
Setting a PACS on FHIR

Sébastien Jodogne a

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM),

Keywords: FHIR, DICOM, Medical Imaging, Free and Open-Source Software.

Abstract: FHIR has quickly emerged as the most important standard for the interoperability of clinical data. FHIR in-
cludes support for medical imaging through its ImagingStudy resource that can be used to create mappings
between FHIR entities and DICOM studies using the DICOMweb protocol. Unfortunately, there is currently a
lack of openly available software implementation combining FHIR with DICOM, which hinders the develop-
ment of new applications linking clinical data with imaging data. In this paper, the Orthanc server for medical
imaging is associated with the HAPI framework in a consistent framework to propose an implementation of
the ImagingStudy FHIR resource that is tightly coupled with the content of a DICOM server. The result-
ing framework is released as free and open-source software, with the goals of promoting support for medical
imaging in FHIR, of sharing technological knowledge about medical interoperability, and of providing a test
environment for developing new healthcare-related applications.

1 INTRODUCTION

Technical interoperability refers to the ability of dif-
ferent healthcare systems, software, and devices to
communicate and exchange data effectively and ef-
ficiently (Benson and Grieve, 2021). Technical in-
teroperability is critical for patient-centered care and
for continuity of care because patient information is
typically spread over multiple software entities, such
as electronic health records, hospital information sys-
tem, laboratory information system, or pharmacy in-
formation system, possibly across different hospitals
and different general practitioners. Technical interop-
erability is also becoming increasingly important as a
result of the growing interest in telemedicine, in tele-
expertise, in patient empowerment, and in artificial in-
telligence.

Many technical interoperability standards have
emerged over the years. The international FHIR stan-
dard (Fast Healthcare Interoperability Resources) is
nowadays attracting a lot of attention. FHIR is an
open, modern standard for exchanging clinical in-
formation electronically (Bender and Sartipi, 2013).
FHIR is actively developed by the HL7 International
organization. The original proposal for FHIR was re-
leased in 2011, its first draft standard (referred to as
DSTU1, which stands for First Draft Standard for

a https://orcid.org/0000-0001-6685-7398

Trial Use) was published in 2014, and its first nor-
mative content (called Release 4) appeared in 2019.

FHIR is based on a set of standardized resources,
which represent discrete pieces of healthcare data,
such as patients, medications, allergies, and obser-
vations. These resources act as building blocks that
can be combined to represent complex clinical con-
cepts and workflows. Furthermore, FHIR employs
REST APIs (Representational State Transfer Appli-
cation Programming Interfaces) to access and ma-
nipulate the various resources. The fact that REST
APIs are widely used for the development of Web and
mobile applications explains the popularity of FHIR
among software engineers. FHIR also fully embraces
existing medical terminologies such as SNOMED-CT
and LOINC, which enables semantic interoperabil-
ity, ensuring that healthcare data is understood con-
sistently across different systems and organizations.

On the other hand, in the context of medical imag-
ing, DICOM (Digital Imaging and Communications
in Medicine) has been the de facto international stan-
dard for the encoding, transmission, storage, and shar-
ing of digital images since 1985 (NEMA, 2023). In
the DICOM workflow, imaging modalities create DI-
COM instances that are centralized in so-called PACS
servers (Picture Archiving and Communication Sys-
tem), which in turn provide features for the viewing
and distribution of the collected medical images. DI-
COM is adopted by any hospital in the world, and its

Jodogne, S.
Setting a PACS on FHIR.
DOI: 10.5220/0012384600003657
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2024) - Volume 2, pages 123-131
ISBN: 978-989-758-688-0; ISSN: 2184-4305
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

123



Figure 1: Excerpt of the main structure of the ImagingStudy resource in FHIR 5.0.0. For each field in the resource, the
“Card.” column indicates its cardinality, and the “Type” column indicates the type of its values. Fields whose minimum
cardinality is 1 are mandatory. This is a screenshot of the official specification of FHIR available at: https://hl7.org/fhir/R5/
ImagingStudy.html.

recent DICOMweb extensions have progressively in-
troduced REST APIs for medical imaging since the
2010s.

