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Abstract: In neurodegenerative disorders, accurate diagnosis of hand tremors serves as a cornerstone for effective man-
agement and treatment plans. With the burgeoning advances in Artificial Intelligence and machine learning,
substantial promise exists for devising robust and reliable diagnostic methodologies. This paper presents a
systematic literature review analyzing 17 key studies that have employed machine-learning techniques to di-
agnose hand tremors. The scrutiny is multidimensional, elucidating the primary research objectives, patient
tasks during studies, distinct features utilized by the machine learning models, and various validation tech-
niques applied. The aim is to offer a synthesized research landscape, identifying recurring methodologies and
techniques. Moreover, we seek to underscore gaps and potential avenues for future investigations. Through
this systematic examination, we endeavor to contribute to the scholarly discourse, aiding the focused and
coherent advancement of machine learning-based diagnostic models within this critical healthcare domain.

1 INTRODUCTION

Tremor stands out as the most prevalent involuntary
movement disorder, represented by rhythmic oscilla-
tion of a body part, most commonly observed in the
hands (Jankovic, 1980). Numerous underlying causes
for involuntary tremors exist, such as Parkinson’s dis-
ease (PD) (Baumann, 2012), Essential Tremor (ET)
(Louis and Ferreira, 2010), Enhanced Physiologic
Tremor, and Orthostatic Tremor, each presenting with
its own distinctive frequency and potentially affecting
different body regions (Rana and Chou, 2015).

Parkinson’s disease, a prevalent neurodegenera-
tive disorder, is primarily diagnosed through patient
history and clinical examinations. Patients often ex-
perience movement challenges like tremors, stiffness
and slowness, accompanied by psychological issues
such as depression and anxiety. Clinical tests typi-
cally reveal bradykinesia (slowness of movement and
speed) and rigidity (Armstrong and Okun, 2020).

Predominantly, the clinical syndrome of tremor
is most pronounced in the upper limbs, impacting
at least 95% of all patients (Elble, 2013). It can
also manifest, albeit less commonly, in other body
parts including the head, face, trunk, lower limbs,
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and voice (Elble, 2013). The significant impact
of involuntary tremulous motion on an individual’s
life has been documented for centuries (Parkinson,
2002). Presently, with no known cure, the treatment
for tremors remains focused on managing symptoms
(Abboud et al., 2011) (Baumann, 2012).

In a period of rapid advances in medical science,
integrating artificial intelligence (AI) into medical di-
agnostics offers new possibilities. Diagnosing move-
ment disorders, especially Parkinson’s disease, has al-
ways been challenging due to the subtle and varied
symptoms and their progression. Traditional diag-
nostic methods, while critical, can sometimes lead to
delayed diagnoses, obstructing the timely start of the
best treatment for patients.

Thus, early diagnosis is crucial in managing these
disorders, ensuring that patients receive the right
treatment as soon as possible (Locatelli et al., 2020).
Existing studies indicate that AI can match the per-
formance of medical experts when given enough data
for model training (Shen et al., 2019). Additionally,
AI has proven useful in telemedicine, improving treat-
ment access and convenience for patients (Beck et al.,
2017).

Our motivation for this systematic literature re-
view lies in evaluating current applications of AI-
assisted diagnosis of tremor utilizing simple hand
videos. Given that hand tremors are prevalent in
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numerous movement disorders, establishing a non-
intrusive and easily accessible means of identify-
ing and assessing them could significantly stream-
line preliminary diagnostic processes. We seek to ex-
plore how current research employs AI, particularly
through non-complex video technology, to diagnose
and evaluate hand tremors, ensuring the feasibility
and accessibility of such approaches for potential use
in telemedicine settings and beyond. By examining
the depth of existing studies, we aim to contribute a
coherent understanding and critical assessment of the
current state of AI applications in this domain.

2 RESEARCH METHODOLOGY

Our systematic literature review aimed to find studies
on AI-assisted diagnosis of hand tremor disorders us-
ing 2D video analysis. We searched six databases:
IEEE Xplore, PubMed, ACM Digital Library, Sci-
enceDirect, Springer, and IOS Press using the follow-
ing search string to capture relevant papers:

hand AND video AND (tremor OR bradyki-
nesia) AND (classification OR diagnosis OR
detection OR identification) AND (”machine
learning” OR ”artificial intelligence”)

Although this string produced many off-topic re-
sults, we chose a broad approach to ensure we did not
miss potentially relevant studies.

Five research questions were used to direct our
study of the literature on artificial intelligence-
assisted diagnosis of hand tremors.

1. Objective of Research: What is the primary aim of
each study (e.g., classifying the type or severity of
tremor)?

2. Video Tasks: What specific video tasks are ana-
lyzed in the studies, such as finger tapping or hand
pronation/supination?

3. Dataset Overview: What are the characteristics
of the datasets employed in terms of participant
numbers, tremor classes, data accessibility, and
any pre-processing techniques?

4. Feature Engineering: Which features are ex-
tracted from the videos for analysis, and how are
they processed or engineered?

5. Model Techniques and Metrics: What machine
learning techniques are utilized, what metrics are
used for evaluation, and how are the findings val-
idated?

The review includes studies from 2018 to 2023
that are written in English and concentrate on AI-
assisted diagnosis of tremor disorders through the use

of 2D videos of hands, specifically from widely used
devices like smartphones and webcams. This focus on
simple videos was chosen to highlight methodologies
that are not only feasible but also straightforward to
implement in various settings, including telemedicine
and other resource-limited environments.

