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Abstract: Intramedullary (IM) nailing is a widely accepted treatment for femoral shaft fractures due to its good healing 
rate and rapid return to full weight bearing. However, a significant number of patients experience impairments 
years after treatment. One possible cause is a malrotation of the femur, resulting in altered foot progression 
angles (FPAs), which can lead to changes in gait or persistent pain. To gain a better understanding of 
compensation mechanisms and improve rehabilitation strategies, a continuous surface electromyography 
(EMG) measurement system worn on vastus lateralis (VL) and vastus medialis (VM) is proposed. To test the 
feasibility of this approach, a study is conducted with healthy participants (N=10) simulating different FPA. 
The EMG signal was recorded and analysed using a convolutional neural network (CNN). The feasibility 
study showed promising results, as the CNN could on average achieve a validation accuracy of 74% in 
classifying FPAs as normal, inward (-15°), or outward (+15°). These results show the potential of using EMG 
measurements from VL and VM to monitor changes in FPA during rehabilitation. This approach offers the 
opportunity to increase our understanding of compensatory mechanisms and improve rehabilitation outcomes 
following malrotation caused by IM nailing.   

1 INTRODUCTION 

The established gold standard for the treatment of 
femoral shaft fractures is the use of an intramedullary 
(IM) nail. The widespread adoption of this method is 
attributed to its compelling properties, including a 
high likelihood of fracture union (99%) (Mavrogenis 
et al., 2016), a low risk of infection (El Moumni et al., 
2012) and a rapid weight bearing (Rommens & 
Hessmann, 2015). However, potential risks include 
implant failure (Mavrogenis et al., 2016) or non-
union of the fractured femur (El Moumni et al., 2012). 

Despite the relatively low risk associated with IM 
nailing, approximately 20% of patients subjected to 
this procedure suffer from long-term residual 
impairments. These complications can include pain, 
hip ossification, altered gait patterns or restricted 
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mobility in hip and knee (El Moumni et al., 2012; 
Hamahashi et al., 2019). The cause of these 
complications remains a topic of ongoing debate. 
Surgical factors, including the risk of injuring 
surrounding muscle tissue, nerve supply or articular 
cartilage may contribute (El Moumni et al., 2012). 
Another potential factor could be, that there is no 
direct visibility of the femur during surgery making it 
difficult to precisely restore rotation and length of the 
fractured femur and thus increasing the risk of 
malrotation or malpositioning (Jaarsma & van 
Kampen, 2004). Such misalignments are defined as 
deviations greater than 5° in the frontal or sagittal 
plane, 15° in the axial plane, and 2 cm in length (Ricci 
et al., 2008). The incidence of such deviations varies 
between 22.7% to 28% across studies (Jaarsma & van 
Kampen, 2004; Papachristos, 2019; Rommens & 
Hessmann, 2015). 
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Irrespective of an identified cause, long-term 
residual impairments pose a substantial burden to the 
affected patient. Effective rehabilitation, essential for 
moderating or even resolving these consequences, 
depends on accurate identification of limitations. 
After hospitalization, as patients transition to a home-
based care, monitoring is mostly based on subjective 
self-assessments, which tend to be inaccurate and can 
reduce the quality of rehabilitation (Toogood et al., 
2016). 

Previous research by Siegel et al. (2023) suggests 
the use of wearable home devices as a strategy to 
improve the accuracy of rehabilitation monitoring, 
allowing the identification of long-term residual 
impairments, thereby providing a basis for the 
treating specialist to take adapted countermeasures. In 
addition, a continuous monitoring system could 
detect possible malrotation and monitor any changes 
during rehabilitation (Siegel et al., 2023). Research 
by Jaarsma et al. (2004) showed that, on average, 
patients are capable of compensating for 
approximately 71% of a given malrotation. However, 
an enhanced understanding of malrotation 
mechanisms could provide further insight into the 
compensation strategies and enable clinicians to help 
patients cope by training targeted supporting muscles. 
This is relevant, as some studies show a high 
likelihood for malrotation to be a major source of pain 
(Dagneaux et al., 2018).  

