and evaluate the 
proposed algorithms. Finally, Section 6 summarizes 
the main findings of the paper and discuss their 
implications and potential future directions.  

2 PRELIMINARIES 

Consider a directed and connected network 𝐺 = (𝑉, 𝐴, 𝑢) , where 𝑉  represents the set of nodes, A 
represents the set of arcs (each arc 𝑎 =  (𝑖, 𝑗) starts 
from node 𝑖  and terminates at node 𝑗 ), and 𝑢  is a 
capacity function mapping arcs to non-negative real 
numbers. Within this network, there are two special 
nodes: 𝑠 , referred to as the source node, and 𝑡 , 
referred to as the sink node. Let 𝑛 denote the total 
number of nodes in the network (|V|), and 𝑚 
represent the number of arcs (|A|). 
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A path, denoted as 𝑃, from a node 𝑤 ∈  𝑉 to a 
node 𝑣 ∈  𝑉 in network 𝐺 is defined as a sequence of 
nodes 𝑃: (𝑤 =  𝑖ଵ, 𝑖ଶ, . . . , 𝑖௟  =  𝑣), where 𝑙  is equal 
to or greater than 1 , and each consecutive pair of 
nodes (𝑖௞, 𝑖௞ାଵ)  belongs to 𝐴 , for every 𝑘 = 1, 2, . . . , 𝑙 − 1. 

For the sake of simplicity, from now on, we refer 
to a path from 𝑠 to 𝑡 as an "𝑠𝑡-path". 

The capacity of an 𝑠𝑡- path 𝑃 is denoted by 𝑢(𝑃) 
and is given by the minimum of its capacities, that is, 𝑢(𝑃) = min {𝑢(𝑎)|𝑎 ∈ 𝑃}.       

The maximum capacity path problem (MCP) in 
the network G  is to find an 𝑠𝑡 -path 𝑃෨  having the 
maximum capacity among all 𝑠𝑡-paths: 𝑢൫𝑃෨൯ = max{𝑢(𝑃)|𝑃 is an 𝑠 − 𝑡 path}.  

This problem is also called the widest path 
problem, the bottleneck shortest path problem, and 
the max-min path problem in the literature.  

3 PROBLEM FORMULATION 

In this section, we will delve into the problem of the 
Generalized Maximum Capacity Path (GMCP). Let 
us formally define the problem considering a 
connected and directed network denoted as 𝐺(𝑉, 𝐴, 𝑢, 𝑝). Here, 𝑝 is the loss factor parameter. 

For each arc (𝑖, 𝑗)  ∈  𝐴 , there are two key 
parameters associated with it. The first one is the 
capacity, denoted as 𝑢௜௝ , which represents the 
maximum amount of flow that can be sent along the 
arc. The second parameter is the loss factor, denoted 
as 𝑝௜௝, which lies in the interval (0,1]. The loss factor 
captures physical transformations such as 
evaporation, energy dissipation, breeding, theft, or 
interest rates (Tayyebi, 2019). 

Considering the flow along the arcs, if 𝑥௜௝ units of 
flow enter arc (𝑖, 𝑗) , only 𝑝௜௝𝑥௜௝  units of flow are 
actually delivered to node 𝑗 . This implies that ൫1 − 𝑝௜௝൯𝑥௜௝ units of flow are absorbed or lost along 
the arc due to the specified loss factor. 

The aim of the generalized maximum capacity 
problem is to find an 𝑠𝑡 -path that enables the 
transmission of the maximum possible flow while 
taking the loss factors into consideration. 

To formulate this problem in a precise manner, we 
introduce the following variables: 

• 𝑥௜௝, representing the flow entering arc (𝑖, 𝑗). 

• 𝑦௜௝, a binary variable that determines whether or 
not arc (𝑖, 𝑗) carries a positive flow (1 if it does, 0 
otherwise). 
Now, we can express the GMCP as a mixed zero-

one linear programming model, which can be stated 
as follows: max 𝑧 = 𝑣௧ (1a)
 ෍ 𝑥௜௝௝:(௜,௝)∈஺ − ෍ 𝑝௝௜𝑥௝௜௝:(௝,௜)∈஺  

= ൝ 𝑣௦    𝑖 = 𝑠,0 𝑖 ≠ 𝑠, 𝑡,−𝑣௧    𝑖 = 𝑡, ∀𝑖 ∈ 𝑉, (1b)

 ෍ 𝑦௜௝௝:(௜,௝)∈஺ ≤ 1, ∀𝑖 ∈ 𝑉\{𝑡}, (1c)
 0 ≤ 𝑥௜௝ ≤ 𝑢௜௝𝑦௜௝,  ∀(𝑖, 𝑗) ∈ 𝐴, (1d)

Let us break its points down into separate parts: 
1. The variables 𝑣௦  and 𝑣௧  represent the flow 

leaving the source node 𝑠 and the flow entering 
the sink node 𝑡, respectively. 

