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Abstract: Deep Learning agents are known to be very sensitive to their parameterization values. Attention-based Deep 
Reinforcement Learning agents further complicate this issue due to the additional parameterization associated 
to the computation of their attention function. One example of this concerns the number of attention heads to 
use when dealing with multi-head attention-based agents. Usually, these hyperparameters are set manually, 
which may be neither optimal nor efficient. This work addresses the issue of choosing the appropriate number 
of attention heads dynamically, by endowing the agent with a policy h trained with policy gradient. At each 
timestep of agent-environment interaction, h is responsible for choosing the most suitable number of 
attention heads according to the contextual memory of the agent. This dynamic parameterization is compared 
to a static parameterization in terms of performance. The role of h is further assessed by providing additional 
analysis concerning the distribution of the number of attention heads throughout the training procedure and 
the course of the game. The Atari 2600 videogame benchmark was used to perform and validate all the 
experiments. 

1 INTRODUCTION 

With the advent of Deep Learning (DL), careful 
engineering and domain expertise began to be 
replaced by representation learning methods, 
whereby the representations (or features) are learned 
from the data by the learning procedure as opposed to 
being derived by domain experts (LeCun et al., 
2015;Bengio et al., 2021). Some examples of this 
work include (Sermanet et al., 2012;Srivastava et al., 
2015;Xu et al., 2015) in vision, (Vaswani et al., 
2017;Graves et al., 2013;Bahdanau et al., 2015) in 
Natural Language Processing (NLP), (Humphrey et 
al., 2012) in signal processing and (Mnih et al., 
2015;Zambaldi et al., 2019;Mott et al., 2019;Ha & 
Schmidhuber, 2018;Sorokin et al., 2015;Silver et al., 
2016) in Deep Reinforcement Learning (DRL). 
However, DL models may be hard to train if not 
properly parameterized. This often involves setting 
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suitable values to a myriad of hyperparameters, which 
may not be trivial (Bengio, 2012). 

Attention-based DRL agents, the focus of this 
work, further complicate this issue due to the 
additional parameterization associated to the 
computation of their attention function.  The number 
of attention heads to use when dealing with multi-
head attention-based agents such as the ones proposed 
in (Mott et al., 2019) and (Zambaldi et al., 2019) is an 
example of this. The values for these hyperparameters 
are usually set manually and their values remain fixed 
throughout the learning process. This may be 
undesirable for various reasons. 

First, deriving a static value implies some kind of 
hyperparameter search, which may be costly (or even 
unfeasible) both in terms of computational time and 
resources. Furthermore, this cost cannot be amortized 
most of the time since the value derived is task 
specific and a new value must be derived each time. 
Second, the complexity of the task may vary 
throughout the learning process. As an example, in 
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most videogames the complexity of the task increases 
throughout the course of the game. In these cases, 
using non-adjustable values for these 
hyperparameters may be neither optimal (e.g., too 
many attention heads when the game is easy and too 
few when the game is hard) nor efficient (e.g., too 
many attention heads when in easier situations). In 
either case this may hinder the learning process. 

This work addresses the issue of choosing the 
appropriate number of attention heads dynamically. 
More specifically, at each time step of agent-
environment interaction, a policy h, trained with 
policy gradient, chooses the number of attention 
heads that should be used to derive the attention 
function, according to the contextual memory of the 
agent. This dynamic attention-based agent, enhanced 
with policy h, is compared to a similar agent 
parameterized statically with 4 attention heads in 
terms of performance. The role of h on the behavior 
of the agent is further assessed by providing 
additional analysis concerning the distribution of the 
number of attention heads throughout the training 
procedure and the course of the game. All the 
experiments were performed and validated on the 
Atari 2600 videogame benchmark. 

It should be noted that this work does not present 
an efficient implementation to leverage the potential 
computational gains (in terms of time and resources) 
derived from using a dynamic approach. The focus is 
mainly on assessing the effects of such an approach 
on the learning process and the performance of the 
agent. The remainder of the paper is structured as 
follows. Section 2 presents the problem formulation, 
including a brief overview of the technical 
background and a motivational example. Section 3 
discusses the experimental setup, which includes the 
presentation of the methods proposed and the training 
setup. Section 4 presents the experiments carried out 
and discusses the results obtained. Finally, section 5 
presents the conclusions. 

2 PROBLEM FORMULATION 

This section starts by presenting a high-level view of 
the technical background. Next, a motivational 
example is discussed. Finally, the problem 
formulation is presented. This includes the rationale 
and the main research goals underlying this work. 

