
Kant: A Domain-Specific Language for Modeling Security Protocols

C. Braghin∗ a, M. Lilli b, E. Riccobene c, K. Notari and Marian Baba
Department of Computer Science, Università degli Studi di Milano, Italy

Keywords: Model-Driven Language Engineering, Security Protocol Specification and Analysis, Language Validation.

Abstract: Designing a security protocol is a complex process that requires a deep understanding of security principles
and best practices. To ensure protocol effectiveness and resilience against attacks, it is important to strengthen
security by design by supporting the designer with an easy-to-use, concise, and simple notation to design
security protocols in a way that the protocol model could be easily mapped into the input model a verifica-
tion tool to guarantee security properties. To achieve the goal of developing a DSL language for security
protocol design, working as the front-end and easy-to-use language of a formal framework able to support
different back-end tools for security protocol analysis, we present the abstract and concrete syntaxes of the
Kant (Knowledge ANalysis of Trace) language. We also present a set of validation rules that we have defined
to help the designer, already at design time, to avoid common security errors or to warn him/her regarding
choices that might lead to protocol vulnerabilities. The effectiveness of Kant’s expressiveness is discussed in
terms of a number of case studies where Kant has been used for modeling protocols.

1 INTRODUCTION

Security protocols are a set of procedures defining
how data should be transmitted, encrypted, authen-
ticated, and protected to ensure the security and in-
tegrity of information during communication (Ander-
son and Needham, 1995). Despite their apparent sim-
plicity, designing a security protocol is a complex pro-
cess that requires a deep understanding of security
principles and best practices. Although a large num-
ber of security protocols have been developed and im-
plemented to provide security guarantees, the devel-
opment of security protocols is particularly prone to
errors: many communications protocols do not use
up-to-date security features or implement them incor-
rectly (Basin et al., 2018). Security vulnerabilities
and errors cannot be detected only by functional soft-
ware testing because they appear in the presence of a
malicious adversary. For this reason, many published
protocols have proven to be faulty many years after
their practical usage (Tobarra et al., 2008).

To ensure the protocol’s effectiveness and re-

a https://orcid.org/0000-0002-9756-4675
b https://orcid.org/0000-0001-7236-9171
c https://orcid.org/0000-0002-1400-1026
∗This work was partially supported by project SER-

ICS (PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGen-
erationEU.

silience against attacks, it is important to strengthen
security at design-time by achieving the so-called se-
curity by design. In fact, defects found after the
design phase are expensive to fix, and the cost in-
creases exponentially during the subsequent develop-
ment phase (Haskins et al., 2004). Thus, protocol de-
sign should be complemented by rigorous analysis,
and formal verification of security protocols has be-
come a key issue.

Most of the tools developed in the past for proto-
col verification were not widely adopted by the indus-
try, and the reason is strongly related to the fact that
formal method usage requires a strong mathematical
background, which many designers or engineers do
not hold (Davis et al., 2013). Additionally, (i) vali-
dation tools are often based on modeling languages
with poor usability, making the writing of the model
error-prone as well; (ii) the verification process is not
a push-bottom activity and requires user intervention
along with the proof and knowledge of the analysis
mechanism; (iii) the verification results are often dif-
ficult to interpret and to cross check with the origi-
nal protocol; (iv) verification approaches have differ-
ent goals and sometimes the integrated use of various
tools could be useful for more complete protocol anal-
ysis. However, tools integration is difficult to achieve
(Heinrich et al., 2021) since each tool has its own in-
put language and modeling primitives, thus using dif-
ferent tools often requires starting modeling the same
protocol from scratch each time.

62
Braghin, C., Lilli, M., Notari, E. and Baba, M.
Kant: A Domain-Specific Language for Modeling Security Protocols.
DOI: 10.5220/0012386400003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 62-73
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

In this paper, we present the first results of an on-
going research project to provide practitioners with a
formal framework able to support different kinds of
analysis for security protocols, but at the same time
easy to use and with a reduced gap between designer’s
background and formal notations.

Figure 1: APROVER Framework.

Fig. 1 shows the architecture of the APROVER
(Automatic PROtocol VERifier) framework under de-
velopment. We envision it as composed of a model-
ing front-end on top of richer and more specific mod-
eling, analysis, and implementation back-end frame-
works. Following this rationale, the modeling front-
end should provide an easy-to-use, concise, and sim-
ple notation to design security protocols. By exploit-
ing the model-based software engineering approach,
this could be achieved by defining a DSL (Domain
Specific Language) for protocol specification, and
possibly developing a textual and graphical notation
(with interchangeable models) for it. More specific
models or code in the target back-end frameworks/-
platforms could be synthesized from these DSL mod-
els by defining/developing suitable model transfor-
mations towards input models of the target back-end
tools. ASMETA (Arcaini et al., 2011) for model sim-
ulation and model checking, PROVERIF (Blanchet,
2001) and TAMARIN (Meier et al., 2013) for trace
analysis, are the tools under consideration as primary
back-end tools, but other back-ends could be inte-
grated into the APROVER framework by exploiting
model transformations.

We here present Kant (Knowledge ANalyzing
Tracer), a DSL explicitly designed as the front-end
language of APROVER for the specification of se-
curity protocols. Kant is a high-level language en-
dowed with primitives for protocol modeling and as-
sumption expression. It has been conceived as a sort
of lingua franca that allows simple textual descrip-

tions to express protocols and easy translation into the
input languages of various tools for protocol analy-
sis. Since Kant has been engineered and developed
by using the Langium platform1, , its grammar defini-
tion comes with an editor and a number of other tools
that allow checking Kant models not only for syntac-
tic correctness, but also for consistency with respect
to a given semantic model. The latter is expressed
in terms of a set of validation rules, which describe
both constraints and best practice principles in design-
ing security protocols. Such a checking mechanism
is extremely important at design-time to avoid com-
mon security errors (e.g., incorrect use of encryption
keys), or to warn the designer regarding choices that
might lead to protocol vulnerabilities (e.g., a princi-
pal’s name not mentioned explicitly in the message).
Note that in Fig. 1 blocks in grey are under devel-
opment and the mapping from Kant to validation and
verification tools is out of the scope of this work.