To gain insight into malrotation, compensation 
mechanisms and coping strategies, it is necessary to 
continuously measure foot progression angle (FPA). 
In a previous paper, the concept of employing a 
wearable device, positioned above the knee, equipped 
with electromyography (EMG) sensors to measure 
the FPA, was introduced (Siegel et al., 2023).  

An EMG measurement records biopotentials 
when an electrochemical stimulus triggers muscle 
fibre (Al-Ayyad et al., 2023). The possibility of using 
EMG measurements to draw conclusions about FPA 
is based on the premise that alterations in movement 
are accompanied by a corresponding change in the 
measurable EMG signal (Akuzawa et al., 2017). In 
addition, Benedetti el al., 2003 found that altered 
muscle contractions, quantifiable through EMG 
measurements, may account for a compensation 
mechanism (Benedetti et al., 2003).  

In order to detect these alterations in muscle 
activity, a surface EMG measurement should ideally 
record the electrical activity of uniformly active 
motor units within one muscle. However, the 
resulting EMG signal is subject to many influences, 
including fatigue, quantity of active motor units, 
firing rates, firing amplitudes, superposition from 

surrounding muscles, low-pass characteristics of 
surrounding tissue, sensor properties and extraneous 
signals such as ambient noise. This complexity makes 
it difficult to reliably classify EMG recordings using 
basic filter algorithms or feature extraction 
methodologies. As a possible answer to this 
challenge, deep learning has proven to be a successful 
tool (Faust et al., 2018). Especially the usage of 
convolutional neural networks (CNNs) has been 
proven reliable (Olsson et al., 2019; Yang et al., 2019; 
Zia Ur Rehman et al., 2018). CNNs are particularly 
suitable for detecting patterns in one-dimensional or 
multi-dimensional data due to a high degree of 
invariance to translation, scaling, skewing or 
distortion. This is possible because each neuron 
receives its input from a local receptive field from the 
previous layer. Thus, the position of features becomes 
less important as long as they maintain their relative 
position to each other (Al-Jabery,Khalid et al., 2020), 
enabling a classification of variant time series (Zhao 
et al., 2017). I.e. Bakircioğlu and Öskurt (2020) used 
a CNN to classify EMG recordings of movements 
made while gripping six different objects and 
achieved 95.9% accuracy. Olsson et al. (2019) used a 
CNN, classifying 16 independent states of the hand 
recorded using an EMG system and achieved 78.7% 
accuracy.  

1.1 Aim of this Study 

The aim of this study is to evaluate the potential utility 
of EMG sensors in improving the reliability of 
monitoring FPAs during home-based rehabilitation, a 
crucial aspect considering the FPA contributes 
significantly in long-term outcome following femoral 
shaft fracture treatment.  

As of now, EMG measurements have been 
successfully used in numerous rehabilitation 
applications, such as: 

• In neuromuscular rehabilitation, EMG 
measurements can be used to quantitatively 
assess spasticity as well as monitor treatment 
progress (Campanini et al., 2020).  

• In post-stroke rehabilitation, EMG 
measurements can be used to monitor the 
healing process (Simpson et al., 2011) or to 
control an exoskeleton aimed to reactivate 
paralysed limbs (Nam et al., 2022). 

• In orthopaedic rehabilitation, EMG 
measurements can be used to evaluate muscle 
function, to detect abnormalities or to manage 
pain-inducing syndromes during sessions with 
specialists (Barton et al., 2013; Benedetti et al., 
2003). 
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Figure 1: Presentation of simulation results, generated with Anybody software. Simulated muscle activity during normal gait 
and gait with an intentional alteration (approximately 15° inside or outside) of foot progression angle is displayed. The 
overview is shown for vastus medialis and vastus lateralis.   

However, until now, EMG measurements have 
not been used to monitor a patient’s activity or 
malrotation in a home environment.  

There are already sensor systems measuring 
FPAs, such as inertial measurement units (IMUs) or 
pressure sensors, but these have limitations such as 
inaccurate results indoors or a dependency on the 
footwear (Siegel et al., 2023). An EMG system, worn 
on the leg, could potentially overcome these 
limitations while increasing data availability, and is 
therefore being tested in this study. 

Since this study is intended to provide a first 
overview of the usability of EMG measurements for 
FPA monitoring, it was decided to conduct the tests 
on a healthy cohort rather than on patients. The study 
will evaluate the following hypotheses:  

Hypothesis A: A CNN can classify FPAs of 
unknown steps for a single proband, after training on 
EMG data obtained from the same proband. 