2. Constraints (1b) and (1d) correspond to the 
balanced flow constraint and the bound 
constraints commonly found in maximum flow 
problems (Ahuja, 1988). 

3. Constraint (1c) ensures that at most one 
outgoing arc from any node is capable of 
sending flow. This constraint guarantees that 
flow is sent only along a single 𝑠𝑡-path. 

4. The formulation (1) of the GMCP problem 
closely resembles that of generalized maximum 
flow problems, with the added inclusion of zero-
one variables 𝑦௜௝ and the constraint (1c) (Ahuja, 
1988). 

Remark 1: While we have assumed that 𝑝௜௝ ≤ 1 , 
constraint (1d) does not account for the possibility of 
a flow increment on arc (𝑖, 𝑗) when 𝑝௜௝ > 1. In such 
cases, it should be written as 0 ≤𝑚𝑎𝑥 { 𝑥௜௝, 𝑝௜௝𝑥௜௝} ≤ 𝑢௜௝𝑦௜௝ . To handle this situation 
without loss of generality, we can redefine the 
capacity of arc (𝑖, 𝑗) as 𝑚𝑖𝑛 {𝑢௜௝, 𝑢௜௝/𝑝௜௝ }. 

4 ALGORITHMS 

This section focuses on the development of two 
algorithms to solve the GMCP problem in polynomial 
time. This provides evidence that the problem is 
tractable, similar to the MCP, SP, and MRP problems. 
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We start with a simple observation: if we send the 
maximum flow along a path, then at least one of its 
arcs will be saturated. The capacity of this saturated 
arc determines the flow value along the path. Let (𝑖௉, 𝑗௉) be the last saturated arc in an 𝑠𝑡-path 𝑃 = 𝑠 − ⋯ − 𝑖௉ − 𝑗௉ − ⋯ − 𝑘 − 𝑡. The flow value along 
path 𝑃 is then equal to 𝑢௜ು௝ು  × ൫𝑝௜ು௝ು ×  … × 𝑝௞௧൯. 
An interesting insight is that if we remove the arc (𝑖௉, 𝑗௉) from the network and add a new arc (𝑠, 𝑗௉) 
with capacity 𝑢௦௝ು  =  𝑢௜ು௝ು , loss factor 𝑝௦௝ು = 𝑝௜ು௝ು, 𝑡ℎ𝑒𝑛 we can send the same flow value along 
the new path 𝑠 − 𝑗௉ − ⋯ − 𝑘 − 𝑡. This simple idea 
leads to a polynomial-time algorithm for solving 
problem (1). 

In the first algorithm, disregarding arc capacities, 
we aim to find a maximum reliability path from s to 
t, which is a path 𝑃 where the value of the product ∏ 𝑝௜௝(௜,௝)∈௉  is maximized. This can be achieved by 
assigning arc lengths 𝑙௜௝ = −𝑙𝑜𝑔൫𝑝௜௝൯ and finding the 
shortest 𝑠𝑡-path based on these arc lengths. Let 𝑃 be 
the shortest path obtained. Then, we identify the last 
arc (𝑖௉, 𝑗௉) in 𝑃 that would become saturated if we 
were to send the maximum flow along 𝑃. We remove 
arc (𝑖௉, 𝑗௉)  from the network and introduce an 
artificial arc (𝑠, 𝑗௉) with a loss factor 𝑝௦௝ು  =  𝑝௜ು௝ು, 
capacity 𝑢௦௝ು  = 𝑢௜ು௝ು and a weight of −log (𝑢௜ು௝ು𝑝௜ು௝ು). We repeat this process until we 
find a path 𝑃 in which the last saturated arc is one of 
the artificial arcs. 