The paper is structured as follows. Section 2 re-
calls the concept of security protocol and presents a
protocol that we use as a reference scenario through-
out the paper. Section 3 introduces the Langium plat-
form used to develop Kant as DSL, while Kant mod-
eling primitives and constructs are given in Section
4. Section 5 presents the semantic model of Kant and
shows the application of the validation rules. In Sec-
tion 6 we show the use of Kant and the language vali-
dation mechanism on the reference scenario. Section
7 compares our results with respect to other research
work in literature, and Section 8 concludes the paper
and outlines future research directions.

2 REFERENCE SCENARIO

Although there is a wide range of protocols, differing
by the number of principals (or actors), the number of
messages, and the goals of the protocol (that may of-
ten be expressed with a list of desired security prop-
erties), they all share a common structure. Indeed,
a communication protocol consists of a sequence of
messages between two or more principals. Each mes-
sage may be written by using the classical Alice&Bob
notation in the form:

M1. A → B : message payload

which specifies:
• The principals (or actors) exchanging messages

(in general, symbols A and B represent arbitrary
principals, S a server). In particular, the direction
of the arrow specifies the sender and the receiver
of the message.
1https://langium.org/

Kant: A Domain-Specific Language for Modeling Security Protocols

63

• The order in which messages are sent, and their
specific payload. In particular, M1 is a label iden-
tifying the message, whereas message payload
specifies the actual content of the message.

In secure protocols, payloads can be partially or
totally ciphered, either by symmetric-key encryption
(in this case, a key shared between actors is used both
to encrypt and decrypt), or by asymmetric-key en-
cryption (here, KB and KB

-1 is used to specify a pub-
lic and private key of B, to encrypt and, respectively,
decrypt). Message payloads can contain other infor-
mation, such as nonces (N), timestamps (T), etc.

The security goals are often defined with re-
spect to CIA (Confidentiality, Integrity, Authentica-
tion) triad. The most common are confidentiality or
integrity of message payloads, or entity authentica-
tion (i.e., the process by which one entity is assured
of the identity of a second entity that is participating
in the same session of a protocol, thus, they share the
same values of the protocol parameters, such as ses-
sion keys, nonces, etc.).

Consider the classic Needham-Schroeder public-
key protocol (NSPK, for short) that will be used
throughout the paper as a running example to intro-
duce the Kant notation.

M1. A → B : {A,NA}KB
M2. B → A : {NA,NB}KA
M3. A → B : {NB}KB

It was introduced in 1978 for mutual authentica-
tion (here, we omit the exchanges with the certifica-
tion authority to get the public keys). It consists of
three messages: in the first message, principal A sends
to B a message containing her identity, A, and a nonce,
NA, to avoid replay attacks (i.e., reuse of old mes-
sages, often called a challenge message), that only B
can decrypt with his private key. B’s answer (mes-
sage M2) is ciphered with A’s public key and contains
nonce NA to authenticate B (he is the only one able
to decrypt message M1 and obtain NA in clear), and
a nonce NB to authenticate A with B. Since message
M2 is encrypted with A’s public key, she is the only
one who can decrypt it, thus if B receives message M3
containing nonce NB encrypted with his public key, A
is authenticated, too.

3 Kant DEVELOPMENT

Kant (Knowledge ANalysis of Trace) is the domain-
specific language we explicitly designed and imple-
mented in Langium for the specification of security
protocols. Using a tool to engineer a DSL offers sev-

eral advantages that can streamline the development
process and enhance the utility of the DSL, such as
syntax highlighting, autocompletion, and debugging
support.

In particular, Langium represents an innovative
tool in the context of language engineering enabling
DSL development in a web-based technology stack.
When used in the context of a desktop app (e.g.,
VS Code, Eclipse IDE, etc.), Langium runs on the
Node.js platform. Additionally, it can run in a web
browser to add language support to web applications
with embedded text editors (e.g., Monaco Editor).
The interface between Langium and the text editor
is the Language Server Protocol (LSP), allowing lan-
guages based on Langium to seamlessly interact with
a range of popular IDEs and editors supporting LSP.

A grammar language is provided to specify the
syntax and structure of the language. The gram-
mar rules describe the concrete syntax by instructing
the parser how to read input text, and also the ab-
stract syntax in terms of meta-classes and their prop-
erties. For a given text document, Langium creates
a data structure called Abstract Syntax Tree (AST):
every grammar rule invocation leads to a correspond-
ing node in the AST that is a JavaScript object, and
Langium generates a TypeScript interface for every
rule to provide static typing for these nodes. As pro-
grams written in the language are parsed, Langium
automatically generates Abstract Syntax Trees based
on these interfaces, making efficient manipulation and
analysis of the parsed content possible. In particu-
lar, Langium allows to implement also custom vali-
dation without the need to involve complex external
tools, thus ensuring that validation is defined along-
side the grammar specification. It provides a cutomiz-
able Validation Registry mapping validation functions
with specific nodes in the AST, enabling targeted val-
idation checks at relevant points in the AST (e.g., ei-
ther internal or leaf nodes). Designer only need to de-
fine the validation functions encapsulating the desired
checks on both the structural and semantic aspects of
the language captured by the AST, and to update the
Validation Registry with the new functions. This ap-
proach is great for rapid prototyping, when the focus
is on designing the syntax of a new language.

Beyond parsing, Langium extends its capabili-
ties to establish connections between different lan-
guage elements, enabling cross-referencing and link-
ing. These relationships play an important role, and
Langium is capable of resolving them automatically
thanks to built-in scoping and indexing.