If a CNN is capable do discriminate EMG signals 
from different FPAs within a single proband, this 
knowledge holds potential to monitor changes in 
FPAs during rehabilitation. However, this is limited, 
since the proband would need to simulate different 
FPAs in order to train such neural network. In 
practical clinical scenarios, this data aggregation may 
not be feasible, due to the recently treated femur shaft 
fracture. Therefore, it is important to investigate, 
whether a neural network can be trained using data 
from diverse patients and enabling it to classify EMG 
signal for different FPAs without prior subject 
specific training. To test this the following 
hypotheses is formulated: 

Hypothesis B: A CNN can classify FPAs for an 
unknown proband, after training on EMG data 
obtained only different probands. 

To test hypotheses A and B, EMG signals of 
several probands simulating different FPAs are 
recorded and analysed using a CNN. 

2 MATERIAL AND METHODS 

For the acquisition of EMG data across different 
FPAs, ten volunteers were recruited. Exclusion 
criteria were adhesive tape and silver allergy, 
implanted electrical devices and known deformities 
of the lower limb. The gender distribution was 50% 
male to 50% female with a mean age of 36.5 years 
(±14.3 years). 

2.1 Sensor Placement 

To ensure optimal sensor placement, aligned to answer 
the hypotheses, literature was reviewed to find poten-
tial correlations between lower limb muscle activity 
and FPA. A simulation was used to verify the results. 
Mohammad and Elsais (2020) investigated the 
correlation between EMG signal amplitude and hip 
rotation in male runners. They found such a 
relationship for Vastus Lateralis (VL), Vastus Medius 
(VM) and Gluteus Maximus. As the overall goal, 
outlined in earlier work (Siegel et al., 2023), is to 
wear a sensor array positioned above the knee, the 
electrical activity of VL and VM are promising 
muscles for conclusions to be drawn about FPAs.  
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Figure 2: Exemplary image from the study displaying 
placement of EMG sensors on VL and VM. The GaitRite 
mat, used for FPA verification, is also visible. 

To further confirm that change in FPA induces 
change in muscle activity for VL and VM, a 
simulation was performed in collaboration with 
university hospital in Aachen, Germany. A volunteer 
was fitted with a MTw Awinda motion tracker system 
(Paulich et al., 2018) and walks with different FPAs 
were conducted. The FPA was varied between 15° 
inward, normal and 15° outward.  To derive muscle 
activity from the collected data, the AnyBody 
Modelling System (Paul & Doweidar, 2023) was used 
in combination with the AnyBody Managed Model 
Repository. This approach allows an inverse 
dynamics analysis to be performed, based on a third-
order polynomial muscle recruitment criterion, which 
produces a simulation of the electrical activity in the 
lower limb muscles during walks. The results are 
shown in figure 1. This figure displays muscle 
activity during gait with normal FPA compared to 
gait with an inward or outward FPA. The simulated 
activity is shown for VM and VL. It is immediately 
noticeable, that the shape of the curves for normal and 
modified FPA are distinctly different. To quantify 
these observations, the integral of the curves was 
calculated (python library: numpy.trapz (Harris et al., 
2020)), displayed in table 1. The results show 
variation in the area under the curve for normal FPAs 
compared to modified FPAs. The differences are 
particularly significant for outside FPAs in 
comparison to inside FPAs. The simulation supports 
the choice of using VL and VM as EMG 
measurement points to detect differences in FPA. 

In conclusion it was decided to place the EMG 
sensors on VL and VM. The European 
recommendations for sensors and sensor placement 
for EMG (Hermens et al., n.d.) was used as a guide to 
ensure optimal placement of the sensors on VL and 
VM, minimising superposing of signals by 
surrounding muscles. To further improve signal 
 

Table 1: To quantify figure 1, the area under the plotted 
curves is calculated using the trapezoid method (python 
library: numpy.trapz) and the results are shown in this table. 

 

quality, the skin was shaved and cleaned prior to 
sensor placement. An example of placed sensors is 
given in figure 2. 

