
Dynamically Choosing the Number of Heads in Multi-Head Attention

Fernando Fradique Duarte1 a, Nuno Lau2 b, Artur Pereira2 c and Luís Paulo Reis3 d
1Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal

2Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
3Faculty of Engineering, Department of Informatics Engineering, University of Porto, Porto, Portugal

Keywords: Deep Reinforcement Learning, Multi-Head Attention, Advantage Actor-Critic.

Abstract: Deep Learning agents are known to be very sensitive to their parameterization values. Attention-based Deep
Reinforcement Learning agents further complicate this issue due to the additional parameterization associated
to the computation of their attention function. One example of this concerns the number of attention heads to
use when dealing with multi-head attention-based agents. Usually, these hyperparameters are set manually,
which may be neither optimal nor efficient. This work addresses the issue of choosing the appropriate number
of attention heads dynamically, by endowing the agent with a policy h trained with policy gradient. At each
timestep of agent-environment interaction, h is responsible for choosing the most suitable number of
attention heads according to the contextual memory of the agent. This dynamic parameterization is compared
to a static parameterization in terms of performance. The role of h is further assessed by providing additional
analysis concerning the distribution of the number of attention heads throughout the training procedure and
the course of the game. The Atari 2600 videogame benchmark was used to perform and validate all the
experiments.

1 INTRODUCTION

With the advent of Deep Learning (DL), careful
engineering and domain expertise began to be
replaced by representation learning methods,
whereby the representations (or features) are learned
from the data by the learning procedure as opposed to
being derived by domain experts (LeCun et al.,
2015;Bengio et al., 2021). Some examples of this
work include (Sermanet et al., 2012;Srivastava et al.,
2015;Xu et al., 2015) in vision, (Vaswani et al.,
2017;Graves et al., 2013;Bahdanau et al., 2015) in
Natural Language Processing (NLP), (Humphrey et
al., 2012) in signal processing and (Mnih et al.,
2015;Zambaldi et al., 2019;Mott et al., 2019;Ha &
Schmidhuber, 2018;Sorokin et al., 2015;Silver et al.,
2016) in Deep Reinforcement Learning (DRL).
However, DL models may be hard to train if not
properly parameterized. This often involves setting

a https://orcid.org/0000-0002-9503-9084
b https://orcid.org/0000-0003-0513-158X
c https://orcid.org/0000-0002-7099-1247
d https://orcid.org/0000-0002-4709-1718

suitable values to a myriad of hyperparameters, which
may not be trivial (Bengio, 2012).

Attention-based DRL agents, the focus of this
work, further complicate this issue due to the
additional parameterization associated to the
computation of their attention function. The number
of attention heads to use when dealing with multi-
head attention-based agents such as the ones proposed
in (Mott et al., 2019) and (Zambaldi et al., 2019) is an
example of this. The values for these hyperparameters
are usually set manually and their values remain fixed
throughout the learning process. This may be
undesirable for various reasons.

First, deriving a static value implies some kind of
hyperparameter search, which may be costly (or even
unfeasible) both in terms of computational time and
resources. Furthermore, this cost cannot be amortized
most of the time since the value derived is task
specific and a new value must be derived each time.
Second, the complexity of the task may vary
throughout the learning process. As an example, in

358
Duarte, F., Lau, N., Pereira, A. and Reis, L.
Dynamically Choosing the Number of Heads in Multi-Head Attention.
DOI: 10.5220/0012384500003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 2, pages 358-367
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

most videogames the complexity of the task increases
throughout the course of the game. In these cases,
using non-adjustable values for these
hyperparameters may be neither optimal (e.g., too
many attention heads when the game is easy and too
few when the game is hard) nor efficient (e.g., too
many attention heads when in easier situations). In
either case this may hinder the learning process.

This work addresses the issue of choosing the
appropriate number of attention heads dynamically.
More specifically, at each time step of agent-
environment interaction, a policy h, trained with
policy gradient, chooses the number of attention
heads that should be used to derive the attention
function, according to the contextual memory of the
agent. This dynamic attention-based agent, enhanced
with policy h, is compared to a similar agent
parameterized statically with 4 attention heads in
terms of performance. The role of h on the behavior
of the agent is further assessed by providing
additional analysis concerning the distribution of the
number of attention heads throughout the training
procedure and the course of the game. All the
experiments were performed and validated on the
Atari 2600 videogame benchmark.