Evidently, because of the universal adoption of
DICOM by hospitals, researchers, and vendors, FHIR
does not try to introduce a new competing standard
dedicated to medical imaging. Instead, FHIR defines
the ImagingStudy resource as its official way to cre-
ate a connection between clinical and imaging data.
This resource allows FHIR systems to reference DI-
COM entities stored in separate PACS servers through
the DICOMweb API. FHIR-to-DICOM references
are used to link patients to medical images. Intu-
itively, the ImagingStudy resource can be thought of
as a higher-level service on the top of DICOMweb.

Unfortunately, there is currently a lack of open
reference software implementation combining FHIR
with DICOM. Even though implementations of the
ImagingStudy resource do exist and are available in
public test sandboxes for FHIR, their content is man-
aged separately from the content of a PACS server.
The availability of a DICOM server implementing
both the DICOMweb and the FHIR REST APIs could
hopefully promote the support of medical imaging in
FHIR, while providing a testing environment for the
development of new applications combining clinical
with imaging data. The difficulty in creating such an
implementation lies in the fact that both FHIR and DI-
COM are rich standards whose implementations are
usually developed by separate teams. Furthermore,

it is needed to create an infrastructure that continu-
ously keeps FHIR resources in synchronization with
DICOM instances. To fill this gap, in this paper,
a free and open-source PACS server supporting DI-
COMweb is extended to publish the parts of the FHIR
REST API that are related to medical imaging, as a
complement to the DICOM primitives that are already
offered by this PACS server.

2 BACKGROUND

This section reviews the different building blocks that
will be combined to create an open reference imple-
mentation of a FHIR server for medical imaging.

2.1 DICOM Model of the Real World

In the DICOM model of the real world, a patient ben-
efits from a sequence of imaging studies during his or
her lifetime. Each of these studies consists of a set
of series. In turn, each series is made of a set of DI-
COM instances that are created by the same imaging
device. An isolated DICOM instance can often (but
not always) be thought of as one 2D image slice that
is associated with a dataset providing patient-related
and acquisition-related information, which enriches
the pixel data. This dataset is a tree-like structure that
associates values to normalized DICOM tags, identi-
fied by a pair of hexadecimal numbers. For instance, a

HEALTHINF 2024 - 17th International Conference on Health Informatics

124



Figure 2: Excerpt of the information to be provided in the ImagingStudy for each of its associated DICOM series. This
screenshot is the continuation of Figure 1 in the FHIR standard.

DICOM study generated by a PET-CT-scanner would
typically correspond to a set of two DICOM series
(representing the PET volume and the CT volume),
with the two series encoded as a set of DICOM in-
stances that contain the individual 2D axial slices of
the parent 3D volume.

Each resource in the patient/study/series/instance
hierarchy can be identified by one specific DICOM
tag. The patient level is identified by the value of the
Patient ID (0x0010,0x0020) DICOM tag, the study
level by the Study Instance UID (0x0020,0x000d)
tag, the series level by the Series Instance UID
(0x0020,0x000e) tag, and finally the instance level by
the SOP Instance UID (0x0008,0x0018) tag. PACS
systems typically index the DICOM instances they
store according to the value of these four important
DICOM tags.

2.2 FHIR for Medical Imaging

As explained in the Introduction, FHIR brings sup-
port for medical imaging through its ImagingStudy
resource. ImagingStudy is associated with the ma-
turity level 4 in Release 5.0.0 of FHIR1. This ma-
turity level indicates that ImagingStudy has been
implemented in multiple prototype projects, hereby
showing a certain level of stability. Nonetheless, this
also means that the resource has been implemented
in less than five independent production systems, or
in no more than one country yet. This fact reinforces
the interest in developing an open implementation of
ImagingStudy to raise the maturity level of the asso-

1FHIR 5.0.0 is the most recent version of FHIR at the
time of writing. It corresponds to the version of FHIR that
is used throughout this work.

ciated part of the FHIR standard.
The main content of the ImagingStudy resource

is depicted in Figure 1. One instance of this FHIR re-
source corresponds to one DICOM study. To create
the link between the ImagingStudy resource and its
associated DICOM study, the identifier field of the
FHIR resource must contain the value of the Study
Instance UID DICOM tag. Very importantly, this
means that FHIR does not store the actual images, but
rather pointers to DICOM resources. The resources
themselves must be stored in a separate DICOMweb-
compliant server, the address of which must be pro-
vided in the endpoint field. The latter field con-
sists of a reference to a separate Endpoint FHIR
resource that specifies the connection parameters to
the DICOMweb server, including its URL. Exist-
ing sandboxes for FHIR typically do not contain this
endpoint field, which prevents access to the raw DI-
COM studies that are indexed by the ImagingStudy
resources.