2.2 Signal Acquisition 

The EMG signal was recorded using the Delsys 
Trigno-Wireless-Biofeedback System (Delsys, n.d.). 
This system consists of a base station that wirelessly 
collects data from individual sensors. Each sensor is 
capable of collecting data at a frequency of 4 kHz 
with a bandwidth of 20-450 Hz and an input range of 
11 mV. 

For the purpose of supervised learning, it is 
necessary to label EMG data recordings. 
Consequently, a GaitRite mat was used to record the 
FPAs. The mat is manufactured by CIR Systems 
represents a gold standard in gait analysis. 36 864 
pressure sensors evenly distributed of over a length of 
914 cm allows steps to be recorded and a gait profile 
to be created. This profile includes the FPA for each 
step executed. A section of the mat can be seen in the 
figure 2. 

In order to conduct this study, each proband had 
to perform a total of 45 walks along the entire length 
of the GaitRite. 15 normal walks, 15 walks with 
outward FPAs and 15 walks with inward FPAs. For 
each simulated malrotation, the participants were 
asked to change their FPA by -15° inward or +15° 
outward. Prior to the study, foot positions were 
trained using the GaitRite mat. During the study any 
steps deviating by more than ±8° from proposed FPA 
were removed from the dataset. Only one foot was 
varied during the different walks. The side to be 
varied was freely chosen by the proband, the choice 
remained consistent throughout the study. A 
metronome was used to ensure uniform walking 
speed during different walks. In order to merge EMG 
data with GaitRite data, software was developed to 
record both systems simultaneously. Both data 
streams were synchronised by an output signal 
generated by the GaitRite system. 
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2.2.1 Data Preprocessing 

Data preprocessing is performed according to a 
general data preparation paradigm (Al-Jabery et al., 
2020).  During the study, walks across the GaitRite 
mat were recorded alongside the corresponding EMG 
signals, resulting in 15 datasets per class (inward, 
outward and normal FPA). However, this quantity 
proved insufficient to train a supervised deep learning 
algorithm (Alwosheel et al., 2018). To increase the 
size of each class, the walks are divided into 
individual steps. For this purpose, software was 
developed that extracts individual steps based on 
EMG peak detection and assigns them to the 
appropriate FPA class. This results in a dataset for 
each proband containing the EMG signal for VL and 
VM and the corresponding FPA for each step. 

To extract non-stationary properties from the 
EMG signal, time windowing is performed (Zha et 
al., 2021). Initially, the EMG signal of one step spans 
over a duration of one second. This can be contracted, 
since VL and VM are only active for approximately 
20% to 25% of the time during one gait cycle (Róisín 
Howard, 2017). The average duration of a gait cycle 
is around one second (Murray et al., 1964), enabling 
the EMG signal be to contracted to a duration of 250 
ms. As data was collected at 4 kHz, the EMG signal 
is truncated to a time window of 1000 data points 
(250ms). The next step is a high and low pass filtering 
(Morbidoni et al., 2019), already conducted by the 
 

Table 2: This table displays the distribution of steps 
generated in this study across different subjects and FPAs, 
showing the class sizes used to train the neural network. 

 

sensor. To filter motion artifacts, a low-pass filter 
with a cutoff frequency of 20 Hz is used. A high-pass 
filter with a cutoff frequency of 450 Hz is applied, as 
not much additional information is available above 
this frequency (Bakircioğlu & Özkurt, 2020). This is 
followed by a rectification of the data, enhancing the 
chances of successful training of deep learning 
algorithms (Li et al., 2011). Next, a Fast Fourier 
Transformation (FFT) is performed creating 
additional input features and enhancing information 
density (Yang et al., 2019). Finally, data is 
normalised using the peak-dynamic method, 
requiring each data point to be divided by the 
maximum value. While this method results in a loss 
of information regarding the degree of muscle 
activation, it enhances the comparability between 
probands.  

In Conclusion, a matrix is generated containing 
both a time series and a frequency series, for each 
labelled step and each sensor. Combining the 
measurements for VL and VM results in a matrix of 
 

Table 3: This table shows the structure of the CNN used. The optimizer adam and sparse categorical crossentropy were used 
for training. 
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Table 4: Representation of the accuracy achieved for individual subjects using a CNN for classifying the classes normal, 
inside and outside FPAs. The network was trained and evaluated three times. The average accuracy and the corresponding 
standard deviation are also presented. 