In contrast, we excluded studies utilizing 3D video
technologies, accelerometers, and other sensors, or
those examining non-video data such as handwriting
images. We also excluded studies focusing on alterna-
tive diagnostic tests not related to viewing the hands,
such as gait analysis, speech evaluation, head tremor,
facial expressions and any combination of those with
hand tremor videos as well (e.g. used hand videos
with gait videos to provide the diagnostic, or used
hand videos with accelerometer data). Further, du-
plicates, book chapters, and papers published in low-
impact journals were also excluded from our corpus.
This rigorous selection approach was adopted to focus
on methodologies that are both low-cost and easy to
deploy, aligning with our research objective of acces-
sibility and practicality in diagnostic techniques, thus
focusing on solutions using simpler hardware.

The initial search yielded a wide array of papers.
We first examined titles and abstracts to check for
clear relevance, and then read the full text of short-
listed papers to confirm their applicability to our re-
search questions and objectives. Through this rigor-
ous selection process, 17 papers were identified as
fulfilling our criteria and were thus included in this
review. These selected studies, which vary in method-
ology, datasets, and research objectives, will be thor-
oughly reported and discussed in the following sec-
tion.

3 RESULTS

In this section, we present the findings of our system-
atic literature review. Our approach to providing the
results combines 4 tables which directly summarize
and address our research questions, providing a suc-
cinct overview of data from the reviewed papers. All
tables are annexed at the end of the paper for further
reference.

An in-depth analysis will explore notable patterns
and gaps, providing a thoughtful interpretation of the
current landscape of research in the field. Figure 1 of-
fers a concise overview of our literature review out-
comes. It maps out the main objectives, datasets,
feature extraction methods, and modeling approaches
from the surveyed studies.
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Figure 1: Overview of the literature review on AI-assisted for hand tremor diagnosis using videos.

3.1 Objectives

The majority of the selected studies, specifically (Guo
et al., 2022), (Li et al., 2022), (Li et al., 2021), (Yang
et al., 2022), (Chen et al., 2021), (Lu et al., 2021),
(Zhao and Li, 2022), (Vignoud et al., 2022), (Liu
et al., 2023), and (Liu et al., 2019), were dedicated to
utilizing AI to classify the MDS-UPDRS score. Some
researchers expanded their focus to other aspects of
tremor analysis, with (Lin et al., 2020) aiming to dis-
tinguish between Bradykinesia and Healthy Subjects
(HS), (Wang et al., 2021) seeking to classify Tremor
and Non-Tremor instances, and (Chang et al., 2019)
focusing on distinguishing between Normal and Ab-
normal tremor severity. A multifaceted approach was
taken by (Zhang et al., 2022), investigating classifi-
cation of PD and non-PD in one scenario and cate-
gorizing between Parkinson’s Disease (PD), Essen-
tial Tremor (ET), Functional Tremor (FT), Dystonic
Tremor (DT), and HS in another. A similar dual-
objective methodology was utilized by (Ali et al.,
2020), targeting classifications among PD with med-
ication, PD without medication, and non-PD, while
(Wong et al., 2019) sought to both classify MDS-
UPDRS scores and differentiate between PD and non-
PD subjects.

3.2 Tasks

Various tasks involving hand movements were em-
ployed in the studies to facilitate the classification
and analysis of different tremor types and severi-
ties. A popular task was finger tapping, where par-
ticipants touch the tip of their index with the tip of
their thumb, utilized by (Li et al., 2022), (Li et al.,
2021), (Yang et al., 2022), (Chang et al., 2019), (Chen
et al., 2021), (Lu et al., 2021), (Monje et al., 2021),
(Ali et al., 2020), (Wong et al., 2019), (Zhao and Li,
2022), (Vignoud et al., 2022), (Liu et al., 2019). An-
other frequently observed task was related to generic
hand movements, with participants opening and clos-
ing their hands, which was leveraged by studies con-
ducted by (Guo et al., 2022), (Lin et al., 2020), (Chen
et al., 2021), (Monje et al., 2021), (Ali et al., 2020),
(Zhao and Li, 2022), (Vignoud et al., 2022), and (Liu
et al., 2019). Certain studies opted for a mixture
of tasks to enrich their analysis and model’s predic-
tive capabilities. For instance, pronation/supination,
where participants extend their arms and turn their
palm up and down, was often combined with other
tasks (Chen et al., 2021), (Monje et al., 2021), (Ali
et al., 2020), (Vignoud et al., 2022), (Liu et al., 2019).
Additionally, (Chang et al., 2019) employed a re-
laxed state task and (Liu et al., 2023) utilized postu-
ral tremor as a distinctive task. Although other tasks
like postural stability and gait were utilized by (Yang
et al., 2022) and (Lu et al., 2021), and rest tremor

A Systematic Literature Review of Artificial Intelligence Applications for Diagnosing Hand Tremor Disorders Through Video Analysis

709



Table 1: Goals and Tasks used by selected papers.