As can be seen in Figure 1, besides the Endpoint
and ImagingStudy resources, a FHIR server for med-
ical imaging must also support the Patient resource,
because the subject field must contain a reference
to the patient who is associated with the DICOM
study. Consequently, similarly to the one-to-one re-
lation that exists between a FHIR ImagingStudy and
a DICOM study, there exists a mapping between a
Patient FHIR resource and a DICOM patient.

In addition to the patients and to the studies, FHIR
for medical imaging also creates links with both the
DICOM series and the DICOM instances. To this end,
the ImagingStudy resource contains a field named
series, as shown in Figure 2. This field stores an ar-
ray, each item of which declares one DICOM series
whose Series Instance UID DICOM tag is con-

Setting a PACS on FHIR

125



tained in the uid subfield. In turn, each item in the
series field contains a subarray called instance
that provides the list of the DICOM instances of the
parent series, in which the uid subfield indicates the
SOP Instance UID DICOM tag of the individual in-
stances. This means that, contrary to DICOM studies
that are mapped as separate ImagingStudy resources,
FHIR does not encode DICOM series and DICOM in-
stances as standalone resources: The series/instance
information can only be retrieved by accessing their
parent study.

Previous work about the ImagingStudy resource
has consisted in providing static databases as peda-
gogical resources to learn FHIR for medical imag-
ing (Hussain et al., 2018), in deploying a multi-site in-
frastructure dedicated to pediatric scoliosis (Shi et al.,
2021), in collecting radiation dose information (Bo-
ufahja et al., 2021), and in implementing complex
clinical imaging workflows (Tang et al., 2023). How-
ever, to the best of our knowledge, no free and open-
source PACS server can currently act as a standalone
FHIR server that transparently, automatically pub-
lishes its DICOM resources using DICOMweb.

2.3 HAPI Framework

The most complete implementation of the FHIR stan-
dard is HAPI (Ayaz et al., 2021). HAPI is free
and open-source software that is licensed under the
Apache Software License 2.0 and that is written in the
Java programming language2. HAPI closely follows
the release cycle of the FHIR standard. It can be used
as a building block to design both FHIR clients and
FHIR servers. Importantly, HAPI comes with support
for the ImagingStudy resource that is needed to im-
plement medical imaging in FHIR.

The HAPI framework proposes two approaches
for designing FHIR servers. On the one hand, the
“HAPI JPA Server” is a fully standalone applica-
tion that incorporates the Java Persistence API (JPA)
to store and retrieve FHIR resources in a relational
database such as PostgreSQL. On the other hand,
the HAPI project also provides the so-called “HAPI
Plain Server” as a software library that can be used to
create custom FHIR endpoints against arbitrary data
sources. This paper will focus on the combination of
the HAPI framework with a PACS server to provide a
tight integration between FHIR and DICOM.

2The homepage of the HAPI project is available at:
http://hapifhir.io/.

2.4 Orthanc Server

In the context of medical imaging, multiple free and
open-source DICOM servers are available, such as
dcm4chee (Warnock et al., 2007) and Dicoogle (Costa
et al., 2010). This work is focused on the Orthanc DI-
COM server, which is licensed under the GPLv3 li-
cense and is developed in the C++ language (Jodogne,
2018). Besides its DICOM primitives, Orthanc comes
with a REST API that can be used to script imag-
ing workflows, which is widely used to set up auto-
routing between local DICOM servers or between re-
mote sites. This REST API can notably be used to re-
trieve the content of individual DICOM resources and
to search the content of the DICOM database, which
will be used in this work. Orthanc has the advantage
of being lightweight and extensible: Multiple Orthanc
servers can run on one single computer at low cost,
without necessitating any complex configuration, and
the core features of Orthanc can be extended through
plugins that take the form of shared libraries.