Considering the unique characteristics of our 
algorithm, it is noteworthy to underscore that the 
negative weights exclusively pertain to arcs 
emanating from the source node 𝑠 . This crucial 
distinction enables the seamless application of 
Dijkstra's algorithm, as its efficacy is contingent upon 
the absence of negative cycles within the graph. To 
further streamline the application of Dijkstra's 
algorithm and eliminate negative arcs altogether, we 
propose a judicious adjustment to the arc weights. 
Specifically, we suggest augmenting all arcs with the 
minimum value among the arcs originating from 𝑠, 
denoted as  min(𝑠, 𝑗) for the pair (𝑠, 𝑗) . This 
augmentation ensures the absence of negative 
weights in the entire graph, rendering it amenable to 
Dijkstra's algorithm without any reservations. 

Subsequently, upon identifying the optimal path 
and obtaining the computed result, we advocate for 
subtracting the added value—representative of the 
minimum value among the source-emerging arcs. 
This corrective measure guarantees the restoration of 
the original, unaltered values on the optimal path 
while harnessing the benefits of an adjusted graph 

conducive to the successful application of Dijkstra's 
algorithm. 

It is important to note that the optimal value of 
problem (1) is equal to the maximum flow along the 
last path found by the algorithm. To obtain the 
optimal path, we need to save the segment of path 𝑃 
from 𝑠 to 𝑖௉ whenever (𝑖௉, 𝑗௉) is removed and (𝑠, 𝑗௉) 
is added. This can be accomplished by introducing an 
additional parameter 𝑃௦௝ು  for each artificial arc. 
Therefore, if the algorithm finds path 𝑃  in the last 
iteration, the optimal solution will be a path that 
includes arcs from 𝑃௦௝ು and 𝑃, excluding (𝑠, 𝑗௉). 

Algorithm 1 provides a formal description of our 
first algorithm. Since an arc is removed in each 
iteration, the number of iterations is at most equal to 
m (the total number of arcs). As a result, we can 
conclude the following:  

Theorem 1: The complexity of Algorithm 1  is 𝑂(𝑚𝑆(𝑛, 𝑚)) in which 𝑆(𝑚, 𝑛) is the complexity of 
finding the shortest path in the network. 

Algorithm 1. 
 

Input: An instance of the generalized MCP 
problem 

Output: An optimal path 
 
for (𝑖, 𝑗) ∈ 𝐴: 
    if 𝑖 == 𝑠: 

Set 𝑙௜̅௝ = − log 𝑝௜௝𝑢௜௝ and 𝑃௜௝ = (𝑖, 𝑗) 
    else: 
      Set 𝑙௜̅௝ = − log 𝑝௜௝ and 𝑃௜௝ = ∅ 
while True: 
    Find a shortest path 𝑃 with respect to 𝑙௜̅௝   
    if 𝑃௦௝ು ≠ ∅: 
 The optimal path is 𝑃௦௝ು ∪ 𝑃\{(𝑠, 𝑗௉)} 
    else: 

Find the last arc (𝑖௉, 𝑗௉) of 𝑃 to be 
saturated. 

Remove (𝑖௉, 𝑗௉). 
Add an artificial arc (𝑠, 𝑗௉)  
Set 𝑙௦̅௝ು = −log (𝑢௜ು௝ು𝑝௜ು௝ು) 

 

In the followings, we discuss optimality 
conditions for problem (1) and present an algorithm 
with a time complexity of 𝑂(𝑆(𝑚, 𝑛)) , which 
improves the complexity of Algorithm 1 by a factor 
of 𝑚. 

To begin, we introduce a label 𝑑(𝑗) for each node 𝑗 ∈  𝑉. During intermediate stages of computation, 
the label 𝑑(𝑗)  serves as an estimate (or an upper 
bound) of the maximum flow sent from the source 
node s to node j along a single path. At the termination 
of the algorithm, the label 𝑑(𝑗) represents the optimal 
value of problem (1). Our objective is to establish 
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necessary and sufficient conditions for a set of labels 
to accurately represent the maximum flow. 

Let 𝑑(𝑗) denote the value of the maximum flow 
sent from the source node to node j (where we set 𝑑(𝑠)  =  +∞). In order for the labels to be optimal, 
they must satisfy the following necessary optimality 
conditions: 
 Constraint (1c): For each node 𝑗 ≠  𝑠, there exists 

at most one outgoing arc with positive flow. This 
condition ensures that the flow is sent only along 
a single 𝑠𝑡-path. 

 Capacity Constraint: For each arc (𝑖, 𝑗), the flow 
through the arc must not exceed its capacity. 
Mathematically, this can be written as 𝑓௜௝  ≤  𝑢௜௝, 
where 𝑓௜௝ represents the flow on arc (𝑖, 𝑗) and 𝑢௜௝ 
represents the capacity of arc (𝑖, 𝑗). 