Paper Objective Tasks
(Guo et al., 2022) Classify MDS-UPDRS score Hand movements
(Li et al., 2022) Classify MDS-UPDRS score Finger tapping
(Li et al., 2021) Classify MDS-UPDRS score Finger tapping
(Yang et al., 2022) Classify MDS-UPDRS score Finger tapping
(Lin et al., 2020) Classify Bradykinesia / HS Hand movements
(Wang et al., 2021) Classify Tremor / Non-Tremor Various tasks
(Chang et al., 2019) Classify Normal / Abnormal

tremor severity
Finger tapping, Relax state

(Chen et al., 2021) Classify MDS-UPDRS score Finger tapping, Hand movements
and Pronation/Supination

(Zhang et al., 2022) (1) Classify PD and non-PD; (2)
Classify PD, ET, FT, DT, HS

Various tasks

(Lu et al., 2021) Classify MDS-UPDRS score Finger tapping
(Monje et al., 2021) Classify PD / HS Finger tapping, Hand movements

and Pronation/Supination
(Ali et al., 2020) (1) Classify PD and non-PD; (2)

Classify PD meds, PD no meds,
non-PD

Finger tapping, Hand movements,
Pronation/Supination and Postu-
ral Tremor

(Wong et al., 2019) (1) Classify MDS-UPDRS <= 1
and MDS-UPDRS > 1; (2) Clas-
sify PD and non-PD

Finger tapping

(Zhao and Li, 2022) Classify MDS-UPDRS score Finger tapping and Hand move-
ments

(Vignoud et al., 2022) Classify MDS-UPDRS score Finger tapping, Hand movements
and Pronation/Supination

(Liu et al., 2023) Classify MDS-UPDRS score Postural tremor
(Liu et al., 2019) Classify MDS-UPDRS score Finger tapping, Hand movements

and Pronation/Supination

of other body parts by (Liu et al., 2023), these were
outside the primary focus of our review as we con-
centrated on tasks involving only on the results using
hands.

3.3 Datasets

The number of participants and raters in the datasets
of these studies brings out some interesting observa-
tions about the current state of hand tremor diagnosis
research:

Studies exhibit varied participant numbers and
statuses: (Guo et al., 2022), (Li et al., 2022), and (Li
et al., 2021) feature 120-174 PD participants without
disclosing rater numbers. (Yang et al., 2022) involves
a substantial PD participant count and three raters.

Datasets diverge in health status focus: (Lin et al.,
2020), (Chang et al., 2019), and (Lu et al., 2021)
explore Bradykinesia, HS, and PD participants, with
(Zhang et al., 2022) adding diverse conditions and a
broad video pool.

Mixed participant statuses appear in (Monje et al.,

2021), (Wong et al., 2019), and (Vignoud et al., 2022),
while (Ali et al., 2020) segregates PD participants by
medication status, also involving HS individuals.

(Zhao and Li, 2022) limits to a smaller HS cohort
but simulates varied tremor severities, lacking rater
detail. (Liu et al., 2023) and (Liu et al., 2019) as-
sure ground truth verification with multiple raters and
a satisfactory PD participant count.

Rater variability impacts reliability across studies,
with (Yang et al., 2022), (Chen et al., 2021), and (Liu
et al., 2023) using three, and others like (Chang et al.,
2019), (Lu et al., 2021), (Guo et al., 2022), (Li et al.,
2022), (Wang et al., 2021), and (Zhang et al., 2022)
specifying one or none. This inconsistency may chal-
lenge the robustness and applicability of findings, es-
pecially in a medical context where labeling accuracy
is paramount.

In a sizable portion of the papers, like (Li et al.,
2022), (Yang et al., 2022), (Lin et al., 2020), (Wang
et al., 2021), (Chen et al., 2021), (Monje et al., 2021),
(Wong et al., 2019), (Zhao and Li, 2022), (Vignoud
et al., 2022), and (Liu et al., 2019), cropping is a com-
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Table 2: Datasets Participants, Raters, Quality and Pre-process techniques used by selected papers.

Paper Participants Raters Quality Pre-Process
(Guo et al., 2022) 174 PD N/A 8 seconds (30 fps)

1280 x 720 or 1920 x
1080

N/A

(Li et al., 2022) 120 PD N/A 10 or more taps (30
fps) 1280 x 720

Crop, normalization

(Li et al., 2021) 157 PD N/A 150 frames (30 fps)
1280 x 720

Flip left hand and
Savitzky-Golay filter

(Yang et al., 2022) 368 PD (left
hand), 298 PD
(right hand)

3 5 seconds (25 fps)
1920 x 1080

Crop, low pass filter-
ing

(Lin et al., 2020) 94 Bradykinesia
+ 83 HS

1 10 to 15s (240 fps)
1280 x 720

Crop, mean filter

(Wang et al., 2021) 189 Tremor and
176 Non-tremor
(all videos)

N/A 3 seconds (30 fps)
1920 x 1080

Crop

(Chang et al., 2019) 106 PD 1 300 frames (30 fps)
1280 x 720

N/A

(Chen et al., 2021) 149 PD 3 N/A Crop, Fourier filtering
(Zhang et al., 2022) 105 PD, 182

ET, 88 FT, 204
DT, 60 HS (all
videos)

N/A 100 frames N/A

(Lu et al., 2021) 34 PD 1 4 to 30s (30 fps) Normalization, Gaus-
sian noise

(Monje et al., 2021) 22 PD + 20 HS
+ (6 PD 6 HS for
val)

N/A 12 seconds (30 fps)
640 x 426

Crop (using Sin-
gle Shot MultiBox
Detector - SSD),
Normalization, But-
terworth filter

(Ali et al., 2020) 87 PD meds +
119 PD no meds
+ 139 HS

N/A Mean of 9.7s (15 fps)
256 x 256

Fixed frame rate at 15
fps

(Wong et al., 2019) 20 PD + 15 HS 2 10 seconds (60 fps)
1920 x 1080

Crop (CNN)

(Zhao and Li, 2022) 12 HS (simulat-
ing all severity
levels)

N/A 500 frames (30 fps)
640 x 480

Crop

(Vignoud et al., 2022) 36 PD + 11 HS 2 N/A (30 / 60 fps) 1280
x 720

Crop, Savitzky-Golay
filter

(Liu et al., 2023) 130 PD 3 7 to 14s (30 fps) 1920
x 1080

Eulerian Video Mag-
nification (EVM)

(Liu et al., 2019) 60 PD 2 N/A (25 fps) Crop, Savitzky-Golay
filter

mon pre-processing step. This suggests a widespread
necessity to focus on the region of interest and remove
irrelevant data or background noise, while (Monje
et al., 2021) used a different approach using a Single
Shot MultiBox Detector (SSD) to crop their region of
interest.