Although Langium’s grammar declaration lan-
guage is similar to Xtext, they are built upon different
open-source libraries and tools: Xtext is built upon

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

64

Eclipse and ANTLR, while Langium is built upon Vi-
sual Code and Chevrotain. Moreover, Xtext is heavily
based on the Eclipse Modeling Framework, whereas
Langium uses TypeScript interfaces, enabling lan-
guage engineering in TypeScript, the same technol-
ogy that is used for VS Code extensions. In con-
trast, building a tool that uses an Xtext-based lan-
guage server with VS Code or Theia means creat-
ing a hybrid technology stack with some parts imple-
mented in Java, others in TypeScript. Development
and maintenance of such a mixed code base are more
demanding, and long-term maintenance is likely more
difficult compared to Langium’s coherent technology
stack.

4 Kant SYNTAX

In this section, we present the abstract and concrete
syntax of the Kant language and we show how it en-
compasses all the essential aspects of security proto-
cols. In particular, it integrates useful features that
can be helpful for the verification process and pro-
vide valuable insights for protocol correctness at the
design phase.

The syntax includes constructs of the notations
commonly used to express security protocols (e.g.,
the Alice&Bob notation); however, it has been ex-
tended with the concept of knowledge exchange be-
tween the parties involved in the security protocol ses-
sion to help reasoning and analyzing the flow of infor-
mation during the communication.

Kant has been developed by exploiting the MDE
approach for a DSL definition, so its abstract syntax is
given in terms of a metamodel from which a concrete
textual notation is derived. Kant’s meta-model (see
Fig. 2) defines six mandatory meta-classes and two
optional ones, which are necessary to specify a valid
protocol model in Kant. The protocol must contain
specific elements, including the definition of princi-
pals involved in the protocol (such as Alice, Bob, and
Server), the types used in the function definitions and
the definition of cryptographic functions and their in-
verse functions, the knowledge that each principal has
during the message exchange, and the definition of the
communication mechanism for messages exchange.

In addition to these mandatory model sections,
two optional meta-classes can be used to define
shared knowledge between principals, and to help the
user writing, in a human-readable style, either proper-
ties or constraints on the model elements, and security
checks. These statements are arguments for the vali-
dation and verification of the model.

Figure 2: Protocol Meta-model.

Principal Definition. A protocol model (instance
of the meta-model) written in Kant starts with the
name declaration of the principals involved in the
message exchange. Two examples of declarations fol-
low (the user is free to select the most suitable name):

principal Alice
principal Alice, Bob, Server

Type and Function Definitions. We designed the
language with static analysis in mind, so we included
types it. The user can use built-in types that are de-
clared in the language prelude, but he/she can also
define other types. An example of type definition
is the following:
type SymmetricKey, PublicKey, BitString, Group

where SymmetricKey and PublicKey are types of
cryptographic keys used for symmetric and asymmet-
ric encryption, respectively; Bitstring is a special
type we call ‘sink type’ since a function that accepts
a Bitstring as a parameter can accept any other type;
Group represents elements of a Abelian group, i.e., a
set of elements with commutative operations.

Types are used to categorize information in the
principal’s knowledge and allow the validation of the
usage of piece of information through the protocol.
Moreover, since some input languages of the back-
end tools are typed, using types at the top-level of
Kant model removes the need for a conversion step.

The FunctionDef meta-class enables users to de-
fine custom functions in agreement with the symbolic
model (Blanchet, 2012) to describe both invertible
and one-way functions. A function is defined by a

Figure 3: Function Definition Meta-model.

Kant: A Domain-Specific Language for Modeling Security Protocols

65

name, one or more parameters, and one or more
return values. Each function component requires
an identifier and a type, either pre-defined or
custom-defined to suit the particular use case. Cryp-
tographic functions, in addition, require the definition
of a key used to encrypt data (which are the function
parameters).

The separation of the FunctionDef in the com-
posing meta-classes (FunctionParam, Functionkey
and FunctionReturn, see Fig. 3) enables us to de-
fine validation rules (see Section 5) that are specific
to each class and, in turn, helps to streamline the val-
idation process.

Examples of function definitions are given below
for the function ENC to encrypt data with a given key
and the one-way cryptographic HASH function.
function ENC(content:BitString)

with k:SymmetricKey -> [enc:Ciphertext]

function HASH(value:BitString)
-> [hash:Digest] one way

Property Definition. Properties can be added to
a model to express constraints on model elements
(e.g., on functions and their parameters) or equiva-
lence properties (e.g., Diffie-Hellman exponentiation,
as well as other equational theories). For example,
the following property states the identity function as
the result of applying description on encrypted data
by using a symmetric key.

property forall x:BitString, k:SymmetricKey |
DEC(ENC(x) with k) with k -> [x]

An example of a property stating function equivalence
is the following that guarantees the Diffie-Hellman
equivalence between two private keys a and b on a
generator g in a finite cyclic group . 2

property forall a:PrivateKey, b:PrivateKey,
g:Group | DF(EXP(g,b),a)
equals DF(EXP(g,a),b)

Knowledge Definition. Kant allows declaring the
knowledge of the principals. There are two ways to
accomplish this: (i) at the beginning of the proto-
col model, define the knowledge that is shared by
selected principals in the initial state of the proto-
col run (by the construct share of the meta-class
SharedKnowledgeDef); (ii) define private principal’s

2According to the Diffie-Hellman key exchange proto-
col, the shared secret between two parties is given by the
formula K =(ga)b mod p=(gb)a mod p, being p a prime
number and g a primitive root modulo p on which the two
parties agree and that are public values, a and b secret val-
ues chosen by Alice and Bob, respectively.

Figure 4: Knowledge Meta-model.

knowledge at any point of the protocol model, but
before sending a message (by the construct know in
the meta-class PrincipalKnowledgeDef). In both
cases of knowledge definition, two qualifiers can be
used to distinguish between knowledge that is regen-
erated every time the protocol is executed (fresh
knowledge at any protocol session), and knowledge
that remains the same (constant knowledge dur-
ing a protocol session) – both qualifiers are de-
fined in the meta-class KnowledgeDefBuiltin on
top of the meta-classes SharedKnowledgeDef and
PrincipalKnowledgeDef.