 
 

four features with 1000 data points times the number 
of steps. In this study, a total of 186-238 steps were 
recorded, per participant. Resulting in 2146 steps 
available to train the CNN, see table 2. This is a 
relatively modest dataset size for the application of 
deep learning (Alwosheel et al., 2018), but the 
purpose of this study is to provide an initial insight in 
the possibility of determining FPAs using EMG 
measurements in conjunction with deep learning 
evaluations and therefore declared acceptable for this 
feasibility study. 

2.2.2 Used Network 

The structure of the CNN used is shown in the table 
3. The network is built using TensorFlow (Martín 
Abadi et al., 2015) and Keras (Chollet & others, 
2015) libraries in Python. To obtain reliable results, 
each run was performed three times and the average 
validation accuracy is taken as the result.  

3 RESULTS 

In the following the results gained from the analysis 
of the study data are presented in relation to the tested 
hypothesis. 

3.1 Results for Testing Hypothesis A 

H: A CNN can classify FPAs of unknown steps for a 
single proband, after training on EMG data obtained 
from the same proband. 
 
To test this hypothesis, data from the gait study 
obtained by each proband individually was used to 
train the CNN. The labelled data was combined, 
randomly mixed and 85% was used for training and 
the remaining 15% served as validation data. To 
 

 

Figure  3: Confusion matrix, showing the result for the best 
prediction. The predicted value is shown against the true 
value. 

 

Figure  4: Confusion matrix, showing the result for the least 
successful prediction. The predicted value is shown against 
the true value.
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Table 5: Presentation of the interproband validation accuracy achieved using a CNN to classify the classes normal, inside and 
outside FPAs. Shown is the average validation accuracy. 

 
 

ensure a reliable conclusion, each training iteration 
was performed three times. The results are presented 
in table 4. 

Steps are classified into three classes (normal, 
internal and external rotated FPAs) with an average 
classification accuracy of 74.2% (±10.4%). This 
performance exceeds chance level of 33. 3% . 
Additionally, a confusion matrix is displayed, for the 
most successful and the least successful 
classification, see figure 3.  

The result suggests that a CNN can learn and 
discriminate features within the EMG signal allowing 
conclusions to be drawn about FPAs. However, the 
high variance of 10.4% indicates inconsistency in the 
quality of features identified by the CNN between 
probands. 

3.2 Results for Testing Hypothesis B  

H: A CNN can classify FPAs for an unknown 
proband, after training on EMG data obtained from 
different probands. 
 
To test this hypothesis, datasets from all probands 
excluding one for validation were combined and used 
to train a CNN. This process was repeated, ensuring 
each proband’s data was tested against the combined 
majority. The results are shown in table 5. It can be 
seen that a CNN, trained on a whole population, can 
distinguish validation steps an average accuracy of 
40% across inward, outward and normal FPAs. The 
results indicate a limited reliability for a classification 
of unknown EMG data recorded from different FPAs.  

4 DISCUSSION 

In this study, each class (normal, inside and outside 
FPA) contains 1326-1488 trails (for VL and VM 
combined), which, in the context of deep learning, 
accounts for a relatively small dataset (Alwosheel et 
al., 2018). However, when working with EMG 
measurements, the availability of data is limited by 
the number of times a person can repeat a specific 
movement. This limitation restricts the size of 
available datasets, which needs to be considered when 

working with deep neural networks. Nevertheless, 
researchers have shown that small datasets can be used 
successfully, i.e. Grag et al. (2021) used three classes 
of EMG recordings and a total of 1575 trails while 
achieving an accuracy of 85.44%.  

The inclusion of 10 probands, as in this study, is 
in line with the approach of other researchers, when 
experimenting with EMG data. I.e. Rehman et al. 
(2018) collected data from seven healthy probands 
and Bakircioğlu and Öskurt (2020) had five probands 
enrolled in their study. 

4.1 Discussion of Hypothesis A 

H: A CNN can classify FPAs of unknown steps for a 
single proband, after training on EMG data obtained 
from the same proband.  
 