It should be noted that this work does not present
an efficient implementation to leverage the potential
computational gains (in terms of time and resources)
derived from using a dynamic approach. The focus is
mainly on assessing the effects of such an approach
on the learning process and the performance of the
agent. The remainder of the paper is structured as
follows. Section 2 presents the problem formulation,
including a brief overview of the technical
background and a motivational example. Section 3
discusses the experimental setup, which includes the
presentation of the methods proposed and the training
setup. Section 4 presents the experiments carried out
and discusses the results obtained. Finally, section 5
presents the conclusions.

2 PROBLEM FORMULATION

This section starts by presenting a high-level view of
the technical background. Next, a motivational
example is discussed. Finally, the problem
formulation is presented. This includes the rationale
and the main research goals underlying this work.

2.1 Multi-Head Attention

Attention-based agents have achieved a lot of success
in many areas of Artificial Intelligence (AI), such as

NLP (Vaswani et al., 2017;Bahdanau et al., 2015) and
DRL (Zambaldi et al., 2019;Mott et al., 2019;Sorokin
et al., 2015). While many different variants of
attention have been proposed in the literature, this
work focuses on the attention formulation proposed
in (Vaswani et al., 2017) and more specifically the
scaled dot-product variant, computed as in Equation
(1), where Q, K and V represent the queries, keys and
values matrices, respectively and dk denotes the
dimension of the queries and keys vectors.

Attention(Q, K, V) = softmax()V (1)

At a very high-level, an attention function can be
described as mapping a query and a set of key-value
pairs to an output, computed as a weighted sum of the
values, where each weight is derived by a compatibility
function between the query and the corresponding key.
The queries, keys and values vectors composing the Q,
K and V matrices can be derived from many different
sources. In DRL for example, these vectors may be
derived from the feature maps output by a
Convolutional Neural Network (CNN) as in (Zambaldi
et al., 2019;Sorokin et al., 2015) or from the hidden
state of a Recurrent Neural Network (RNN), either a
Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) or a Convolutional LSTM (Shi et
al., 2015) or both as in (Mott et al., 2019). Usually,
several attention functions, also denoted as attention
heads, are derived in parallel (to increase the
expressive power of the model) and then aggregated
together, resulting in multi-head attention.

2.2 Motivational Example

Figure 1 depicts the attention maps i, i = {1,2,3,4}
computed by TDA (4H), an implementation of Soft
Top-Down Attention (Mott et al., 2019) with 4
attention heads set statically.

As can be seen, the attention maps derived exhibit
some interesting behaviors. One such behavior
concerns redundancy and/or possibly
complementarity between the attention maps. As
examples of this, in Breakout 3 and 4 (left column)
and 1 and 4 (right column) and in Seaquest 1 and
2 (right column), all exhibit some level of
redundancy/complementarity between them.

The other behavior observed is a change of focus
throughout the course of the game. As an example of
this, in Breakout 2 is mainly focused on the ball (left
column), but as soon as the agent starts applying the
flanking strategy to destroy the bricks from above, 2

changes its focus mostly to the top area near the score
(left column).

Dynamically Choosing the Number of Heads in Multi-Head Attention

359

Figure 1: Attention maps (the red blobs) for the TDA (4H) agent for the Atari games Breakout (top row), Seaquest (middle
row) and SpaceInvaders (bottom row).

As another example, in Seaquest 3 is mostly
focused on the top-left corner of the screen (left
column), but as the game progresses, shifts its focus
to the middle-left edge of the screen (right column).
Finally, some attention maps remain focused on the
same location throughout the entire course of the
game, 4 in Seaquest is an example of this, while
others focus on apparently unimportant locations (4
in SpaceInvaders).

2.3 Dynamically Choosing the Number
of Attention Heads

While some of the observations discussed in the
previous section may be partially due to lack of
training or the underlying architecture of the agents,
it seems to be the case that statically setting the
number of attention heads to a non-adjustable value
is not the optimal solution. The redundancies
observed and the focus on unimportant locations may
be indications of this. Furthermore, choosing this
value may not always be trivial. In the case of Atari,
for example, training an agent may take anywhere
from several hours to several days, making
hyperparameter search an expensive exercise.