Private knowledge of a principal can include the
specification of its own Finite State Machine (FSM):
principal’s initial state is specified as

state initial_state;

at the beginning of the protocol model; information
on a reached state and its enabled transition can be
specified at any point of the protocol model as:

state reached_state;
transition previous_state
=> reached_state;

Information relative to principal’s FSM is primar-
ily used in verification, but it is also useful in valida-
tion to analyze the knowledge flow of principals3.

Two examples of shared and private knowledge
specification follow:

Bob,Alice share{
const key:SymmetricKey;}

Alice know{
state second_state_Alice;
transition first_state_Alice
=> second_state_Alice;
fresh priv_a:PrivateKey;
pub_a = PUB_GEN(priv_a);
enc_mess = ENC(m) with key;}

3Since not a mature feature yet, Kant allows for drawing
the FSM of each principal from his/her knowledge block.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

66

The knowledge block is used to specify what a
principal knows at the application of a given proto-
col rule. Fig. 4 shows the relation among the meta-
classes for knowledge representation.

Each information is identified by a reference
priv a of a given type PrivateKey in priv a:-
PrivateKey and can be constant or fresh (from the
meta-class KnowledgeDefBuiltIn). Additionally,
information of meta-class KnowledgeDefCustom is
of the form ref= ... and can refer to the result of
a function application (e.g., puba=PUB GEN(priva)),
or it can reference some saved information de-
rived from the received messages (e.g., dec na =
PKE DEC(enc na)) or built to be sent as a mes-
sage (e.g., enc na = PKE ENC(na)) (see the refer-
ence scenario model, in the following).

Particular importance is given to the two built-in
functions that we have defined to facilitate list man-
agement (and that we use to model our reference sce-
nario). The language prelude contains the basic types
and functions: CONCAT and SPLIT of the meta-class
ListAccess; the former yields the reference of a list
concatenating a sequence of elements; the latter re-
turns the list of elements from a given list reference.
The property that derives from the two functions defi-
nition (see below) guarantees that concatenating a se-
quence of elements into a referenced list and then slit-
ing such referenced list, holds the original list.
function CONCAT(...values: BitString)

-> [value: BitString]
function SPLIT(value: BitString)

-> [values: BitString]
property forall v: BitString |

SPLIT(CONCAT(...v)) -> [v]

Principals Communication. A principal Alice
builds within its knowledge a piece of information,
enc mess, that it wants to send as a protocol message
to one of the other participants, Bob. To send the mes-
sage, we exploit the concrete syntax of the meta-class
CommunicationDef:

Alice->Bob: enc_mess

Security Checks. Kant grammar allows the user to
specify security properties, which are verified once
the model is transformed into a valid model for the
back-end verification tools. The validation rules in-
troduced in Sect. 5 can guarantee a lightweight form
of static analysis of the information flow. Dynamic
analysis can be performed only by back-end verifica-
tion tools.

We provide three meta-classes, Confiden-
tialityCheck, EquivalenceCheck, and Authen-

ticationCheck, to express different kinds of secu-
rity checks. The concrete syntax follows:

• ConfidentialityCheck: an information m must be
known only by principals Alice and Bob

only Alice,Bob should know m

• EquivalenceCheck: this is used to check whether
two pieces of information are equal or not; this is
relevant for a security protocol when communica-
tion happens in an insecure channel and some in-
formation can be stolen or altered during the pro-
tocol run.

g_ab, g_ba should be equal

• AuthenticationCheck: the nounce nb allows
Alice to authenticate principal Bob.

Alice should authenticate Bob with nb

Kant Model of the Reference Scenario. The fol-
lowing Kant model 4 is the specification of the NSPK
security protocol described in Sect. 2: Alice and Bob
have an associated FSM; they do not share any knowl-
edge; each principal has private keys, uses a public
key (generated from the corresponding private one)
to encrypt messages, decrypts messages by using its
own private key, generates fresh nonces and builds
private knowledge according to the protocol rules.
principal Alice, Bob

Alice know {
state sending_puba;
const priva: PrivateKey;
puba = PUB_GEN(priva);}

Alice -> Bob : puba

Bob know {
state waiting_puba;
const privb: PrivateKey;
pubb = PUB_GEN(privb);}

Bob -> Alice : pubb

Alice know {
state waiting_pubb;
transition sending_puba=>waiting_pubb;
fresh na: Nonce;
enc_na = PKE_ENC(na) with pubb;}

Alice -> Bob : enc_na

Bob know {
state waiting_enc_na;
transition waiting_puba=>waiting_enc_na;
fresh nb: Nonce;
dec_na = PKE_DEC(enc_na) with privb;

4All the Kant language artifacts (grammar, models,
validation rules, etc) are available at https://github.com/
Aprover/kant on GitHub.

Kant: A Domain-Specific Language for Modeling Security Protocols

67

nb_na = CONCAT(nb, dec_na);
enc_nb_na = PKE_ENC(nb_na) with puba;}

Bob -> Alice : enc_nb_na

Alice know {
state waiting_enc_na_nb;
transition waiting_pubb =>
waiting_enc_na_nb;

dec_na_nb = PKE_DEC(enc_nb_na) with priva;
rec_na_nb = SPLIT(dec_na_nb);
enc_nb = PKE_ENC(rec_na_nb[1]) with pubb;}

Alice -> Bob : enc_nb

Bob know {
state waiting_enc_nb;
transition waiting_enc_na=>waiting_enc_nb;
dec_nb = PKE_DEC(enc_nb) with privb;}

check nb, dec_nb should be equal
check Bob should authenticate Alice with nb

5 Kant VALIDATION RULES

A model written in a DSL is an instance of the lan-
guage meta-model. Thanks to Langium, a model can
be validated according to certain validation rules and
constraints, covering both syntactic and semantic as-
pects. These rules have to be defined at the meta-
model level. Error and warning messages can be re-
ported upon model validation.