Also, normalization, used in (Li et al., 2022), (Lu
et al., 2021), and (Monje et al., 2021), allows partici-

pants to perform the tasks with their hands close or far
from the camera without compromising the model’s
input. Another notable trend is the utilization of var-
ious filtering techniques. The Savitzky-Golay filter,
applied in (Li et al., 2021), (Vignoud et al., 2022),
and (Liu et al., 2019), or low pass and Fourier filter-
ing, employed in (Yang et al., 2022) and (Chen et al.,
2021) process the extract data from pose algorithms
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Table 3: Features and Extraction methods used by selected papers.

Paper Features Extraction methods
(Guo et al., 2022) Hand graph with 21 keypoints 2D Pose Estimation (MMPose)

- 21 keypoints (+OpenPose for
ROI)

(Li et al., 2022) One-dimensional sequence data of tapping
distance

2D Pose Estimation (Mediapipe) -
2 keypoints index and thumb tips

(Li et al., 2021) Pose, Motion and Geometry features from
hand graph

2D Pose Estimation (OpenPose) -
21 keypoints

(Yang et al., 2022) Tapping rate, Tapping frozen times, Tapping
amplitude variation

2D Pose Estimation (MMPose) -
2 keypoints index and thumb tips

(Lin et al., 2020) Stability (to measure consistency of rhythm),
completeness (of actions spatially) and self-
similarity (stable periodic motion)

2D Pose estimation (HandSegNet
+ PoseNet) - 21 keypoints

(Wang et al., 2021) Change in distance of hand movement (DIST
features) and frequency of motion directional
changes (MDC features)

2D Pose Estimation (MediaPipe)
- 21 keypoints

(Chang et al., 2019) Distance between keypoints, velocity and ac-
celeration

2D Pose Estimation (OpenPose) -
9 keypoints

(Chen et al., 2021) Slowing, Amplitude, Amplitude decrement,
Hesitation/freeze, Interruption, Incompe-
tence of performing task

2D Pose Estimation (SHG -
Stacked Hourglass network +
OpenPose) - 21 keypoints and

(Zhang et al., 2022) Graph with 7 upper body keypoints 2D Pose Estimation (OpenPose) -
7 upper body keypoints

(Lu et al., 2021) Hand graph with 21 keypoints 2D Pose Estimation (OpenPose)
(Monje et al., 2021) Amplitude, Speed, Fatigue 2D Pose Estimation (OpenPose)
(Ali et al., 2020) Temporal Segmentation, Spatial Segmenta-

tion, Motion Magnification
CNN + Fast Fourier Transform
+ Deep Neural Network based
Magnified Features

(Wong et al., 2019) Tapping frequency, Energy spectral density
(amplitude), Variability of peaks, Jitter, Peak-
to-peak variability

Optical Flow

(Zhao and Li, 2022) 128 dimensional feature vector every 10
frames

3D Pose Estimation (HandSegNet
+ PoseNet + PosePrior) - 21 key-
points

(Vignoud et al., 2022) Distance between the thumb and index, aver-
aged distance between each fingertip and the
wrist point, azimuthal angle from spherical
coordinates of the tip of the thumb

Pose Estimations (2D: DeepLab-
Cut, 2D+3D: HandGraphCNN)

(Liu et al., 2023) Temporal features Temporal difference module for
Optical Flow (Pose estimation
only to crop body parts (Open-
Pose) - 21 keypoints)

(Liu et al., 2019) Finger Tapping: Euclidean distance be-
tween tips of thumb and index finger; Hand
Clasping: Average of Euclidean distances
between each fingertip and palm; Hand
Pro/Supination: Difference between horizon-
tal coordinates of thumb and little finger

MobileNet (and ShuffleNet
tested)

to remove noise and generate a smoother signal.
A distinctive approach was the application of Eu-

lerian Video Magnification (EVM) in (Liu et al.,
2023) where they amplify subtle variations in the

video data, and are able to highlight minute motions
in patients’ tremors.
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Table 4: Model Techniques, Validation, Metrics and Performance reported by selected papers.