Dynamically choosing this value, avoids this issue
and may present additional advantages, including: a
faster learning process, better finetuned to the
specificities of the task, a more efficient training
procedure (resource and timewise) and more

performant agents, better optimized to the nuances
that may occur throughout the course of the task.
Motivated by this, the present work proposes the
following research goals:
 G1. Some tasks were designed to be

progressively harder (e.g., Atari games). In this
case it is reasonable to assume that initially the
agent would need to compute less attention
maps, thus easing the learning process.
Moreover, the attention maps derived could
potentially be more focused and present less
redundancy, with new maps being derived only
when a new aspect of the task must be attended
to. These assumptions are assessed by
analyzing the distribution of the number of
attention heads throughout the learning process
and the course of the task. The quality and the
behavior of the attention maps derived are also
assessed via visual inspection;

 G2. The Atari videogame benchmark offers a
suite of games featuring different challenges.
Intuitively, harder games may need more
attention heads when compared to easier
games. Tailoring the number of attention heads
according to the characteristics of the game and
throughout its course, according to its
interaction history, may potentially improve
the performance of the agent. The discussion of
the results provides a performance comparison
between the agents enhanced with policy h
and a baseline agent parameterized statically.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

360

It should be noted that the implementation used
does not leverage the potential computational gains
(time and resource-wise) derived from using a
dynamic approach. Although such an implementation
is currently being worked on, it is slow to train and
needs further finetuning. Therefore, this work focuses
on assessing the effects of the proposed approach on
the learning process and the performance of the
agents.

3 EXPERIMENTAL SETUP

This section presents the agents implemented and
tested. The training setup is presented at the end of
the section and includes the testing and training
protocols used and the parameterization of the agents.

3.1 Baseline Agent

The baseline agent, TDA (4H), consists of an
implementation of (Mott et al., 2019).
Architecturally, the agent is composed of 4 main
modules, namely: vision encoder, query network,
memory module and the policy. More specifically,
the vision encoder consists of 4 convolutional layers
configured with (1, 32, 64, 64) input and (32, 64, 64,
256) output channels, kernel sizes (8, 4, 4, 4), strides
(4, 2, 2, 1) and no padding, respectively. Each layer is
followed by batch normalization (Ioffe & Szegedy,
2015) and a ReLU nonlinearity. The Convolutional
LSTM rnndown sitting on top of this CNN was
configured with 64 input/output channels, kernel size
3 and stride 1 with padding 1.

The query network is composed of 3 linear layers
with sizes (256, 128, 1280), respectively, each
followed by layer normalization (Ba et al., 2016) and
a ReLU. The attention function computation is
similar to (Mott et al., 2019). The LSTM rnntop
comprising the memory module was configured with
size 256. Finally, the policy module consists of a
linear layer of size 128, followed by layer
normalization and a ReLU. This layer feeds two other
linear layers: the actor, which chooses the action at to
take at each timestep and the critic, which computes
the value of each state V(ot). Figure 2 presents a more
pictorial depiction of this. The agent was statically
parameterized with 4 attention heads.

3.2 Dynamic Multi-Head Attention
Agent

The dynamic multi-head attention agent (DTDA) is
enhanced with policy h, responsible for choosing the
number of attention heads nt = h to use at each
timestep t. h is implemented similarly to the policy
module and shares its input. In practice and for
simplicity, the agent computes a fixed maximum
number of attention heads, and the excess heads are
zeroed out, i.e., qi = ansi = i = 0 for i > h, where 0
denotes a vector of zeros. The remaining architecture
is similar to Figure 2.

3.3 Training Setup

All agents were trained for a minimum of 16,800,000
frames, similarly to (Machado et al., 2018), using the
Advantage Actor-Critic (A2C) algorithm (Mnih et al.,
2016). Adam (Kingma & Ba, 2015) was used as the
optimizer, the learning rate was set to 1e-4 and the
loss was computed using Generalized Advantage
Estimation with λ=1.0 (Schulman et al., 2016). The
input image is converted to grayscale and cropped to
206 by 158 pixels with no rescaling and the internal
state of the memory module is never reset during
training.

The training results were computed at every
240,000th frame over a window of size w=50 and
correspond to the return scores (averaged over all the
agents) obtained during training in the last w
episodes. Each trained agent played 100 games to
derive the test returns per episode. The results include
the overall median and the average return and
standard deviation obtained by the best agent. Two
agents were used to perform each experiment using
the Atari 2600 videogame platform, available via the
OpenAI Gym toolkit (Brockman et al., 2016). The
one-way ANOVA and the Kruskal-Wallis H-test
were used as the statistical significance tests
(α=0.05). H0 considers that all the agents have the
same return mean results. Table 1 presents the
remaining parameterization.

Table 1: Hyperparameters. Values annotated with * denote
a scaling factor. γ denotes the discounting factor.