2.1 Multi-Head Attention 

Attention-based agents have achieved a lot of success 
in many areas of Artificial Intelligence (AI), such as 

NLP (Vaswani et al., 2017;Bahdanau et al., 2015) and 
DRL (Zambaldi et al., 2019;Mott et al., 2019;Sorokin 
et al., 2015). While many different variants of 
attention have been proposed in the literature, this 
work focuses on the attention formulation proposed 
in (Vaswani et al., 2017) and more specifically the 
scaled dot-product variant, computed as in Equation 
(1), where Q, K and V represent the queries, keys and 
values matrices, respectively and dk denotes the 
dimension of the queries and keys vectors. 

Attention(Q, K, V) = softmax( )V (1)

At a very high-level, an attention function can be 
described as mapping a query and a set of key-value 
pairs to an output, computed as a weighted sum of the 
values, where each weight is derived by a compatibility 
function between the query and the corresponding key. 
The queries, keys and values vectors composing the Q, 
K and V matrices can be derived from many different 
sources. In DRL for example, these vectors may be 
derived from the feature maps output by a 
Convolutional Neural Network (CNN) as in (Zambaldi 
et al., 2019;Sorokin et al., 2015) or from the hidden 
state of a Recurrent Neural Network (RNN), either a 
Long Short-Term Memory (LSTM) (Hochreiter & 
Schmidhuber, 1997) or a Convolutional LSTM (Shi et 
al., 2015) or both as in (Mott et al., 2019). Usually, 
several attention functions, also denoted as attention 
heads, are derived in parallel (to increase the 
expressive power of the model) and then aggregated 
together, resulting in multi-head attention. 

2.2 Motivational Example 

Figure 1 depicts the attention maps i, i = {1,2,3,4} 
computed by TDA (4H), an implementation of Soft 
Top-Down Attention (Mott et al., 2019) with 4 
attention heads set statically. 

As can be seen, the attention maps derived exhibit 
some interesting behaviors. One such behavior 
concerns redundancy and/or possibly 
complementarity between the attention maps. As 
examples of this, in Breakout 3 and 4 (left column) 
and 1 and 4 (right column) and in Seaquest 1 and 
2 (right column), all exhibit some level of 
redundancy/complementarity between them. 

The other behavior observed is a change of focus 
throughout the course of the game. As an example of 
this, in Breakout 2 is mainly focused on the ball (left 
column), but as soon as the agent starts applying the 
flanking strategy to destroy the bricks from above, 2 

changes its focus mostly to the top area near the score 
(left column).  
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Figure 1: Attention maps (the red blobs) for the TDA (4H) agent for the Atari games Breakout (top row), Seaquest (middle 
row) and SpaceInvaders (bottom row). 

As another example, in Seaquest 3 is mostly 
focused on the top-left corner of the screen (left 
column), but as the game progresses, shifts its focus 
to the middle-left edge of the screen (right column). 
Finally, some attention maps remain focused on the 
same location throughout the entire course of the 
game, 4 in Seaquest is an example of this, while 
others focus on apparently unimportant locations (4 
in SpaceInvaders). 

2.3 Dynamically Choosing the Number 
of Attention Heads 

While some of the observations discussed in the 
previous section may be partially due to lack of 
training or the underlying architecture of the agents, 
it seems to be the case that statically setting the 
number of attention heads to a non-adjustable value 
is not the optimal solution. The redundancies 
observed and the focus on unimportant locations may 
be indications of this. Furthermore, choosing this 
value may not always be trivial. In the case of Atari, 
for example, training an agent may take anywhere 
from several hours to several days, making 
hyperparameter search an expensive exercise. 

Dynamically choosing this value, avoids this issue 
and may present additional advantages, including: a 
faster learning process, better finetuned to the 
specificities of the task, a more efficient training 
procedure (resource and timewise) and more 

performant agents, better optimized to the nuances 
that may occur throughout the course of the task. 
Motivated by this, the present work proposes the 
following research goals: 
 G1. Some tasks were designed to be 

progressively harder (e.g., Atari games). In this 
case it is reasonable to assume that initially the 
agent would need to compute less attention 
maps, thus easing the learning process. 
Moreover, the attention maps derived could 
potentially be more focused and present less 
redundancy, with new maps being derived only 
when a new aspect of the task must be attended 
to. These assumptions are assessed by 
analyzing the distribution of the number of 
attention heads throughout the learning process 
and the course of the task. The quality and the 
behavior of the attention maps derived are also 
assessed via visual inspection; 

 G2. The Atari videogame benchmark offers a 
suite of games featuring different challenges. 
Intuitively, harder games may need more 
attention heads when compared to easier 
games. Tailoring the number of attention heads 
according to the characteristics of the game and 
throughout its course, according to its 
interaction history, may potentially improve 
the performance of the agent. The discussion of 
the results provides a performance comparison 
between the agents enhanced with policy h 
and a baseline agent parameterized statically. 
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It should be noted that the implementation used 
does not leverage the potential computational gains 
(time and resource-wise) derived from using a 
dynamic approach. Although such an implementation 
is currently being worked on, it is slow to train and 
needs further finetuning. Therefore, this work focuses 
on assessing the effects of the proposed approach on 
the learning process and the performance of the 
agents. 