In Kant, the model validation phase helps the pro-
tocol designer to avoid common mistakes such as in-
correct use of encryption keys, or definition of in-
correct knowledge flows. Moreover, Kant grammar
has some restrictions on the use of undeclared names
of functions, types, and principals, and these restric-
tions are captured by the use of cross-references in
Langium (see Sect. 3). Thus, it is possible to elim-
inate incorrect spelling of terms during model writ-
ing and to suggest, by means of auto-completion, only
what is allowed.

Besides the advantages offered by the cross-
reference mechanism in terms of revealing mistakes
and making suggestions, in order to improve Kant
model validation, we defined and implemented three
sets of validation rules, whose violations result in er-
rors or warnings. Rules for syntactic checks (see Sect.
5.1) are used to reveal syntactic errors that must be
corrected. Rules for semantic checks (see Sect. 5.2)
can reveal potential errors or violations of security
properties. Rules for prudent engineering practices
(see Sect. 5.3) work as guidelines for security pro-
tocol specification following some of the principles
outlined in (Abadi and Needham, 1996); they help
to identify and prevent common error patterns found
in the literature, which might lead to attacks. Espe-

Figure 5: Semicolon placement error.

cially for semantic and prudent practice rules, a warn-
ing serves as a suggestion to improve the clarity of
the model, or to adopt good practices in writing the
protocol.

All validations are performed in real-time and are
triggered by the user entering new knowledge. In sec-
tion 5.1.1 we show an example taken from the GUI
of Visual Studio Code, subsequent error reports are
shown in plain text for better readability. We convey
to mark incorrect elements by a red underline, and a
warning by a yellow underline. We use fragments of
the Kant model of the NSPK protocol to show the ap-
plication of the validation rules.

5.1 Syntactic Checks

5.1.1 Syntax Well-Formedness

This set of validation rules checks for the correct
formatting of parentheses, comments, and delimiters
when writing a protocol in Kant. The example in Fig.
5 catches the error of a missing semicolon, which is
used to declare separate knowledge.

5.1.2 Knowledge Declaration

New knowledge must be either fresh, constant or the
result of a function. When declaring fresh or constant
knowledge, the type must also be specified.

Alice know {
state sending_puba;
const priva;}

The error message specifies the expected token se-
quence:
Expecting: one of these possible token sequences:

1 [ID : [Type:ID]]

2 [ID : [Type:ID], ID : [Type:ID]]

but found: ’priva’.

5.1.3 Naming Convention

The naming convention in Kant requires that princi-
pals’ names start with a capital letter, function names
are capitalized, and variables are in lower case.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

68

principal alice , Bob

In this case, it is raised a warning since this is a stylis-
tic convention and not a real error:
Principal name alice should start with a capital letter.

5.1.4 Keyword Usage

Keywords can only be used in the way specified by the
syntax (similarly to other programming languages).

Bob know {
state state;}

This means that it is not possible to use “state” as a
name for a FSM state. The error produced is:
Expecting token of type ’ID’ but found ‘state‘.

5.1.5 Functions Definition

A function in Kant is declared as a name, with typed
parameters and typed results. Invocations must follow
the same structure as the definitions.
function PKE_ENC(content: BitString)

with k: PublicKey -> [pke_enc: Ciphertext]
Alice know {
...
fresh na: Nonce;
fresh nx: Nonce;
enc_na = PKE_ENC(na,nb) with pubb;}

The validator produces the following error because
the declaration has only one parameter:
“PKE ENC” requires “1” argument, but “2” argu-
ments are provided.

A similar error would be produced if the number
of keys entered does not correspond to the number of
keys declared.

5.1.6 Unused Knowledge or Principal

In order to increase the clarity of the model, we warn
the user of all principals and knowledge declarations
that remain unused in the writing of a protocol:

principal Alice, Bob, Server

Principal Server is declared but never used.

5.1.7 Check Fields

User-entered checks in the protocol may only target
knowledge and principals, but not functions.

only Alice,Bob should know CONCAT(na,nb)

Knowledge check should target only knowledge refer-
ences and list access.

5.2 Semantic Checks

5.2.1 Type Compatibility

The types of the parameters used in the function invo-
cation are inferred and checked to be congruent with
those of the declarations.

Bob know {
...
dec_na = PKE_DEC(enc_na) with pubb;
...}

Incorrect key type: “PublicKey”, the invoked function
requires a key of type “PrivateKey”.

5.2.2 Knowledge Scoping

The knowledge declared by a principal is only acces-
sible by that principal or the ones it has shared it with.
Furthermore, the names of new knowledge must be
unique across the entire protocol.

Bob -> Alice : nx

Principal “Bob” doesn’t know “nx”.

5.2.3 Function Inversion

Only functions that are not one way can be inverted
and a property must be specified for the inversion.
function PKE_ENC(content: BitString)

with k: PublicKey
-> [pke_enc: Ciphertext]one way

function PKE_DEC(pke_enc: Ciphertext)
with k: PrivateKey
-> [content: BitString]

property forall x: BitString, k: PrivateKey
| PKE_DEC(PKE_ENC(x) with PUB_GEN(k))

with k -> [x]

PKE ENC is a one way function, it cannot be in-
verted.

5.2.4 List Access

It is possible to access a list by using only the names
resulting from the application of a SPLIT. The valida-
tion of the SPLIT requires it to be used only on the
results of a CONCAT:

Alice know {
...
dec_na_nb = PKE_DEC(enc_nb_na) with priva;
rec_na_nb = SPLIT(enc_nb_na);
...}

The “SPLIT” function is called on a parameter that
is not the result of “CONCAT”.