Importantly, the fact that Orthanc plugins can ex-
tend the REST API of Orthanc has already been used
to integrate Web viewers such as OHIF (Ziegler et al.,
2020) and VolView (Xu et al., 2022), as well as to
provide an implementation of the DICOMweb stan-
dard. In this work, the extensibility of Orthanc will be
exploited to seamlessly combine it with HAPI, while
providing an architecture that is as easy to deploy
as possible on any computer by leveraging the small
footprint of Orthanc.

3 METHODS

In this section, a software architecture that integrates
Orthanc with HAPI is designed. This architecture is
based on the plugin system of Orthanc.

3.1 High-Level Architecture

Figure 3 depicts three possible high-level architec-
tures to combine HAPI with Orthanc. The first ar-
chitecture consists in executing the HAPI JPA Server
next to the Orthanc server, in two separate processes.
In this architecture, a third process is used to en-
sure the continuous synchronization between HAPI
and Orthanc. To this end, the synchronization pro-
cess monitors the addition and removal of DICOM
resources using the REST API of Orthanc, and repli-
cates the detected modifications in the HAPI JPA
Server. In this architecture, the FHIR and DICOM
databases are kept separate, which results in a sub-
stantial risk of de-synchronization between the two

HEALTHINF 2024 - 17th International Conference on Health Informatics

126



(a)

(b)

(c)
Figure 3: Three possible architectures to integrate the Or-
thanc server with the HAPI framework: (a) continuous syn-
chronization between Orthanc and HAPI JPA Server, (b)
custom HAPI Plain Server with a data source corresponding
to Orthanc, or (c) branching HAPI Plain Server as a plugin
to Orthanc.

servers, and which requires a specific infrastructure
dedicated to the execution of HAPI JPA Server.

The second possible architecture consists in re-
placing HAPI JPA Server by HAPI Plain Server. In
this architecture, a custom HAPI Plain Server is de-
ployed in a standalone Java servlet container and acts
as a facade in front of the Orthanc server. This facade
is responsible for generating the ImagingStudy and
Patient FHIR resources after querying the REST
API of Orthanc. This solution has the great advan-
tage of using a single database that is shared by the
FHIR and DICOM servers. However, this architec-
ture implies the deployment of two distinct processes
and two distinct Web servers (one for the servlet con-
tainer, and one for Orthanc), which keeps the setup
slightly complex, especially when it comes to the
mapping of the DICOMweb API.

Therefore, this work is focused on a third architec-
ture, in which HAPI Plain Server is directly branched
behind the Web server of Orthanc. In this architec-

ture, Orthanc acts similarly to a servlet container, by
redirecting all the FHIR requests to the HAPI frame-
work. This architecture has the advantage of necessi-
tating not only one single database, but also one sin-
gle process (which facilitates the setup for newcom-
ers), as well as of providing uniform access to FHIR
resources and to DICOMweb routes.

3.2 Java Plugins

The difficulty with the third architecture that was se-
lected in Section 3.1 is that the Orthanc server is de-
veloped in C++, which necessitates Orthanc plugins
to be written in C or C++. This contrasts with the
HAPI framework that is written in Java. To provide
compatibility between Orthanc and HAPI, a frame-
work to create Orthanc plugins in Java has been de-
signed by leveraging the JNI (Java Native Interface).

More precisely, a native C++ plugin for Orthanc
has been created that starts a Java virtual machine
from within Orthanc using JNI. This native plugin
first loads the main Java class that is specified in the
configuration file of Orthanc, which gives the oppor-
tunity to this main Java class to register Java handlers
in order to react to the various events that are pro-
cessed by Orthanc. In particular, the main Java class
can install handlers to answer HTTP requests that are
received by the Web server of Orthanc. The native
C++ plugin maintains the list of the registered Java
handlers and invokes these handlers once the corre-
sponding callback is triggered by Orthanc.

Besides the support of callbacks to react to events,
the Orthanc plugin SDK (Software Development Kit)
proposes a large library of C functions that can be
used to invoke the primitives implemented by the Or-
thanc core. In particular, the Orthanc plugin SDK
gives the possibility to make internal calls to the
REST API of Orthanc, which can be used to achieve
a wide variety of operations. The Java handlers need
to use this library of C functions.