3 EXPERIMENTAL SETUP 

This section presents the agents implemented and 
tested. The training setup is presented at the end of 
the section and includes the testing and training 
protocols used and the parameterization of the agents. 

3.1 Baseline Agent 

The baseline agent, TDA (4H), consists of an 
implementation of (Mott et al., 2019). 
Architecturally, the agent is composed of 4 main 
modules, namely: vision encoder, query network, 
memory module and the policy. More specifically, 
the vision encoder consists of 4 convolutional layers 
configured with (1, 32, 64, 64) input and (32, 64, 64, 
256) output channels, kernel sizes (8, 4, 4, 4), strides 
(4, 2, 2, 1) and no padding, respectively. Each layer is 
followed by batch normalization (Ioffe & Szegedy, 
2015) and a ReLU nonlinearity. The Convolutional 
LSTM rnndown sitting on top of this CNN was 
configured with 64 input/output channels, kernel size 
3 and stride 1 with padding 1. 

The query network is composed of 3 linear layers 
with sizes (256, 128, 1280), respectively, each 
followed by layer normalization (Ba et al., 2016) and 
a ReLU. The attention function computation is 
similar to (Mott et al., 2019). The LSTM rnntop 
comprising the memory module was configured with 
size 256. Finally, the policy module  consists of a 
linear layer of size 128, followed by layer 
normalization and a ReLU. This layer feeds two other 
linear layers: the actor, which chooses the action at to 
take at each timestep and the critic, which computes 
the value of each state V(ot). Figure 2 presents a more 
pictorial depiction of this. The agent was statically 
parameterized with 4 attention heads. 

 
 
 
 

3.2 Dynamic Multi-Head Attention 
Agent 

The dynamic multi-head attention agent (DTDA) is 
enhanced with policy h, responsible for choosing the 
number of attention heads nt = h to use at each 
timestep t. h is implemented similarly to the policy 
module and shares its input. In practice and for 
simplicity, the agent computes a fixed maximum 
number of attention heads, and the excess heads are 
zeroed out, i.e., qi = ansi = i = 0 for i > h, where 0 
denotes a vector of zeros. The remaining architecture 
is similar to Figure 2. 

3.3 Training Setup 

All agents were trained for a minimum of 16,800,000 
frames, similarly to (Machado et al., 2018), using the 
Advantage Actor-Critic (A2C) algorithm (Mnih et al., 
2016). Adam (Kingma & Ba, 2015) was used as the 
optimizer, the learning rate was set to 1e-4 and the 
loss was computed using Generalized Advantage 
Estimation with λ=1.0 (Schulman et al., 2016). The 
input image is converted to grayscale and cropped to 
206 by 158 pixels with no rescaling and the internal 
state of the memory module is never reset during 
training. 

The training results were computed at every 
240,000th frame over a window of size w=50 and 
correspond to the return scores (averaged over all the 
agents) obtained during training in the last w 
episodes. Each trained agent played 100 games to 
derive the test returns per episode. The results include 
the overall median and the average return and 
standard deviation obtained by the best agent. Two 
agents were used to perform each experiment using 
the Atari 2600 videogame platform, available via the 
OpenAI Gym toolkit (Brockman et al., 2016). The 
one-way ANOVA and the Kruskal-Wallis H-test 
were used as the statistical significance tests 
(α=0.05). H0 considers that all the agents have the 
same return mean results. Table 1 presents the 
remaining parameterization. 

Table 1: Hyperparameters. Values annotated with * denote 
a scaling factor. γ denotes the discounting factor. 

Entropy Critic Reward clipping γ
1e-2* 0.5* [-1, 1] .99
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Figure 2: Overall architecture. ht-1, at-1 and rt-1 denote the previous state of rnntop, the previous action performed, and the 
previous reward obtained, respectively. The number of attention heads is i = {1,2,3,4} for the static agent and i = {1,2,…,nt} 
for the dynamic agent. qi denotes the ith query and ansi denotes the output from the ith attention head. 