Kant: A Domain-Specific Language for Modeling Security Protocols

69

5.3 Prudent Engineering Practices

5.3.1 Same Key for Encryption and
Authentication

The usage of the same key for symmetric encryption
and signing can allow an attacker to use the signing
algorithm to decrypt messages, so it is crucial to use
a different key for each method. In this example, Al-
ice uses the same key priva both for decrypting the
message enc bit and to sign the plaintext dec mess.
This causes a potential vulnerability when the signa-
ture is sent out.
Alice know {

fresh bit:BitString;
fresh priva:PrivateKey;
puba = PUB_GEN(priva);}

...
Alice know {

dec_mess = PKE_DEC(enc_bit) with priva;
sign_mess = SIGN(dec_mess) with priva;}

5.3.2 Hash Used as Encryption

A message should not contain a signed hash of a
plaintext as it could have been generated by a third
party and sent to another principal. An example of the
problem can be shown by the example below, which
specifies the following message:

Alice → Bob : {X}Kb ,{HASH(X)}Ka
−1

where {X}Kb represents the asymmetric encryption of
secret X (in plaintext) using Bob’s public key Kb and
{HASH(X)}Ka

−1 represents the signature of the hash
function applied to secret X using Alice’s private key.
Alice know {

enc_x = PKE_ENC(x) with pubb;
hash_x = HASH(x);
sign_hash_x = SIGN(hash_x) with priva;
mess = CONCAT(enc_x,sign_hash_x);}

Alice -> Bob: mess

5.3.3 Encrypt then Sign

The authentication pattern encrypt then sign is vulner-
able to attacks: the attacker can remove the signature
and replace it with its own, claiming ownership of the
message that the recipient receives. Thus, this pat-
tern is generally insecure and should be avoided. To
ensure greater security, it would be better to use the
sign-then-encrypt method and add the identity of the
recipient to the signature. The example below shows
a message mess built by using asymmetric encryp-
tion with a public key pubb. The resulting cyphertext
enc x is signed and concatenated to the encryption.

Alice know {
enc_x = PKE_ENC(x) with pubb;
sign_enc_x = SIGN(enc_x) with priva;
mess = CONCAT(enc_x,sign_enc_x)}

Alice -> Bob: mess

5.3.4 Add Recipient Identity to Signature

According to (Abadi and Needham, 1996), it is cru-
cial never to infer the principal’s identity from the
content or the sender of a message, as this can lead
to impersonation attacks. To prevent such attacks, it
is essential to mention the identity of the receiver in
the message’s signature. Additionally, although it can
be deduced from the key used to sign the message,
the identity of the sender should also be included. In
the example below, Alice sends a message enc sign
encrypted with asymmetric encryption and containing
a signature sign kab ta that does not include Bob’s
identity.
Alice know {

fresh kab:SymmetricKey;
fresh ta:Nonce;
kab_ta=CONCAT(kab,ta);
sign_kab_ta = SIGN(kab_ta) with priva;
enc_sign = PKE_ENC(sign_kab_ta) with pubb;}

Alice -> Bob: enc_sign

5.3.5 Avoid Double Encryption

Double encryption, also known as cascading encryp-
tion, is a practice that has fallen out of favor in modern
cryptographic security. While it may seem like a log-
ical way to enhance data security, it is often counter-
productive. Double encryption introduces complex-
ity, consumes additional computational resources,
and poses key management challenges. Rather than
enhancing security, it can lead to marginal improve-
ments while increasing the potential for implementa-
tion errors and vulnerabilities. The following example
uses double encryption. The first symmetric encryp-
tion with key kab is applied on bit, and the result is
encrypted using public encryption with the key pubb.

Alice know {
fresh bit:BitString;
enc1 = ENC(bit) with kab;
enc2 = PKE_ENC(enc1) with pubb;}

6 Kant EFFECTIVENESS

In order to evaluate the ability of Kant language
to capture the common concepts and primitives
of security protocols, besides the NSPK proto-
col, we modeled classical security protocols such

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

70

as SSL, Needham-Schroeder, Needham-Schroeder-
Lowe, Woo-lam, Yaholm, BAN-Yaholm, Otway-
Rees, Denning-Sacco, and other protocols are under
development. Kant’s models of all the case studies
have been validated by using the set of validation
rules and, as expected, some warnings were raised on
those protocol aspects that might cause vulnerabilities
– not surprisingly since the rules on prudent engineer-
ing practice (see Sect. 5.3) were defined following the
guidelines suggested in (Abadi and Needham, 1996)
as measures to prevent known attacks against classi-
cal protocols.

Besides modeling constructs in common with
other notations for security protocol description, Kant
has also primitives to model the principal’s knowl-
edge and the FSM of its execution of a given protocol
session. Such concepts are relevant for protocol veri-
fication by back-end tools, and the advantage of being
already specified at the level of Kant model facilitates
the translation of these models into models suitable
for verification and allows better integration of such
crucial activity into the development process of robust
protocols. Typically, verification is undertaken after
the protocol has already been released (Zhang et al.,
2020; Cremers et al., 2016; Lilli et al., 2021), and the
effort of making changes in the protocol is expensive.
Our idea in developing Kant was to facilitate the in-
tegration of verification early in the development pro-
cess. In this way, not only one develops consistent
documentation across iterations, but also avoids the
introduction of vulnerabilities when adding new fea-
tures or making changes to cryptographic primitives.

To assess the potentialities of Kant in model-
ing knowledge information flow among parties, we
selected the WPA3 Simultaneous Authentication of
Equals (SAE) protocol5, a password-based authen-
tication and password-authenticated key agreement
method. The choice was due to the fact that this proto-
col includes in its documentation a FSM of the proto-
col instances, and it is one of the first protocols to ex-
pose this feature. In addition, it provides advanced se-
curity features such as Forward Secrecy, Eavesdrop-
ping, and Dictionary attack resilience.