Paper Techniques Validation Metrics Performance
(Guo et al.,
2022)

Tree-structure-
guided graph convo-
lutional network

5-fold CV Accuracy, Acceptable
Accuracy, Precision,
Recall, F1 and AUC

Accuracy of 73.71% and
an acceptable accuracy of
99.20%

(Li et al.,
2022)

CNN 5-fold CV Accuracy, Precision,
Recall and F1

Accuracy of 79.7%

(Li et al.,
2021)

Skeleton-based
three-stream fine-
grained CNN with
Markov chain fusion

4-fold CV Accuracy, Acceptable
Accuracy, Precision,
Recall, and F1

Accuracy of 72.4% and
an acceptable accuracy of
98.3%

(Yang et al.,
2022)

DNN Train Test
split

Precision, Recall and
F1

F1-score of 88%, 84% on
left finger tapping, right
finger tapping

(Lin et al.,
2020)

Stacked RNN with
LSTM

10-fold CV Recall, Precision, Ac-
curacy and F1

F1-score of 77.78%

(Wang
et al., 2021)

CNN-LSTM, LSTM,
SVM

10-fold CV Accuracy, Recall, Pre-
cision and F1

Accuracy 80.6%

(Chang
et al., 2019)

DNN, SVM Leave-One-
Out CV

Accuracy Binary: Accuracy 78.01%
and 80.60% in right and
left hand; Multiclass:
72.20% and 71.10% for
right and left hand

(Chen et al.,
2021)

RF, LR, SVM,
GBDT

5-fold CV Accuracy Accuracy of 84.1%

(Zhang
et al., 2022)

Graph Neural Net-
work with Spatial At-
tention Mechanism

5-fold CV Accuracy, Sensitivity,
Specificity and F1

Binary: accuracy of 90.9%
and an F1-score of 90.6%;
Multiclass: accuracy
73.3% and F1-score 70.7%

(Lu et al.,
2021)

Temporal convolu-
tional neural network
(TCNN)

N/A F1, AUC, Precision,
Balanced Accuracy

Macro-average AUC of
0.69

(Monje
et al., 2021)

LR, NB, RF 4-fold CV AUC, Sensitivity,
Specificity

AUC 0.81

(Ali et al.,
2020)

SVM Leave-One-
Out CV

Accuracy Binary: accuracy 91.8%;
Multiclass: accuracy
73.5%

(Wong
et al., 2019)

NB, LR, SVM-L,
SVM-R

Leave-One-
Out CV

Accuracy, Sensitivity,
Specificity and AUC

Bradykinesia test accuracy
of 79% and Parkinson’s
test accuracy 63%

(Zhao and
Li, 2022)

Two-channel LSTM N/A Sensitivity, Specificity
and Accuracy

95.7% of the precision,
95.8% of the sensitivity
and 92.8% of the speci-
ficity

(Vignoud
et al., 2022)

LR, DT 100 randomly
shuffled
datasets

Coefficients of deter-
mination

Coefficients of determina-
tion for the tapping of
0.609 and hand movements
of 0.701

(Liu et al.,
2023)

Global Temporal-
difference Shift
Network (GTSN)

5-fold CV F1, AUC, Precision,
Recall and Accuracy

Binary: 93.7%; Multi-
class: 84.9% accuracy

(Liu et al.,
2019)

RBF-SVM (L-SVM,
RF and KNN)

5-fold CV Precision, Recall, F1
and Accuracy

89.7% accuracy
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3.4 Features

3.4.1 Feature Extraction

Looking through the approaches for feature extrac-
tion across these papers, there is a noticeable pattern
of reliance on pose estimation, particularly 2D Pose
Estimation, prevalent in various studies such as (Guo
et al., 2022), (Li et al., 2022), (Li et al., 2021), (Yang
et al., 2022), (Lin et al., 2020), (Wang et al., 2021),
(Chang et al., 2019), (Chen et al., 2021), (Zhang et al.,
2022), (Lu et al., 2021), and (Monje et al., 2021). The
extraction of keypoints, ranging from 2 (tip of index
finger and thumb) to 21 (all keypoints in the hand). A
similar approach is the usage of 3D Pose Estimation
by (Zhao and Li, 2022) and a mixed-method approach
involving both 2D and 3D Pose Estimation by (Vig-
noud et al., 2022).

Differing algorithms and networks like HandSeg-
Net + PoseNet used by (Lin et al., 2020), or SHG +
OpenPose applied by (Chen et al., 2021), are also pro-
posed methods for feature extraction.

In contrast to pose estimation, alternative method-
ologies include utilizing CNN, Fast Fourier Trans-
form and Deep Neural Network-based Magnified
Features by (Ali et al., 2020), Optical Flow by (Wong
et al., 2019), or the temporal difference module for
Optical Flow employed by (Liu et al., 2023), show-
case varied approaches to understanding and captur-
ing movement data.

3.4.2 Engineered Features

Several studies highlight the tapping-related features.
For instance, (Li et al., 2022) focuses on the one-
dimensional sequence data of tapping distance, while
(Yang et al., 2022) considers tapping rate, frozen
times, and amplitude variation. (Wong et al., 2019)
explores a range of features like tapping frequency,
energy spectral density, and peak-to-peak variability.

Additionally, hand graphs and geometric relations
are also prominent. (Guo et al., 2022) and (Lu et al.,
2021) use hand graphs with 21 keypoints, exploring
hand anatomy and movement in a structured, geomet-
rical format. (Vignoud et al., 2022) utilizes the dis-
tance between the thumb and index, providing a spa-
tial perspective of hand movements, which is echoed
by (Chang et al., 2019) who also employs distance be-
tween keypoints as a feature. Similarly, (Wang et al.,
2021) considers changes in distance of hand move-
ment, and (Liu et al., 2019) uses Euclidean distance
between fingertips in different contexts, pointing to-
wards a prevalent use of spatial and geometric fea-
tures.

Amplitude and motion characteristics are com-
mon too. For instance, (Monje et al., 2021) uses am-
plitude as a feature, and (Ali et al., 2020) considers
motion magnification.