 Flow Conservation: The flow conservation 
principle must be satisfied at every node (except 
the source and sink nodes). For any node 𝑗 ≠  𝑠 
and 𝑗 ≠  𝑡, the sum of incoming flows must equal 
the sum of outgoing flows. Mathematically, this 
can be expressed as ∑ 𝑓௜௝(௜,௝)∈஺  − ∑ 𝑓௝௞(௝,௞)∈஺  = 0. 

 Optimality Condition: For each node 𝑗 ≠  𝑠, the 
label 𝑑(𝑗)  represents the maximum flow sent 
from the source node 𝑠 to node 𝑗. Therefore, we 
have 𝑑(𝑗) =  ∑ 𝑓௜௝(௜,௝)∈஺   −  ∑ 𝑓௝௞(௝,௞)∈஺  ,  where 𝑓௜௝  represents the flow on arc (𝑖, 𝑗)  and 𝑓௝௞ 
represents the flow on arc (𝑗, 𝑘). 
By satisfying these necessary optimality 

conditions, we can ensure that the labels 𝑑(𝑗) 
accurately represent the maximum flow in the 
network.  

If the labels are optimal, they must satisfy the 
following necessary optimality conditions: 𝑑௝ ≥ 𝑝௜௝ min൛𝑢௜௝, 𝑑௜ൟ. 

This is an extension of the optimality conditions 
of both the MCP and MRP problems. On the optimal 
path, the inequality is satisfied in the equality form. It 
states that the label of node 𝑗 is either 𝑝௜௝𝑑௜ or 𝑝௜௝𝑢௜௝. 
In the case that the flow value arrived at node 𝑖 is less 
than 𝑢௜௝, (namely, 𝑑௜ < 𝑢௜௝), this arc is not saturated 
and consequently, 𝑑௝ = 𝑝௜௝𝑑௜. In the other case, (𝑖, 𝑗) 
is saturated, and it interdict sending flow more than 
its capacity. So, 𝑑௝ = 𝑝௜௝𝑢௜௝ in this case.    

Since this optimality condition is similar to that of 
the SP problem, we can apply the concept of 
Dijkstra’s algorithm to solve problem 1. This is 
presented in Algorithm 2.  

Theorem 2: Algorithm 2 solves the problem in 𝑂(𝑛ଶ)  time. 
 

Proof. Considering the provided information, we can 
deduce that in the given for loop, each arc is checked 
only once. As a result, the number of iterations 
executed by the two last lines of the loop is at most 𝑂(𝑚)  which is also less than or equal to 𝑂(𝑛ଶ) , 
considering the worst-case scenario. 

Conversely, the node selection process, where the 
node with the minimum label is chosen, requires 𝑂(𝑛) time in each iteration. Taking into account that 
the number of iterations is 𝑂(𝑛ଶ), we can conclude 
that the most time-consuming operation in this 
algorithm is the node selection, which takes 𝑂(𝑛ଶ) 
time. 

Algorithm 2. 

Input: An instance of the generalized MCP 
problem 

Output: An optimal path 
 
for 𝑖 ∈ 𝑉: 
    Set  𝑑(𝑖) = 0 
Set 𝑑(𝑠) = +∞ 
Set 𝑆(0) = 𝑠; 𝑆̅ = 𝑉 
while |𝑆| < 𝑛: 
   Let 𝑖 ∈ 𝑆 be a node for which 
       𝑑(𝑖) = min{𝑑(𝑗): 𝑗 ∈ 𝑆}; 
    𝑆̅ = 𝑆̅\{𝑖}; 
    for each 𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴: 
          if 𝑑௝ < 𝑝௜௝ min൛𝑢௜௝, 𝑑௜ൟ: 
              Update 𝑑௝ = 𝑝௜௝ min൛𝑢௜௝, 𝑑௜ൟ 
               Update 𝑆 = 𝑆 𝑈 {𝑖}; 
 

 

We can also use the available implementations of 
Dijkstra’s algorithm for the complexity improvement 
of Algorithm 2. For example, the Fibonacci heap 
implementation reduces the complexity to 𝑂(𝑚 +𝑛 log 𝑛). 