The overall picture of the WPA3 SAE protocol
execution is given, in the official documentation, in
terms of the FSM reported in Fig.6. The path in green
describes the transitions performed by each principal
(and are captured by our model) involved in the proto-
col for getting authentication; the other transitions are
performed by other entities described in the WPA3
documentation, and we here abstract from them.

The crucial steps of the protocol message ex-

5802.11-2020 - IEEE Standard for Information Tech-
nology

Figure 6: WPA3 SAE FSM.

changes depicted in Fig. 7 are mainly two: (1) the
commitment exchange, to move from state Committed
to state Confirmed, where each party commits to a sin-
gle password guess; (2) the confirmation exchange, to
move from state Confirmed to state Accepted, which
validates the correctness of the guess. The state Noth-
ing is the initial state where a principal is when it is
created and immediately moves to state Committed
when starts the protocol exchange.

The main rules of the protocol are the following:

• A party can commit at any point during the ex-
change.

• Confirmation can only be done after a party and
its peer have committed.

• Authentication is only accepted when a peer has
successfully confirmed.

• The protocol ends successfully when each partic-
ipating party has acknowledged and accepted the
authentication process.

Figure 7: WPA3 SAE key exchange.

The protocol uses modular arithmetic primitives

Kant: A Domain-Specific Language for Modeling Security Protocols

71

to calculate numbers sA and sB by summing:

sA = (a+A)modq

sB = (b+B)modq

where a, A, b, B are random numbers, and q is the
(prime) order of the group. Password Equivalent (PE)
is an hashed value of the password that Bob and Alice
know and is raised to the power of −A for Alice and
−B for Bob. Once the commit messages have been
exchanged, the two agents calculate the value k as:

k = (PEsB ∗PE−B)a = (PEsA ∗PE−A)b = PEab (1)

The two principals compute KCK as the hash of the
concatenation between k and the sum modulo q of sA
and sB. Finally, they hashed all received information
together with KCK and a counter called send-confirm
(scA, scB) to build the commit messages.

To model in Kant the above computations, we de-
fined the following functions:
function SCALAR_OP(r:Number,y:Group)->[z:Group]
function ELEMENT_OP(x:Group,y:Group)->[z:Group]
function INV_OP(h:Group)->[o:Group]
function SUM_MOD(r:Number,n:Number)->[t:Number]
property forall r:Number, t:Number, p:Group |

ELEMENT_OP(SCALAR_OP(SUM_MOD(r,t),p),
INV_OP(SCALAR_OP(t,p)))-> SCALAR_OP(r,p)

property forall x:Group, y:Group |
ELEMENT_OP(x,y) equals ELEMENT_OP(y,x)

property forall r:Number, t:Number |
SUM_MOD(r,t) equals SUM_MOD(t,r)

In both Finite Field Cryptography (FFC) and El-
liptic curve cryptography (ECC) groups, WAP3 SAE
employs three arithmetic operators: the element func-
tion ELEMENT OP that produces a group from two
groups, the scalar function SCALAR OP that generates
a group from an integer and a group, and the inverse
function INV OP that produces a group from a group.
The protocol uses modular arithmetic, we added the
function SUM MOD has been added for this purpose
(we omit the module as argument since it is of pub-
lic domain and not relevant for the analysis). We then
added various properties to address the commutativity
of functions ELEMENT OP and SUM MOD, and a property
that allows us to perform the mathematical simplifica-
tion as described in the Formula 1.

The model of the WPA3 protocol in Kant, upon
checking syntactic and semantic validation rules, is
available at WPA3 SAE. This case study shows the
expressive potential of the language in modeling a
protocol having very high mathematical complexity.
Moreover, thanks to the capability to express state end
transition in the knowledge of a principal, the model
is able to reflect the structure of the FSM in Fig. 6.

7 RELATED WORK

Formal verification of security protocols has been a
critical area of research and development in computer
security in the last twenty years. Many techniques
and tools have been proposed for verifying protocols.
Depending on the specific tool, either the protocol has
been translated into the tool input language, or a new
language has been defined to model the protocol. In
most of the cases, the language was not user-friendly,
requiring expertise in formal methods and protocol
analysis. There are indeed some examples of domain-
specific languages that inspired us when deciding
which features needed to be included in the language,
such as the knowledge notion, or the state. For exam-
ple, in the seminal paper (Burrows et al., 1990) intro-
ducing one of the first formalisms designed to reason
about protocols, the authors recognize the importance
of make explicit the assumptions (called principal’s
beliefs and assumptions) taken before the execution
of the protocol, which we expressed with the princi-
pal’s knowledge.

AVISPA (Automated Validation of Internet Se-
curity Protocols and Applications) (Armando et al.,
2005) supports the editing of protocol specifications
and allows the user to select and configure the differ-
ent back-ends of the tool, similarly to our long-term
goal. The protocol is given in the High-Level Proto-
col Specification Language HLPSL (Chevalier et al.,
2004), an expressive, modular, role-based, formal lan-
guage, thus not really user-friendly; HLPSL specifi-
cations are then translated to the so-called Interme-
diate Format (IF), an even more mathematical-based
language at an accordingly lower abstraction level and
is thus more suitable for automated deduction.

Also Sapic+ (Cheval et al., 2022) aims at exploit-
ing the strengths of some of the tools that reached
a high degree of maturity in the last decades, e.g.,
TAMARIN and PROVERIF, offering a protocol verifi-
cation platform that permits choosing the tool. How-
ever, the input language is an applied π calculus sim-
ilar to PROVERIF, thus it requires high expertise in
equational theories and rewrite systems.

In (Jacquemard et al., 2000; Mödersheim, 2009),
the authors define and give the semantics of AnB,
a formal protocol description language based on the
classical Alice&Bob notation we introduced in Sect.
2. However, in the translation, part of the readability
is lost since a mathematical notation is used.