Certain papers also introduce more task-specific
features. (Lin et al., 2020) introduces the concept of
stability, completeness, and self-similarity to gauge
the rhythmic and spatial consistency of actions. (Chen
et al., 2021) takes a more contextual approach, explor-
ing features like slowing, amplitude decrement, and
incompetence of performing a task. (Liu et al., 2023)
emphasizes temporal features, signifying an interest
in the time-related aspects of movements.

A few studies utilize more comprehensive and
multidimensional feature sets. For instance, (Li et al.,
2021) employs pose, motion, and geometry features
derived from hand graphs, pointing towards an inte-
grative approach that spans across spatial, temporal,
and kinematic domains. (Zhang et al., 2022) crafts
a graph with 7 upper body keypoints, indicating a
broader, body-inclusive approach to understand and
analyze motion.

3.5 Modeling

3.5.1 Techniques and Architectures

Graph Convolutional Networks (GCNs) are utilized
by (Guo et al., 2022) for their ability to capture hi-
erarchical relationships, and by (Zhang et al., 2022),
which uses a Graph Neural Network with a Spatial
Attention Mechanism to capture spatial dependen-
cies.

Convolutional Neural Networks (CNNs) are used
by (Li et al., 2022) to focus on spatial hierarchies
in data, while (Li et al., 2021) uses a three-stream
CNN with Markov chain fusion to capture various
data facets. (Yang et al., 2022) and (Chang et al.,
2019) opt for Deep Neural Networks (DNNs).

Recurrent Neural Networks (RNNs) are employed
by (Lin et al., 2020) with LSTM units for manag-
ing sequential data. (Zhao and Li, 2022) uses a two-
channel LSTM to handle multivariate sequential data.
(Wang et al., 2021) explores CNN-LSTM, LSTM,
and Support Vector Machine (SVM) models for their
classification capabilities, with SVM also used by
(Chang et al., 2019) and (Ali et al., 2020).

(Chen et al., 2021) applies ensemble methods
(Random Forest and Gradient Boosting Decision
Tree) and logistic regression (LR), and SVM. (Monje
et al., 2021) utilizes LR, Naı̈ve Bayes (NB), and
RF, blending probabilistic classifiers and ensemble
methods. (Wong et al., 2019) and (Vignoud et al.,
2022) used NB and LR to classify their dataset. (Liu
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et al., 2019) tests various kernels in SVM, RF, and
K-Nearest Neighbors (KNN).

A different approach by (Lu et al., 2021) em-
ploys a Temporal Convolutional Neural Network
(TCNN) or OF DD-Net to manage temporal data.
(Liu et al., 2023) introduces the Global Temporal-
difference Shift Network (GTSN) to potentially ad-
dress temporal shifts in data.

3.5.2 Validation Approaches

5-Fold Cross-Validation is frequently used in re-
viewed literature, seen in (Guo et al., 2022), (Li et al.,
2022), (Chen et al., 2021), (Zhang et al., 2022), and
(Liu et al., 2023). 10-Fold Cross-Validation is utilized
by (Lin et al., 2020) and (Wang et al., 2021), provid-
ing detailed validation at a higher computational ex-
pense. (Li et al., 2021) and (Monje et al., 2021) opted
for 4-Fold Cross-Validation.

(Chang et al., 2019), (Ali et al., 2020), and (Wong
et al., 2019) employed Leave-One-Out Cross Valida-
tion (LOOCV), suitable for smaller datasets due to its
computational intensity.

(Vignoud et al., 2022) used 100 randomly shuf-
fled datasets for validation. (Yang et al., 2022) im-
plemented a Train-Test Split without providing addi-
tional detail, while (Lu et al., 2021) and (Zhao and Li,
2022) did not specify their validation methodologies.

3.5.3 Metrics Selected

Accuracy is the most common chosen metric, used
singularly or as combined with other metrics, utilized
in (Guo et al., 2022), (Li et al., 2022), (Li et al., 2021),
(Wang et al., 2021), (Chang et al., 2019), (Chen et al.,
2021), (Zhang et al., 2022), (Ali et al., 2020), (Wong
et al., 2019), (Zhao and Li, 2022), and (Liu et al.,
2023).

Precision and Recall, often used with F1 Score,
are selected in studies like (Guo et al., 2022), (Li
et al., 2022), (Li et al., 2021), (Yang et al., 2022), (Lin
et al., 2020), (Wang et al., 2021), (Lu et al., 2021),
and (Liu et al., 2023). Sensitivity (also known as Re-
call or True Positive Rate) and Specificity (True Neg-
ative Rate) are utilized in (Zhang et al., 2022), (Monje
et al., 2021), (Wong et al., 2019), and (Zhao and Li,
2022).

F1 score is employed in (Guo et al., 2022), (Li
et al., 2022), (Li et al., 2021), (Yang et al., 2022),
(Lin et al., 2020), (Wang et al., 2021), (Zhang et al.,
2022), and (Liu et al., 2023), while AUC is used in
(Guo et al., 2022), (Lu et al., 2021), (Monje et al.,
2021), (Wong et al., 2019), and (Liu et al., 2023).

(Vignoud et al., 2022) is noted for using Coeffi-
cients of Determination with their predictions based

on statistical learning regression algorithms.