Entropy Critic Reward clipping γ
1e-2* 0.5* [-1, 1] .99

Dynamically Choosing the Number of Heads in Multi-Head Attention

361

Figure 2: Overall architecture. ht-1, at-1 and rt-1 denote the previous state of rnntop, the previous action performed, and the
previous reward obtained, respectively. The number of attention heads is i = {1,2,3,4} for the static agent and i = {1,2,…,nt}
for the dynamic agent. qi denotes the ith query and ansi denotes the output from the ith attention head.

4 EXPERIMENTAL RESULTS

This section first presents the performance results
obtained by the agents. Next, h is further assessed by
providing additional analysis concerning the
distribution of the number of attention heads
throughout the training procedure and the course of
the game. An analysis of the attention maps derived
is also presented, followed by the discussion of the
results obtained.

4.1 Performance Results

The agents tested were: TDA (4H), the baseline agent
statically parameterized with 4 attention heads and
DTDA (4H) and DTDA (8H), the dynamically
parameterized agents with a maximum of 4 and 8
attention heads, respectively. Figure 3 presents the
training and test results obtained.

Concerning the training results, dynamically
choosing the number of attention heads does not seem
to provide a significant improvement to the learning
process. In terms of the test results, the performance
of the agents is similar for Breakout and
SpaceInvaders, whereas for Seaquest DTDA (8H)
performed the best. DTDA (4H) on the other hand,
suffered from some instability during training which
resulted in 2 agents of very different quality with
mean average return 47,469 and 24,144, respectively.

4.2 Distribution of the Number of
Attention Heads

The distribution of the number of attention heads
throughout the training process is depicted in Figure
4. As depicted, the distribution does not seem to
converge to any stable configuration. As training
progresses different values of nt gain or lose
prominence. For example, in Breakout (left), nt = 3

seems to be losing preference consistently, but at the
end of training begins to gain some preference again.
A similar observation can be made for nt = 5 in
SpaceInvaders (middle) and nt = 2 and nt = 5 in
Seaquest (right). This instability may be due to lack
of training. The distribution of the number of
attention heads throughout the course of the game is
depicted in Figure 5. As can be seen, the strategies
derived by the agents are very different, even when
using the same model (trained with different
initialization seeds).

While most of the strategies derived use several
different values of nt throughout the course of the
game, some of these strategies approach a static
parameterization. DTDA (4H) in SpaceInvaders with
nt = 3 and nt = 4 is an example of this. Also, some of
these strategies seem to agree (to some extent) with
the intuition that the values of nt should increase as
the game becomes harder. For example, one of the
DTDA (8H) agents in Seaquest favors nt = 2 initially
and later switches to nt = 3. Contrary to this, the other
DTDA (8H) agent for Seaquest favors nt = 5 initially
and as the game progresses switches to nt = 2. Also,
one of the DTDA (4H) agents for Seaquest favors nt =
3 initially and later switches to nt = 1.

In the case of Breakout and SpaceInvaders
assessing the degree of difficulty of the game is
harder and such analysis is not as straightforward. For
example, in SpaceInvaders as the game progresses,
the enemies get closer to the agent, making the game
more challenging, but on the other hand there may be
less enemies to attend to. The strategies derived are
also sometimes contradictory, concerning the
difficulty of the game. For example, most of the
strategies derived for Breakout and Seaquest favor
values of nt 4, although Seaquest may be considered
more challenging than Breakout.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

362

Figure 3: Test return: (Breakout) TDA (4H) 417 with best (429/124), DTDA (4H) 420 with best (457/112) and DTDA (8H)
423 with best (444/123), (SpaceInvaders) TDA (4H) 600 with best (706/225), DTDA (4H) 600 with best (692/234) and
DTDA (8H) 600 with best (758/309), (Seaquest) TDA (4H) 50,850 with best (51,459/17,817), DTDA (4H) 32,885 with best
(47,469/16,499) and DTDA (8H) 54,735 with best (57,971/14,456). The results for Breakout and SpaceInvaders are not
statistically significant (p-value 0.10 and 0.87, respectively).

Figure 4: Distribution of the number of attention heads throughout the training process. The results were computed at every
1,200,000 frames and averaged over 10 games.