The work most related to ours is Verifpal (Cheva-
lier et al., 2004), which uses a user-friendly high-level
language that allows users to model cryptographic
protocols and security properties in a rather intuitive
way. The tool uses symbolic analysis techniques, and

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

72

can automatically generate formal verification code
in the TAMARIN prover’s input language, making it
compatible with TAMARIN for further in-depth anal-
ysis and verification. However, they provide only a
text editor with a syntax highlighter, whereas in our
case we do both syntax and semantic checking.

8 CONCLUSIONS

We presented Kant (Knowledge ANalysis of Trace),
a DSL we explicitly designed and developed in
Langium for the specification of security protocols.
Kant has been conceived as a front-end and easy-to-
use language of a formal framework under develop-
ment to support different back-end tools for security
protocol analysis. The Kant grammar encompasses
constructs of the notations commonly used to express
security protocols, but it also has primitives to model
information that is fundamental for formal analysis
(done by back-end tools), i.e., (1) the knowledge flow
exchanged between the parties during a protocol ses-
sion, and (2) the FSM model that is behind the ex-
ecution of each participant. A further innovative fea-
ture of Kant w.r.t. other notations for security protocol
modeling is its embedded mechanism of model vali-
dation against a set of validation rules, which helps
the designer avoid common security errors or make
design choices leading to protocol vulnerabilities.

In future work, our first goal is to automate
the transformation of a Kant model in input mod-
els of the back-end tools (ASMETA, TAMARIN, and
PROVERIF are the first choices, see Fig. 1) by exploit-
ing the advantages of the Model-driven Language De-
velopment. We also plan to develop a graphical front-
end for APROVER for a visual rendering of Kant
models.

REFERENCES

Abadi, M. and Needham, R. (1996). Prudent engineering
practice for cryptographic protocols. IEEE Transac-
tions on Software Engineering, 22(1):6–15.

Anderson, R. and Needham, R. (1995). Programming Sa-
tan’s computer, pages 426–440. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Arcaini, P., Gargantini, A., Riccobene, E., and Scandurra,
P. (2011). A model-driven process for engineering a
toolset for a formal method. Software: Practice and
Experience, 41(2):155–166.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Com-
pagna, L., Cuellar, J., Drielsma, P. H., Heám, P. C.,
Kouchnarenko, O., Mantovani, J., Mödersheim, S.,
von Oheimb, D., Rusinowitch, M., Santiago, J., Tu-
ruani, M., Viganò, L., and Vigneron, L. (2005). The

AVISPA Tool for the Automated Validation of Inter-
net Security Protocols and Applications. In Computer
Aided Verification (CAV’05), pages 281–285.

Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.,
and Stettler, V. (2018). A Formal Analysis of 5G Au-
thentication. In Proc. of the ACM SIGSAC Conf. on
Computer and Communications Security (CCS’18),
pages 1383–1396.

Blanchet, B. (2001). An efficient cryptographic protocol
verifier based on prolog rules. In Proc. of IEEE Com-
puter Security Foundations Workshop, pages 82–96.

Blanchet, B. (2012). Security Protocol Verification: Sym-
bolic and Computational Models. In Principles of Se-
curity and Trust, pages 3–29.

Burrows, M., Abadi, M., and Needham, R. (1990). A
Logic of Authentication. ACM Trans. Comput. Syst.,
8(1):18–36.

Cheval, V., Jacomme, C., Kremer, S., and Künnemann, R.
(2022). Sapic+: protocol verifiers of the world, unite!
Cryptology ePrint Archive, Paper 2022/741. https://
eprint.iacr.org/2022/741.

Chevalier, Y., Compagna, L., Cuellar, J., Drielsma, P. H.,
Mantovani, J., Mödersheim, S., and Vigneron, L.
(2004). A High Level Protocol Specification Lan-
guage for Industrial Security-Sensitive Protocols. In
Workshop on Specification and Automated Processing
of Security Requirements (SAPS’04).

Cremers, C., Horvat, M., Scott, S., and van der Merwe, T.
(2016). Automated analysis and verification of tls 1.3:
0-rtt, resumption and delayed authentication. In 2016
IEEE Symposium on Security and Privacy (SP), pages
470–485.

Davis, J., Clark, M., Cofer, D., and et al. (2013). Study on
the barriers to the industrial adoption of formal meth-
ods. LNCS, 8187:63–77.

Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell,
R., and Dabney, J. (2004). 8.4.2 Error Cost Escala-
tion Through the Project Life Cycle. INCOSE Inter-
national Symposium, 14:1723–1737.

Heinrich, R., Bousse, E., Koch, S., Rensink, A., Riccobene,
E., Ratiu, D., and Sirjani, M. (2021). Integration and
orchestration of analysis tools. In Composing Model-
Based Analysis Tools, pages 71–95.

Jacquemard, F., Rusinowitch, M., and Vigneron, L. (2000).
Compiling and Verifying Security Protocols. In Logic
for Programming and Automated Reasoning, pages
131–160.

Lilli, M., Braghin, C., and Riccobene, E. (2021). Formal
Proof of a Vulnerability in Z-Wave IoT Protocol. In
Int. Conf. on Security and Cryptography.

Meier, S., Schmidt, B., Cremers, C., and Basin, D. (2013).
The TAMARIN Prover for the Symbolic Analysis of
Security Protocols. In Computer Aided Verification
(CAV’13), pages 696–701.

Mödersheim, S. (2009). Algebraic Properties in Alice and
Bob Notation. In Int. Conf. on Availability, Reliability
and Security, pages 433–440.

Tobarra, L., Cazorla, D., Pardo, J. J., and Cuartero, F.
(2008). Formal Verification of the Secure Sockets
Layer Protocol. In - Proc. of the Int. Conf. on En-
terprise Information Systems (ICEIS’08), pages 246–
252.

Zhang, J., Yang, L., Cao, W., and Wang, Q. (2020). IEEE
Access, 8:23674–23688.

Kant: A Domain-Specific Language for Modeling Security Protocols

73