To this end, two Python scripts have been im-
plemented to automatically wrap the Orthanc plugin
SDK as a collection of Java classes and methods. The
first Python script first analyzes the content of the
OrthancCPlugin.h C header file that defines the Or-
thanc plugin SDK, then creates a code model that is
saved in the JSON file format. This script automat-
ically discovers the classes that are managed by the
Orthanc core and that are accessible through the SDK
(such as DICOM instances, images, or responses to
REST requests). The resulting code model also in-
cludes the documentation. This analysis is achieved
using the libclang library that is part of the LLVM
project (Lattner and Adve, 2004).

Setting a PACS on FHIR

127



Once the code model is extracted, a second Python
script generates the Java classes that act as wrap-
pers around the native C objects (including the calls
to their destructors), as well as a specific Java class
named Functions that contains the wrappers around
the global C functions that do not correspond to ob-
jects. A Javadoc-compliant documentation is gener-
ated as well. This second script also generates a C++
file whose goal consists in associating the Java native
methods with their concrete implementation provided
by the Orthanc plugin SDK through JNI.

Thanks to this automated mechanism, 122 func-
tions from the Orthanc plugin SDK are automati-
cally wrapped in Java out of a total of 160 primi-
tives available in Orthanc 1.10.0, without any human
intervention, which would have been highly time-
consuming and error prone. This represents a cov-
erage of about 76%. The primitives that are not auto-
matically wrapped mostly correspond to the handling
of callbacks, which must be manually implemented.
Note that the extracted code model could be used to
wrap the Orthanc plugin SDK in languages other than
Java.

3.3 Integrating HAPI

The native plugin presented in Section 3.2 enables the
use of the HAPI framework inside Orthanc. Nonethe-
less, HAPI Plain Server is based on Java servlets that
are not directly compatible with the primitives offered
by the Orthanc plugin SDK. The solution to this is-
sue consists in using the MockHttpServletRequest
and MockHttpServletResponse classes that are pro-
vided by the Spring Framework. These two standard
classes can be used to turn the Web server of Or-
thanc into a servlet container: Whenever a HTTP re-
quest must be handled by a Java plugin, an instance
of the MockHttpServletRequest class is filled with
the parameters of the HTTP request and is sent to
the Java servlet. In turn, the Java servlet fills a
MockHttpServletResponse whose content can be
unwrapped and sent to the client through the Orthanc
Web server. In the context of the FHIR plugin for
Orthanc, the HAPI Plain Server servlet is by default
branched at the root path /fhir/ in the REST API of
Orthanc.

The last step to integrate HAPI within Orthanc
consists in implementing read-only providers that are
responsible to retrieve and search the ImagingStudy,
Patient, and Endpoint FHIR resources. To this
end, the FHIR plugin for Orthanc implements the
IResourceProvider interface provided by HAPI for
each of those resources. The Endpoint resource sim-
ply declares the address of the DICOMweb plugin,

which is a purely static behavior that does not require
querying the content of the Orthanc database.

As far as the ImagingStudy (resp. Patient) re-
sources are concerned, the content of an individual
DICOM study (resp. DICOM patient) with identifier
id can be retrieved by GET-ing the /studies/{id}
(resp. /patients/{id}) route of the built-in REST
API of Orthanc. This route returns a JSON ob-
ject whose content can easily be converted as an
ImagingStudy (resp. Patient) Java object that is
expected by the HAPI framework.

To implement searching over the ImagingStudy
and Patient FHIR resources, the FHIR plugin for
Orthanc issues POST requests to the /tools/find
route of the built-in REST API of Orthanc. This route
implements a lookup in the Orthanc database, which
can be constrained by specifying values for selected
DICOM tags. These constraints can directly be de-
rived from the parameters of the FHIR query. The
route answers with a JSON array that contains the
matching resources, which can easily be converted
into the List<ImagingStudy> and List<Patient>
Java objects that are expected by the HAPI frame-
work.

4 RESULTS

Section 3 explained how HAPI can be started as a
plugin to Orthanc, which provides a working imple-
mentation of a FHIR server for medical imaging that
is tightly integrated with a PACS. As a byproduct of
this research, Orthanc plugins can now be developed
in the Java programming language. An example of a
Java plugin and an interaction with the FHIR server
plugin for Orthanc are now discussed.