3.5.4 Reported Performance

(Guo et al., 2022) and (Li et al., 2021) report general
accuracies around 70% and notably high acceptable
accuracies near 100%. (Li et al., 2022) and (Wang
et al., 2021) yield stable performances with accura-
cies of 79.7% and 80.6% respectively. (Yang et al.,
2022) achieves an F1-score of 88%, contrasted by
(Lin et al., 2020)’s 77.78% F1-score. Challenges in
multiclass classifications with varying accuracies are
discussed by (Chang et al., 2019) and (Zhang et al.,
2022). (Lu et al., 2021) and (Monje et al., 2021) em-
phasize AUC metrics, while high accuracies and pre-
cision in specific tasks are noted by (Ali et al., 2020),
(Wong et al., 2019), and (Zhao and Li, 2022). (Vig-
noud et al., 2022) highlights the coefficient of deter-
mination for model predictability. (Liu et al., 2023)
and (Liu et al., 2019) demonstrate strong accuracies
in both binary and multiclass contexts.

4 DISCUSSION

4.1 Data Availability

One noticeable aspect from the literature is that many
datasets used in these studies are not readily avail-
able to the public or other researchers. For instance,
the data used in (Guo et al., 2022), (Li et al., 2021),
(Lin et al., 2020), (Chang et al., 2019), (Chen et al.,
2021), (Lu et al., 2021), (Ali et al., 2020), (Wong
et al., 2019), (Zhao and Li, 2022), and (Vignoud et al.,
2022) are either stated that are not available, or it is
not mentioned at all.

While some datasets are available upon request,
others implements safeguards in order to protect par-
ticipants that can make it increasingly harder for re-
searchers outside the medical field to have access.
One example is (Liu et al., 2023) which imposes spe-
cific conditions, including providing proof of relevant
medical studies and signing a contract.

It is also important to highlight that the TIM-
Tremor dataset, used in (Wang et al., 2021) and
(Zhang et al., 2022), has recently been removed from
the internet due to privacy concerns. This issue under-
scores the critical and delicate balance between open-
source data and maintaining the privacy of sensitive
health-related information. Even with anonymization,
healthcare datasets can sometimes be subject to po-
tential re-identification risks or other ethical concerns,
requiring vigilant management and ethical considera-
tions.
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In light of these challenges, data augmentation
can be a potential solution to mitigate the scarcity of
available videos in the datasets. Techniques such as
video rotation and mirroring can be employed to gen-
erate new data instances from existing videos. This
method, while not creating synthetic data, effectively
increases the dataset size, offering a practical ap-
proach to enhance research outcomes in cases where
data availability is limited.

4.2 Preprocessing Approaches

In the reviewed research, most studies tend to lean to-
wards minimal preprocessing of data, often limiting
themselves to basic techniques like cropping. This
is noteworthy since the context in which the data is
recorded – especially in diverse and uncontrolled clin-
ical environments – naturally presents various chal-
lenges, such as varied lighting and cluttered back-
grounds, which could significantly impact the quality
and reliability of the data.

Only a handful of works, like that of (Liu et al.,
2023), employ more advanced preprocessing meth-
ods, for instance, using Eulerian Video Magnification
(EVM). This approach amplifies subtle movements in
the video data, potentially unveiling detailed informa-
tion about hand tremors which might be missed with
more straightforward approaches.

Additionally, methodologies like optical flow,
used by (Wong et al., 2019) and (Liu et al., 2023),
which prioritize the movement of the subject (hand
tremors) and ignore irrelevant static backgrounds, of-
fer another pathway to potentially enhance data qual-
ity. These strategies, concentrating on motion, di-
rectly target the core interest of the studies – the
tremor – thereby possibly providing a more accurate
representation of the condition.

In essence, despite the prevalent trend towards
simpler preprocessing, there is a case to be made for
the adoption of more sophisticated techniques. En-
hanced preprocessing could feasibly unearth more nu-
anced data and, by extension, lead to more accurate
and reliable machine-learning models in the diagno-
sis and analysis of hand tremors.

5 CONCLUSION

Exploring different ways to use machine learning to
diagnose hand tremors has given us a wide look at
many research methods and results. We’ve seen a
wide range of approaches from Graph Convolutional
Networks to Support Vector Machines being used,
along with various validation approaches, all aimed

at improving how accurately and reliably these tools
can help during diagnosis.

However, there’s a clear need for more shared
datasets. Without them, it’s hard to replicate stud-
ies or compare different approaches, so finding the
best diagnostic model becomes a tricky task. Mak-
ing datasets available for more researchers will help
improve, compare, and validate models in a straight-
forward way.

Another potential solution to increase the amount
of data available is for researchers to collect videos
from studies where the data is made available upon
request. By combining these videos of the same
task, it is possible to create a larger, more diverse
dataset. This approach could provide a valuable base-
line for future research. However, it’s crucial to first
exam if publishing such a combined dataset is feasi-
ble, considering the various privacy concerns and con-
sent agreements associated with the original sources.
Compliance with privacy regulations and ethical stan-
dards is of utmost importance when dealing with
medical data. However, this strategy could signifi-
cantly contribute to advancing the field, if managed
correctly, allowing for more comprehensive and com-
parative studies in hand tremor diagnosis.

Looking ahead, future research should also con-
sider other forms of simpler and cheaper tests that do
not rely on video images, like analyzing drawings and
handwriting from participants. Combining advanced
models with simple, low-cost tests could make them
useful diagnostic tools, including in settings where re-
sources are limited. So, balancing technological ad-
vancements with practical diagnostic methods will be
key.

In summary, it’s important for future studies to
work together, to share and build upon available
datasets, and highlight the benefits of combining ac-
cessible, yet high-performing technology with easy
and low-cost tests, to help develop useful tools to bet-
ter aid both practitioners and patients.