4 EXPERIMENTAL RESULTS 

This section first presents the performance results 
obtained by the agents. Next, h is further assessed by 
providing additional analysis concerning the 
distribution of the number of attention heads 
throughout the training procedure and the course of 
the game. An analysis of the attention maps derived 
is also presented, followed by the discussion of the 
results obtained. 

4.1 Performance Results 

The agents tested were: TDA (4H), the baseline agent 
statically parameterized with 4 attention heads and 
DTDA (4H) and DTDA (8H), the dynamically 
parameterized agents with a maximum of 4 and 8 
attention heads, respectively. Figure 3 presents the 
training and test results obtained. 

Concerning the training results, dynamically 
choosing the number of attention heads does not seem 
to provide a significant improvement to the learning 
process. In terms of the test results, the performance 
of the agents is similar for Breakout and 
SpaceInvaders, whereas for Seaquest DTDA (8H) 
performed the best. DTDA (4H) on the other hand, 
suffered from some instability during training which 
resulted in 2 agents of very different quality with 
mean average return 47,469 and 24,144, respectively. 

4.2 Distribution of the Number of 
Attention Heads 

The distribution of the number of attention heads 
throughout the training process is depicted in Figure 
4. As depicted, the distribution does not seem to 
converge to any stable configuration. As training 
progresses different values of nt gain or lose 
prominence. For example, in Breakout (left), nt = 3 

seems to be losing preference consistently, but at the 
end of training begins to gain some preference again. 
A similar observation can be made for nt = 5 in 
SpaceInvaders (middle) and nt = 2 and nt = 5 in 
Seaquest (right). This instability may be due to lack 
of training. The distribution of the number of 
attention heads throughout the course of the game is 
depicted in Figure 5. As can be seen, the strategies 
derived by the agents are very different, even when 
using the same model (trained with different 
initialization seeds). 

While most of the strategies derived use several 
different values of nt throughout the course of the 
game, some of these strategies approach a static 
parameterization. DTDA (4H) in SpaceInvaders with 
nt = 3 and nt = 4 is an example of this. Also, some of 
these strategies seem to agree (to some extent) with 
the intuition that the values of nt should increase as 
the game becomes harder. For example, one of the 
DTDA (8H) agents in Seaquest favors nt = 2 initially 
and later switches to nt = 3. Contrary to this, the other 
DTDA (8H) agent for Seaquest favors nt = 5 initially 
and as the game progresses switches to nt = 2. Also, 
one of the DTDA (4H) agents for Seaquest favors nt = 
3 initially and later switches to nt = 1. 

In the case of Breakout and SpaceInvaders 
assessing the degree of difficulty of the game is 
harder and such analysis is not as straightforward. For 
example, in SpaceInvaders as the game progresses, 
the enemies get closer to the agent, making the game 
more challenging, but on the other hand there may be 
less enemies to attend to. The strategies derived are 
also sometimes contradictory, concerning the 
difficulty of the game. For example, most of the 
strategies derived for Breakout and Seaquest favor 
values of nt  4, although Seaquest may be considered 
more challenging than Breakout. 
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Figure 3: Test return: (Breakout) TDA (4H) 417 with best (429/124), DTDA (4H) 420 with best (457/112) and DTDA (8H) 
423 with best (444/123), (SpaceInvaders) TDA (4H) 600 with best (706/225), DTDA (4H) 600 with best (692/234) and 
DTDA (8H) 600 with best (758/309), (Seaquest) TDA (4H) 50,850 with best (51,459/17,817), DTDA (4H) 32,885 with best 
(47,469/16,499) and DTDA (8H) 54,735 with best (57,971/14,456). The results for Breakout and SpaceInvaders are not 
statistically significant (p-value 0.10 and 0.87, respectively). 

 

Figure 4: Distribution of the number of attention heads throughout the training process. The results were computed at every 
1,200,000 frames and averaged over 10 games. 

4.3 Visualization of the Attention Maps 

Figure 6 depicts the visualizations of the attention 
maps derived by the DTDA (4H) agents. In 
SpaceInvaders, both strategies produced attention 
maps with varying degrees of 
redundancy/complementarity. This is most prevalent 
in the 3 heads strategy (top row, left column). The 
other strategy (last 2 rows, left column) also suffers 
from this issue but was able to produce some 
specialized attention maps. 2 focuses mainly on the 
agent, whereas 3 focuses mostly on the enemy ships 
(also mildly on the agent). These (redundancy and or 
complementarity) issues prevail in Seaquest. In this 
case both strategies were able to produce specialized 
attention maps. 