4.1 Using dcm4che in Orthanc

The dcm4chee server was previously mentioned as
a free and open-source implementation of a PACS.
The dcm4chee server is built on the top of dcm4che,
a highly popular software library that provides an
advanced implementation of the DICOM standard
in Java. This contrasts with Orthanc that uses the
DCMTK library written in C++. Consequently, the
new Java plugin for Orthanc can be used to comple-
ment DCMTK with dcm4che, which allows to benefit
from the respective strengths of these two software
libraries inside the Orthanc ecosystem. Depending
on his or her background, a software developer might
also find it easier to develop a plugin in Java than in
C++.

As an illustration, Figure 4 shows a sample Java

HEALTHINF 2024 - 17th International Conference on Health Informatics

128



import org.dcm4che3.data.Attributes;
import org.dcm4che3.io.DicomInputStream;

public class Main {
static {

Callbacks.register("/dcm4che -parse", new Callbacks.OnRestRequest() {
@Override
public void call(RestOutput output ,

HttpMethod method ,
String uri,
String[] regularExpressionGroups ,
Map<String , String > headers ,
Map<String , String > getParameters ,
byte[] body) {

if (method != HttpMethod.POST) {
output.sendMethodNotAllowed("POST"); // Answer with HTTP status 405

} else {
ByteArrayInputStream stream = new ByteArrayInputStream(body);

try (DicomInputStream din = new DicomInputStream(stream)) {
Attributes dataset = din.readDataset();
output.answerBuffer(dataset.toString().getBytes(), "text/plain");

} catch (IOException e) {
output.sendHttpStatus((short) 400, "Cannot parse DICOM file\n".getBytes());

}
}

}
});

}
}

Figure 4: Example of a Java plugin for Orthanc that uses dcm4che.

plugin that uses the dcm4che library. The config-
uration file of Orthanc must specify both the class-
path for the Java virtual machine (which must con-
tain the .jar files providing dcm4che and the byte-
code of Main.class), and the name of the main Java
class whose static method will be executed during
the initialization of the plugin. In this sample Main
plugin, the static method registers a new route in
the REST API of Orthanc using the static method
Callbacks.register() that is implemented by the
Java SDK of Orthanc. Whenever a HTTP request
is received by Orthanc against the /dcm4che-parse
route in its REST API, the Java plugin is invoked.
Inside the Java plugin, the body of incoming HTTP
POST requests is parsed as a DICOM instance using
dcm4che. On success, the client receives the dump
of the DICOM dataset, as generated by dcm4che. In
a sense, such a Java plugin can be considered as a
servlet that extends the REST API of Orthanc.

4.2 FHIR Server in Orthanc

Starting the FHIR server plugin for Orthanc simply
consists in writing a configuration file that loads the
.jar containing both the HAPI framework and the

Java plugin implementing the FHIR server. A single
precompiled .jar file that packages all the required
dependencies is freely available for download on the
Orthanc official homepage. This package is generated
by Maven and its maven-assembly-plugin plugin.
As soon as Orthanc is running, its FHIR server is ac-
cessible at default URL: http://localhost:8042/fhir/.
The FHIR clients can access the content of Orthanc
using this URL. The Endpoint resource of the FHIR
server is automatically mapped to the route of the DI-
COMweb server of Orthanc, whose default location
corresponds to: http://localhost:8042/dicom-web/stu
dies. This means that only one single Web server is
running at any time, with this Web server being shared
by the REST API of Orthanc, by the DICOMweb end-
point, and by HAPI Plain Server.