REFERENCES

Abboud, H., Ahmed, A., and Fernandez, H. H. (2011).
Essential tremor: Choosing the right management
plan for your patient. Cleveland Clinic Journal of
Medicine, 78(12):821–828.

Ali, M. R., Hernandez, J., Dorsey, E. R., Hoque, E., and
McDuff, D. (2020). Spatio-temporal attention and
magnification for classification of parkinson’s disease
from videos collected via the internet. In 2020 15th
IEEE International Conference on Automatic Face
and Gesture Recognition (FG 2020). IEEE.

Armstrong, M. J. and Okun, M. S. (2020). Diagnosis and
treatment of parkinson disease. JAMA, 323(6):548.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

716



Baumann, C. R. (2012). Epidemiology, diagnosis and
differential diagnosis in parkinson’s disease tremor.
Parkinsonism & Related Disorders, 18:S90–S92.

Beck, C. A., Beran, D. B., Biglan, K. M., Boyd, C. M.,
Dorsey, E. R., Schmidt, P. N., Simone, R., Willis,
A. W., Galifianakis, N. B., Katz, M., Tanner, C. M.,
Dodenhoff, K., Aldred, J., Carter, J., Fraser, A.,
Jimenez-Shahed, J., Hunter, C., Spindler, M., Re-
ichwein, S., Mari, Z., Dunlop, B., Morgan, J. C.,
McLane, D., Hickey, P., Gauger, L., Richard, I. H.,
Mejia, N. I., Bwala, G., Nance, M., Shih, L. C.,
Singer, C., Vargas-Parra, S., Zadikoff, C., Okon, N.,
Feigin, A., Ayan, J., Vaughan, C., Pahwa, R., Dhall,
R., Hassan, A., DeMello, S., Riggare, S. S., Wicks, P.,
Achey, M. A., Elson, M. J., Goldenthal, S., Keenan,
H. T., Korn, R., Schwarz, H., Sharma, S., Stevenson,
E. A., and Zhu, W. (2017). National randomized con-
trolled trial of virtual house calls for parkinson dis-
ease. Neurology, 89(11):1152–1161.

Chang, C.-M., Huang, Y.-L., Chen, J.-C., and Lee, C.-C.
(2019). Improving automatic tremor and movement
motor disorder severity assessment for parkinson’s
disease with deep joint training. In 2019 41st Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE.

Chen, Y., Ma, H., Wang, J., Wu, J., Wu, X., and Xie, X.
(2021). PD-net: Quantitative motor function eval-
uation for parkinson’s disease via automated hand
gesture analysis. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining. ACM.

Elble, R. J. (2013). What is essential tremor? Current
Neurology and Neuroscience Reports, 13(6).

Guo, R., Li, H., Zhang, C., and Qian, X. (2022). A tree-
structure-guided graph convolutional network with
contrastive learning for the assessment of parkin-
sonian hand movements. Medical Image Analysis,
81:102560.

Jankovic, J. (1980). Physiologic and pathologic tremors.
Annals of Internal Medicine, 93(3):460.

Li, H., Shao, X., Zhang, C., and Qian, X. (2021). Au-
tomated assessment of parkinsonian finger-tapping
tests through a vision-based fine-grained classification
model. Neurocomputing, 441:260–271.

Li, Z., Lu, K., Cai, M., Liu, X., Wang, Y., and Yang, J.
(2022). An automatic evaluation method for parkin-
son’s dyskinesia using finger tapping video for small
samples. Journal of Medical and Biological Engineer-
ing, 42(3):351–363.

Lin, B., Luo, W., Luo, Z., Wang, B., Deng, S., Yin, J., and
Zhou, M. (2020). Bradykinesia recognition in parkin-
son’s disease via single RGB video. ACM Transac-
tions on Knowledge Discovery from Data, 14(2):1–19.

Liu, W., Lin, X., Chen, X., Wang, Q., Wang, X., Yang,
B., Cai, N., Chen, R., Chen, G., and Lin, Y. (2023).
Vision-based estimation of MDS-UPDRS scores for
quantifying parkinson’s disease tremor severity. Med-
ical Image Analysis, 85:102754.

Liu, Y., Chen, J., Hu, C., Ma, Y., Ge, D., Miao, S., Xue,
Y., and Li, L. (2019). Vision-based method for au-
tomatic quantification of parkinsonian bradykinesia.
IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 27(10):1952–1961.

Locatelli, P., Alimonti, D., Traversi, G., and Re, V.
(2020). Classification of essential tremor and parkin-
son’s tremor based on a low-power wearable device.
Electronics, 9(10):1695.

Louis, E. D. and Ferreira, J. J. (2010). How common is the
most common adult movement disorder? update on
the worldwide prevalence of essential tremor. Move-
ment Disorders, 25(5):534–541.

Lu, M., Zhao, Q., Poston, K. L., Sullivan, E. V., Pfeffer-
baum, A., Shahid, M., Katz, M., Kouhsari, L. M.,
Schulman, K., Milstein, A., Niebles, J. C., Henderson,
V. W., Fei-Fei, L., Pohl, K. M., and Adeli, E. (2021).
Quantifying parkinson’s disease motor severity under
uncertainty using MDS-UPDRS videos. Medical Im-
age Analysis, 73:102179.

Monje, M. H. G., Domı́nguez, S., Vera-Olmos, J., Antonini,
A., Mestre, T. A., Malpica, N., and Sánchez-Ferro, Á.
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