In the nt = {1, 2, 4} strategy (top row, right column), 2 
focuses almost exclusively on a delimited rectangular-like 
area in the middle of the screen, whereas 4 focuses mostly 
on the borders of the screen. In the nt = {1, 3} strategy 
(middle row, right column), 2 focuses mostly on the 
oxygen meter (and the top left corner). Examples of 
situations where the nt = {1, 3} strategy uses a single 
attention head, are depicted on the last row, right column. 
As can be seen these attention maps are more generalist and 
focus on several elements simultaneously. 

Figure 7 depicts the visualizations of the attention maps 
derived by the DTDA (8H) agents. The nt = {2, 3, 4} 
strategy (top row) presents an interesting behavior. When 
the game seems to be easier, the agent relies mostly on 1 

and 2 (left column). 1 is more generalist and provides the 
surfacing cue to the agent (right column), whereas 2 

focuses on a very specific rectangular-like area near the 
bottom right corner of the screen.  
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Figure 5: Distribution of the number of attention heads throughout the course of the game. The results were computed at 
every 240,000 frames over a single game. Best strategies derived for the number of heads nt: (Breakout) DTDA (4H) 
approaching a static parameterization with nt = 2, (SpaceInvaders) DTDA (8H) with nt = 1 initially, gradually favoring nt = 7, 
(Seaquest) DTDA (8H) with nt = 2 initially, gradually favoring nt = 3. 

 

Figure 6: (left) Attention maps derived by DTDA (4H) for SpaceInvaders. (right) Attention maps derived by DTDA (4H) for 
Seaquest.

As the game progresses the agent starts computing 3 
more often. 3 seems to provide mostly redundancy and 
complementarity to 1 (middle column). 4 is rarely 
computed and focuses on the top left corner of the screen 
(not shown). The other strategy nt = {2, 5, 8} (bottom row) 

is not as interesting and is harder to interpret given the high 
degree of redundancy and complementarity between the 
various attention maps. 
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Figure 7: Attention maps derived by the DTDA (8H) agents for Seaquest. 

4.4 Discussion 

Overall, h did not improve (or eased) the learning process. 
On one hand, h is another module that must be optimized, 
which in turn may pose more difficulties to the learning 
process. On the other hand, dynamically changing the value 
of nt may also introduce some instability, since the 
optimization process must switch between different 
‘operating modes’ introduced by the number of attention 
heads being used at each timestep. At a high-level, h can 
be thought of as a kind of tradeoff between parameterization 
complexity and optimization load. It is a question of 
whether easing the parameterization burden by introducing 
more parameters to optimize provides a real benefit in 
practice. 

Nevertheless, as shown by the test results, h was 
able to improve the performance of the agent in some 
cases, such as in Seaquest, while at the same time 
obtaining similar performance results to those 
obtained by a statically parameterized agent, without 
the need to perform hyperparameter search. 
Ultimately, the benefits of the approach proposed can 
become even more noticeable if an efficient 
implementation can take advantage of its potential 
computational gains. However, such an 
implementation was not presented in this work. 

Finally, both the strategies derived for nt as well 
as the quality of the resulting attention maps seem to 
be very dependent on the optimization process. As 
shown by the results, different agents as well as 
agents sharing the same model, discovered different 
strategies to exploit the number of attention heads, 
with varying performance results. In some cases, 
different strategies obtained very similar results, 

while in other cases the strategies performed very 
differently.  

This work proposed a simple policy h which does 
not consider the number or the quality of the attention 
maps nor the redundancy or relationships between 
them. A more sophisticated implementation may take 
these aspects into account to derive better results. 
Finally, such an implementation may also tackle the 
possible tradeoff between using less attention heads, 
therefore obtaining attention maps that are more 
generalist, or using more attention heads in an attempt 
to obtain attention maps that are more focused and 
specialized but that may also present more 
redundancy and or complementarity between them. 

5 CONCLUSIONS 

This work proposed a dynamic approach to choose 
the number of attention heads to use at each timestep 
of agent-environment interaction, based solely on the 
contextual memory of the agent and without the need 
to perform hyperparameter search. When compared 
to a statically parameterized agent, the approach 
proposed was able to improve the performance of the 
agent in Seaquest while obtaining similar results in 
Breakout and SpaceInvaders. These initial results are 
very promising and can be leveraged to derive better 
implementations more suited to tackling the 
limitations discussed. Furthermore, the benefits of 
this approach can become more noticeable if an 
efficient implementation can take advantage of its 
potential computational gains. 
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