5 EXPERIMENTS & 
DISCUSSIONS 

Based on the findings presented in Theorem 1 and 
Theorem 2, it is obvious that Algorithm 2 
outperforms Algorithm 1 in terms of speed. However, 
Algorithm 1 offers an advantage in that it can be 
effectively parallelized on GPUs by utilizing classical 
Dijkstra's algorithm (Ortega-Arranz, 2013) in a 
sequential manner. So, the implementation of CUDA-
based Dijkstra's algorithm resulted in a noteworthy 
acceleration of Algorithm 1. 

The CUDA version exhibited significantly 
improved performance compared to Algorithm 2, as 
demonstrated in Table 2. Particularly, for larger 
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network instances with 10,000 nodes or more, the 
CUDA implementation of Algorithm 1 was up to 25.7 
times faster than Algorithm 2. 

Table 1: Network generator parameters used for 
experiments. 

No. of 
nodes 

No. of 
Instances 

No. of 
paths

No. of 
cycles 

Erdős–
Rényi prob.

No.

1000 10000 

500 100 0.5 1 

500 100 0.7 2 

500 100 0.9 3 

2000 1000 

1000 100 0.1 4 

1000 250 0.15 5 

1000 500 0.6 6 

5000 100 

2500 1000 0.1 7 

2500 1000 0.2 8 

2500 1000 0.3 9 

10000 5 

5000 2500 0.15 10 

5000 2500 0.3 11 

5000 2500 0.5 12 

15000 3 7500 1000 0.15 13 

20000 2 7500 1000 0.15 14 

25000 1 8000 1500 0.15 15 

Table 2: Running times (ms) comparison between 
Algorithm 1 (CPU and GPU) and Algorithm 2 CPU. 

No. Alg. 1 CPU Alg. 1 
GPU 

Alg. 2 
CPU 

Alg. 1 GPU vs 
Alg. 2 CPU(times)

1 165.75 187.30 18.32 0.10 
2 121.1 138.66 8.24 0.06 
3 188.96 311.78 14.84 0.05 
4 30.22 52.40 6.86 0.13 
5 120.00 209.34 63.00 0.30 
6 193.50 315.60 19.50 0.06 
7 183.00 71.52 40.15 0.56 
8 284.30 103.41 41.7 0.40 
9 626.6 226.74 61.4 0.27 

10 671.10 89.21 98.01 1.10 
11 677.14 67.78 216.00 3.19 
12 940.20 76.15 358.01 4.70 
13 1306.07 49.41 238.10 4.82 
14 2965.04 53.48 452.11 8.46 
15 3549.10 32.11 826.04 25.72 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Running times (ms) comparison between 
Algorithm 1 GPU and Algorithm 2 CPU. 

We used different instances of random generated 
networks having the number of nodes varying from 
1000 to 25000 (see Table 1). The networks were 
generated using the network random generator from 
(Deaconu, 2021). 

It is imperative to acknowledge that, throughout 
various experimental analyses, graph's density played 
an important role, and was calibrated using the 
Erdős–Rényi probability distribution. The Erdős–
Rényi variable, a continuous parameter spanning the 
interval [0, 1], played a pivotal role in these 
experimental investigations. 

In this context, it is essential to elucidate that the 
Erdős–Rényi variable assumes a value of 0 when the 
graph lacks any new arcs, signifying minimal density. 
Conversely, a value of 1 denotes the graph's 
attainment of maximum density, highlighting the 
comprehensive spectrum of density exploration in our 
experimental framework. 

The experiments were performed using a PC with 
an Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 24 
GB RAM, and an NVIDIA GeForce GTX 1070 TI 
graphics card. The algorithms were programmed in 
Visual C++ 2022 under Windows 10. 

6 CONCLUSIONS 

In this paper, a novel combinatorial optimization 
problem was introduced. The main objective is to 
identify a path that can transmit the maximum flow, 
taking into account both the capacities and loss 
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factors of the arcs. This problem is known as the 
generalized maximum capacity path problem 
(GMCP). 

The paper presents two strongly polynomial 
algorithms to address the GMCP. The first algorithm 
has a time complexity of 𝑂(𝑚𝑆(𝑛, 𝑚)) , where 𝑆(𝑚, 𝑛) represents the time complexity of finding the 
shortest path in the network. On the other hand, the 
second algorithm has a more efficient time 
complexity of 𝑂(𝑛ଶ). However, it is worth noting that 
when the first algorithm is implemented on GPUs, it 
performs substantially faster than the second 
algorithm, especially for large network instances. 
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