4.3 Visualization of the Attention Maps

Figure 6 depicts the visualizations of the attention
maps derived by the DTDA (4H) agents. In
SpaceInvaders, both strategies produced attention
maps with varying degrees of
redundancy/complementarity. This is most prevalent
in the 3 heads strategy (top row, left column). The
other strategy (last 2 rows, left column) also suffers
from this issue but was able to produce some
specialized attention maps. 2 focuses mainly on the
agent, whereas 3 focuses mostly on the enemy ships
(also mildly on the agent). These (redundancy and or
complementarity) issues prevail in Seaquest. In this
case both strategies were able to produce specialized
attention maps.

In the nt = {1, 2, 4} strategy (top row, right column), 2
focuses almost exclusively on a delimited rectangular-like
area in the middle of the screen, whereas 4 focuses mostly
on the borders of the screen. In the nt = {1, 3} strategy
(middle row, right column), 2 focuses mostly on the
oxygen meter (and the top left corner). Examples of
situations where the nt = {1, 3} strategy uses a single
attention head, are depicted on the last row, right column.
As can be seen these attention maps are more generalist and
focus on several elements simultaneously.

Figure 7 depicts the visualizations of the attention maps
derived by the DTDA (8H) agents. The nt = {2, 3, 4}
strategy (top row) presents an interesting behavior. When
the game seems to be easier, the agent relies mostly on 1

and 2 (left column). 1 is more generalist and provides the
surfacing cue to the agent (right column), whereas 2

focuses on a very specific rectangular-like area near the
bottom right corner of the screen.

Dynamically Choosing the Number of Heads in Multi-Head Attention

363

Figure 5: Distribution of the number of attention heads throughout the course of the game. The results were computed at
every 240,000 frames over a single game. Best strategies derived for the number of heads nt: (Breakout) DTDA (4H)
approaching a static parameterization with nt = 2, (SpaceInvaders) DTDA (8H) with nt = 1 initially, gradually favoring nt = 7,
(Seaquest) DTDA (8H) with nt = 2 initially, gradually favoring nt = 3.

Figure 6: (left) Attention maps derived by DTDA (4H) for SpaceInvaders. (right) Attention maps derived by DTDA (4H) for
Seaquest.

As the game progresses the agent starts computing 3
more often. 3 seems to provide mostly redundancy and
complementarity to 1 (middle column). 4 is rarely
computed and focuses on the top left corner of the screen
(not shown). The other strategy nt = {2, 5, 8} (bottom row)

is not as interesting and is harder to interpret given the high
degree of redundancy and complementarity between the
various attention maps.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

364

Figure 7: Attention maps derived by the DTDA (8H) agents for Seaquest.

4.4 Discussion

Overall, h did not improve (or eased) the learning process.
On one hand, h is another module that must be optimized,
which in turn may pose more difficulties to the learning
process. On the other hand, dynamically changing the value
of nt may also introduce some instability, since the
optimization process must switch between different
‘operating modes’ introduced by the number of attention
heads being used at each timestep. At a high-level, h can
be thought of as a kind of tradeoff between parameterization
complexity and optimization load. It is a question of
whether easing the parameterization burden by introducing
more parameters to optimize provides a real benefit in
practice.

Nevertheless, as shown by the test results, h was
able to improve the performance of the agent in some
cases, such as in Seaquest, while at the same time
obtaining similar performance results to those
obtained by a statically parameterized agent, without
the need to perform hyperparameter search.
Ultimately, the benefits of the approach proposed can
become even more noticeable if an efficient
implementation can take advantage of its potential
computational gains. However, such an
implementation was not presented in this work.

Finally, both the strategies derived for nt as well
as the quality of the resulting attention maps seem to
be very dependent on the optimization process. As
shown by the results, different agents as well as
agents sharing the same model, discovered different
strategies to exploit the number of attention heads,
with varying performance results. In some cases,
different strategies obtained very similar results,

while in other cases the strategies performed very
differently.

This work proposed a simple policy h which does
not consider the number or the quality of the attention
maps nor the redundancy or relationships between
them. A more sophisticated implementation may take
these aspects into account to derive better results.
Finally, such an implementation may also tackle the
possible tradeoff between using less attention heads,
therefore obtaining attention maps that are more
generalist, or using more attention heads in an attempt
to obtain attention maps that are more focused and
specialized but that may also present more
redundancy and or complementarity between them.

5 CONCLUSIONS

This work proposed a dynamic approach to choose
the number of attention heads to use at each timestep
of agent-environment interaction, based solely on the
contextual memory of the agent and without the need
to perform hyperparameter search. When compared
to a statically parameterized agent, the approach
proposed was able to improve the performance of the
agent in Seaquest while obtaining similar results in
Breakout and SpaceInvaders. These initial results are
very promising and can be leveraged to derive better
implementations more suited to tackling the
limitations discussed. Furthermore, the benefits of
this approach can become more noticeable if an
efficient implementation can take advantage of its
potential computational gains.