This study has shown a CNN can learn features from 
EMG recordings of VL and VM to distinguish 
between outward, inward and normal FPAs with an 
average success rate of 74.2%. The standard deviation 
of 10.4% reflects the high variance of the EMG 
signal, which has also been reported by other 
researchers (Rane et al., 2019). The variability of the 
EMG signal can be attributed to its inherent nature, 
which is non-stationary, non-linear, stochastic, and 
unpredictable (Geng et al., 2016). At the same time, 
the characteristics of the sensor play a role, as the 
signal varies depending on the position relative to the 
muscle and the quality of the contact with the skin. In 
addition, the signal is prone to noise, including 
instrument noise, ambient noise, motion artefacts, and 
signal instability (Reaz et al., 2006). 

The result of this part of the study is in line with 
results of other studies, i.e. Tryon et al. (2021) 
achieved an accuracy of 74.7% in discriminating 
EMG signals into three classes related to elbow 
flexion while holding different weights. 

It is important to note, when dealing with hand 
gestures using a CNN, results tend to be significantly 
better. For instance, Lee at al. (2020) achieved an 
accuracy of 94% when discriminating between ten 
gesture classes. The differences in performance may 
be due to the availability of distinct movements, 
whereas this study focuses on detecting small changes 
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in movement sequences, which are easily masked by 
the noise of the EMG signal. 

An improvement in results could be achieved by 
using CNNs in combination with other deep learning 
algorithms. For example, by connecting CNNs to 
bidirectional LSTM networks. Karnam et al. (2022) 
were able to improve the accuracy of classifying 
EMG recordings of hand gestures by up to 18.7% 
compared to state-of-the-art models.  

Another way to improve the accuracy of the CNN 
is using transfer learning. This involves pre-training 
the network on subjects with comparable data 
recorded from other subjects followed by training on 
target data. Soroushmojdehi et al. (2022) showed that 
this methodology can improve the accuracy of a 
CNN, when predicting hand movements based on 
EMG data, up to 10%.  

4.2 Discussion of Hypothesis B 

H: A CNN can classify FPAs for an unknown 
proband, after training on EMG data obtained from 
different probands. 
 
The result of this hypothesis testing shows an average 
accuracy of 40.3%, barely surpassing chance level 
(33.33%). A major contributing factor is the high 
interpatient variability. This high variability has 
already been reported by Anders et al. (2019), who 
demonstrated substantial interindividual variability 
and Guidetti et al. (1996) found significant variation 
between subjects. 

Furthermore, the interpatient comparison results 
are consistent with findings in existing literature. In 
this study, three classes of FPAs were classified with 
up to 46.8% validation accuracy, see table 4. This 
performance is comparable to that of Castellini’s team, 
who achieved an accuracy of 51.7% for three classes in 
an interpatient evaluation (Castellini et al., 2009). 

One way to improve the results could be to use the 
normal gait pattern of a subject under investigation as 
calibration followed by detecting changes in FPAs 
with the help of a trained CNN. Cano et al. (2022) 
showed, that the accuracy of predicting high blood 
pressure in unknown subjects could be increased by 
up to 30% this way. 

5 CONCLUSIONS 

The aim of this study was to provide initial insights 
into the potential utility of EMG sensors in improving 
the reliability of FPA monitoring during home 
rehabilitation. It has been demonstrated that EMG 

measurements, evaluated by a CNN trained on an 
individual proband, can be used to classify between 
inward, outward and normal FPAs with an average 
validation accuracy of 70.4%. In conclusion, while 
the results show that such a system is not yet ready 
for use as a medical device, they highlight the 
potential and need for further research into this 
approach.  

The major goal for the future is to develop a user-
friendly measuring device capable of precisely 
detecting changes in FPA, providing essential data for 
the recovery process. The next steps on this path 
include minimising the variance between different 
patients. The use of an EMG sensor array is one 
possible solution for this, as it allows the 
determination of the sensor with the optimal signal 
quality, thus reducing the need for precise sensor 
placement. In addition, increasing the size of the data 
set is a critical factor. The possibility to integrate 
more steps could significantly increase the accuracy 
of a neural network. other optimisation approaches 
include combining different deep learning algorithms 
and testing the usability of transfer learning. 

To the best of our knowledge, this study 
represents the first instance of utilizing EMG 
measurements in combination with CNNs to provide 
insight into FPA. 
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