As an illustration, Figure 5 shows an interactive
session between the FHIRPACK client3 and the FHIR
server plugin for Orthanc. Importantly, the reported
FHIR resources (Patient and ImagingStudy) are
generated on-the-fly using HAPI Plain Server, di-
rectly from the DICOM resources that are stored by
Orthanc: No separate database dedicated to FHIR

3The homepage of the FHIRPACK project is available
at: https://github.com/fhirpack/fhirpack

Setting a PACS on FHIR

129



$ fp -s http://localhost:8042/fhir -o "getPatients" -p all -o "gatherSimplePaths id name.family birthDate"

0 fYET5.0 [COMUNIX] 1941-09-01
1 5Yp0E [BRAINIX] 1949-03-01
2 Vafk,T,6 [PHENIX] 1991-01-01
3 SOtNwu [INCISIX] None
4 ozp00SjY2xG [KNIX] None
5 vAD7q3 [VIX] None

$ fp -s http://localhost:8042/fhir -o "getImagingStudies" -p all -o \
"gatherSimplePaths identifier.value subject.reference description numberOfSeries numberOfInstances"

identifier.value subject.reference description numberOfSeries numberOfInstances
0 [urn:oid:2.16.840.1.113669.632.20.1211.1000031... Patient/vAD7q3 Pied_cheville_UHR (Adulte) 1 250
1 [urn:oid:2.16.840.1.113669.632.20.1211.1000035... Patient/5Yp0E IRM cérébrale, neuro-crâne 7 232
2 [urn:oid:2.16.840.1.113669.632.20.1211.1000009... Patient/Vafk,T,6 CT2 tête, face, sinus 3 723
3 [urn:oid:1.2.840.113745.101000.1008000.38048.4... Patient/fYET5.0 Neck^1HEAD_NECK_PETCT 2 166
4 [urn:oid:1.2.840.113619.2.176.2025.1499492.739... Patient/ozp00SjY2xG Knee (R) 6 135
5 [urn:oid:2.16.840.1.113669.632.20.1211.1000023... Patient/SOtNwu Tête^Dental (Adulte) 1 166

Figure 5: Sample interactive session of the FHIRPACK client against an Orthanc server that contains sample DICOM studies
provided by the OsiriX project (Rosset et al., 2004). The first request lists the Patient FHIR resources, while the second lists
the ImagingStudy FHIR resources.

resources is used, all the information is extracted
from the Orthanc database. This ensures that the DI-
COMweb and the FHIR views of the content of the
Orthanc server are always perfectly synchronized.

4.3 Software Availability

These new contributions are released as free and
open-source software under the GPLv3 license, which
corresponds to the license of the Orthanc server. The
software associated with this research contains more
than 14,000 lines of code, as reported by the cloc
command-line tool, which is an indication of its com-
plexity. The source code of both the Java plugin and
the FHIR server for Orthanc is available at: https:
//orthanc.uclouvain.be/hg/orthanc-java/. The official
download site of Orthanc provides precompiled bina-
ries and installers for the Java plugin and for the FHIR
server. Full technical documentation is available in-
side the Orthanc Book, the official documentation of
the Orthanc project.

5 CONCLUSIONS

This paper proposes a free and open-source frame-
work to run a FHIR server for medical imaging along-
side a DICOM server. This is achieved by combining
the Orthanc server with HAPI Plain Server through
a Java plugin for Orthanc. Both the FHIR resources
and the DICOMweb API are served through the Web
server of Orthanc, using one single process, which
simplifies the deployment and provides a robust envi-
ronment. Furthermore, the internal architecture of the
solution guarantees that FHIR and DICOM resources
are synchronized at any time. Thanks to the lightness

of Orthanc, the application can easily be executed on
any computer equipped with a Java virtual machine.
As a byproduct, it is also shown how Java can be used
to create plugins that extend the core features of Or-
thanc.

The resulting software is hopefully a suitable can-
didate to promote the ImagingStudy FHIR resource
and hence to raise its maturity level. Even though
ImagingStudy is already supported by other open-
source implementations of FHIR, most notably HAPI,
these implementations are not tightly coupled with the
content of a DICOMweb server. Consequently, our
contributions could serve as a test bed for software en-
gineers to develop new, innovative, and interoperable
solutions for medical imaging. It could also be used as
a pedagogical platform to teach the principles of mod-
ern health interoperability. The main limitation of
the designed software is that it currently only imple-
ments the ImagingStudy, Patient, and Endpoint
resources: It would especially be interesting to cre-
ate a bridge between FHIR and DICOM worklists us-
ing the Task and ServiceRequest resources. Future
work will also expand the FHIR support in Orthanc
with a focus on artificial intelligence and will take ad-
vantage of FHIR in the context of medical research
combining clinical, imaging, and multi-omics data.