Dynamically Choosing the Number of Heads in Multi-Head Attention

365

ACKNOWLEDGEMENTS

This research was funded by Fundação para a Ciência
e a Tecnologia, grant number SFRH/BD/145723
/2019 - UID/CEC/00127/2019.

REFERENCES

Ba, L. J., Kiros, J. R., & Hinton, G. E. (2016). Layer
Normalization. CoRR, abs/1607.06450.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural
Machine Translation by Jointly Learning to Align and
Translate. In 3rd International Conference on Learning
Representations, ICLR 2015.

Bengio, Y. (2012). Practical recommendations for gradient-
based training of deep architectures. CoRR,
abs/1206.5533.

Bengio, Y., LeCun, Y., & Hinton, G. E. (2021). Deep
learning for AI. Commun. ACM, 64(7), 58–65.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI
Gym. CoRR, abs/1606.01540.

Graves, A., Mohamed, A., & Hinton, G. E. (2013). Speech
recognition with deep recurrent neural networks. In
IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2013.

Ha, D., & Schmidhuber, J. (2018). World Models. CoRR,
abs/1803.10122.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9(8), 1735–1780.

Humphrey, E. J., Bello, J. P., & LeCun, Y. (2012). Moving
Beyond Feature Design: Deep Architectures and
Automatic Feature Learning in Music Informatics. In
Proceedings of the 13th International Society for Music
Information Retrieval Conference, ISMIR 2012. (pp.
403–408).

Ioffe, S., & Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015. (Vol. 37, pp. 448–456). JMLR.org.

Kingma, D. P., & Ba, J. (2015). Adam: A Method for
Stochastic Optimization. In 3rd International
Conference on Learning Representations, ICLR 2015.

LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep
learning. Nat., 521(7553), 436–444.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J.,
Hausknecht, M. J., & Bowling, M. (2018). Revisiting
the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents. J.
Artif. Intell. Res., 61, 523–562.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.
P., Harley, T., Silver, D., & Kavukcuoglu, K. (2016).
Asynchronous Methods for Deep Reinforcement
Learning. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016. (Vol.
48, pp. 1928–1937). JMLR.org.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M. A., Fidjeland, A., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D.
(2015). Human-level control through deep
reinforcement learning. Nat., 518(7540), 529–533.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., &
Rezende, D. J. (2019). Towards Interpretable
Reinforcement Learning Using Attention Augmented
Agents. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems, NeurIPS 2019. (pp. 12329–
12338).

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., &
Abbeel, P. (2016). High-Dimensional Continuous
Control Using Generalized Advantage Estimation. In
4th International Conference on Learning
Representations, ICLR 2016,

Sermanet, P., Chintala, S., & LeCun, Y. (2012).
Convolutional neural networks applied to house
numbers digit classification. In Proceedings of the 21st
International Conference on Pattern Recognition,
ICPR 2012. (pp. 3288–3291).

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K.,
& Woo, W. (2015). Convolutional LSTM Network: A
Machine Learning Approach for Precipitation
Nowcasting. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015. (pp. 802–810).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T. P., Leach, M., Kavukcuoglu, K., Graepel, T., &
Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nat., 529(7587),
484–489.

Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., &
Ignateva, A. (2015). Deep Attention Recurrent Q-
Network. CoRR, abs/1512.01693.

Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2015).
Unsupervised Learning of Video Representations using
LSTMs. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015. (Vol.
37, pp. 843–852). JMLR.org.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).
Attention is All you Need. In Advances in Neural
Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017. (pp. 5998–6008).

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C.,
Salakhutdinov, R., Zemel, R. S., & Bengio, Y. (2015).
Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention. In Proceedings of the
32nd International Conference on Machine Learning,
ICML 2015. (Vol. 37, pp. 2048–2057). JMLR.org.

Zambaldi, V. F., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D. P., Lillicrap, T.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

366

P., Lockhart, E., Shanahan, M., Langston, V., Pascanu,
R., Botvinick, M. M., Vinyals, O., & Battaglia, P. W.
(2019). Deep reinforcement learning with relational
inductive biases. In 7th International Conference on
Learning Representations, ICLR 2019.

Dynamically Choosing the Number of Heads in Multi-Head Attention

367