REFERENCES

Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., and
Stiawan, D. (2021). The fast health interoperability re-
sources (FHIR) standard: Systematic literature review
of implementations, applications, challenges and op-
portunities. JMIR Medical Informatics, 9(7):e21929.

Bender, D. and Sartipi, K. (2013). HL7 FHIR: An agile
and RESTful approach to healthcare information ex-

HEALTHINF 2024 - 17th International Conference on Health Informatics

130



change. In Proceedings of the 26th IEEE Interna-
tional Symposium on Computer-Based Medical Sys-
tems. IEEE.

Benson, T. and Grieve, G. (2021). Principles of Health In-
teroperability. Springer International Publishing.

Boufahja, A., Nichols, S., and Pangon, V. (2021). Custom
FHIR resources definition of detailed radiation infor-
mation for dose management systems. In Pesquita,
C., Fred, A. L. N., and Gamboa, H., editors, Pro-
ceedings of the 14th International Joint Conference
on Biomedical Engineering Systems and Technolo-
gies, BIOSTEC 2021, Volume 5: HEALTHINF, On-
line Streaming, February 11-13, 2021, pages 467–
474. SCITEPRESS.

Costa, C., Ferreira, C., Bastião, L., Ribeiro, L., Silva,
A., and Oliveira, J. L. (2010). Dicoogle: An open-
source peer-to-peer PACS. Journal of Digital Imag-
ing, 24(5):848–856.

Hussain, M. A., Langer, S. G., and Kohli, M. (2018). Learn-
ing HL7 FHIR using the HAPI FHIR server and its use
in medical imaging with the SIIM dataset. Journal of
Digital Imaging, 31(3):334–340.

Jodogne, S. (2018). The Orthanc ecosystem for medical
imaging. Journal of Digital Imaging, 31(3):341–352.

Lattner, C. and Adve, V. (2004). LLVM: A compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California.

NEMA (2023). National Electrical Manufacturers Associ-
ation PS3 / ISO 12052, Digital Imaging and Commu-
nications in Medicine (DICOM) standard.
http://www.dicomstandard.org/.

Rosset, A., Spadola, L., and Ratib, O. (2004). OsiriX: An
open-source software for navigating in multidimen-
sional DICOM images. Journal of Digital Imaging,
17(3):205–216.

Shi, W., Giuste, F. O., Zhu, Y., Carpenter, A. M., Iwin-
ski, H. J., Hilton, C., Wattenbarger, J. M., and Wang,
M. D. (2021). A fhir-compliant application for multi-
site and multi-modality pediatric scoliosis patient re-
habilitation. In Huang, Y., Kurgan, L. A., Luo, F.,
Hu, X., Chen, Y., Dougherty, E. R., Kloczkowski, A.,
and Li, Y., editors, IEEE International Conference on
Bioinformatics and Biomedicine, BIBM 2021, Hous-
ton, TX, USA, December 9-12, 2021, pages 1524–
1527. IEEE.

Tang, S.-T., Tjia, V., Noga, T., Febri, J., Lien, C.-Y., Chu,
W.-C., Chen, C.-Y., and Hsiao, C.-H. (2023). Cre-
ating a medical imaging workflow based on FHIR,
DICOMweb, and SVG. Journal of Digital Imaging,
36(3):794–803.

Warnock, M., Toland, C., Evans, D., Wallace, B., and Nagy,
P. (2007). Benefits of using the DCM4CHE DICOM
archive. Journal of Digital Imaging, 20(S1):125–129.

Xu, J., Thevenon, G., Chabat, T., McCormick, M., Li,
F., Birdsong, T., Martin, K., Lee, Y., and Aylward,
S. (2022). Interactive, in-browser cinematic volume
rendering of medical images. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging
& Visualization, 11(4):1019–1026.

Ziegler, E., Urban, T., Brown, D., Petts, J., Pieper, S. D.,
Lewis, R., Hafey, C., and Harris, G. J. (2020). Open
health imaging foundation viewer: An extensible
open-source framework for building web-based imag-
ing applications to support cancer research. JCO Clin-
ical Cancer Informatics, (4):336–345.

Setting a PACS on FHIR

131


