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Abstract: The coming Beyond 5G (B5G) era could mark a paradigm shift towards user-centric Quality of Experience 
(QoE) centred network architectures. The infusion of QoE user requirements into network architectures will 
be crucial for future ultra-reliable, ultra-low latency haptic-enabled Internet applications. One such application 
will be the mission-critical use case of remote (tele-haptic) robotic surgery, signifying a transition towards 
skillset delivery networks that will augment user task performance experience. In extending traditional 
Quality of Service (QoS)-oriented networks to user focused QoE and with it, Quality of Task (QoT) 
components, human users in a global control loop (such as robotic surgeons) will be capable of true-to-life 
immersive remote task performance through the manipulation of objects in real-time, and of transcending 
geographical distance. In this preliminary study using data elicited from 20 practising robotic surgeons (n = 
20), we examine the emergence of a future B5G network and haptic-enabled Internet of Skills (IoS) 
architecture, applied to the task-sensitive mission-critical use case of remote (tele-haptic) robotic surgery. We 
conceptualise and demonstrate the use of non-linear Task-Technology Fit (TTF) predictive modelling to 
empirically assess this futuristic use case, and in doing so, provide a novel QoE/QoT perspective of future 
B5G communication networks. 

1 INTRODUCTION 

The emergence of Beyond 5G (B5G) networks such 
as 6G networks (Giordani et al., 2020) and quantum 
communication networks (Bassoli et al., 2021) offer 
much promise. These digital networks of the future 
will transcend the limits of current 5G network 
technologies (Nawaz et al., 2019). Originally, the 
traditional Internet was envisaged as a global 
computer network, signifying a paradigm shift in 20th 
century economies (Shapiro & Varian, 1999). This 
era brought forth the revolutionary Mobile Internet, 
connecting billions of devices and computers, 
disrupting whole 21st century economies and 
industries (Dohler, 2018). In the present day, the 
Internet of Things (IoT), predicted to tether trillions 
of smart devices and positioned to redefine industries 

of the coming decade, has come to the fore. These 
Internets will, however, be overtaken by the 
emergence of a haptic-enabled Internet whereby 
highly responsive secure networks will support the 
rendition of real-time haptic impulses remotely. This 
would amplify the capacities of the IoT by 
introducing a new element to human-machine 
interaction via the development of immersive real-
time communications technologies (Pierucci, 2015). 
In future Internets, haptics will take the form of two 
key attributes: the transmission of touch and actuation 
in real-time will extend traditional audio-visual 
feedback of current systems via the support of both 
tactile (cutaneous) and kinaesthetic modalities. 
Firstly, the tactile (cutaneous) modality would render 
data on the dimensions of surface, texture, and 
friction. Secondly, the kinaesthetic modality would 
relay data on force, torque, position, and velocity 
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dimensions. With these transmission modes, human 
users would be linked to remote environments with 
more immersion. The sensations of sight and sound 
augmented by audio-visual rendition and the 
transmission of haptic impulses would be bi-
directional. Hence, touch would be detected by 
imposing motion on an environment with feeling 
rendered through a distortion or reactionary force. 
Haptics will become critical to future Internet archite-
ctures with the emergence of the B5G era. A future 
haptic-enabled Internet will shift conventional Quality 
of Service (QoS) performance-related indicators 
towards more dynamic, interactive and human-user-
centred Quality of Experience (QoE) and Quality of 
Task (QoT) considerations (Gatara & Mzyece, 2023). 

2 REMOTE ROBOTIC SURGERY 
APPLICATIONS FOR  
TELE-HAPTIC SURGICAL 
TASK PERFORMANCE 

B5G networks will enable the future Internet of Skills 
(IoS) (Dohler, 2018). The performance of real-time 
tele-haptic robotic surgery tasks is a mission-critical 
application that leverages the ultra-reliable and ultra-
low latency requirements that will become 
synonymous with B5G networks of the future. To 
envision the connection between QoS, QoT, and QoE 
components of a haptic-enabled IoS architecture, we 
present this robotic telesurgery use case in Figure 1. 

 
Figure 1: Haptic-Enabled Internet of Skills (IoS) for Tele-
Haptic Surgical Task Performance in Beyond 5G (B5G) 
Networks. 

In this scenario, a robotic surgeon with the 
requisite expertise will be the Human-in-the-Loop 
(HITL) supported to perform tele-haptic surgery 
tasks. A master (control) and assistant surgical robot 
in a remote-controlled environment must be 
connected through a reliable high-speed 

communication network to render real-time control 
commands and multi-modal sensory data. This 
enhanced form of tele-haptic surgery will require 
high-precision manipulation and meet stringent 
latency, jitter, and packet-loss metrics. Therefore, 
future B5G networks will be expected to more 
consistently and reliably ensure the ultra-low latency 
and ultra-reliable characteristics necessary for 
seamless two-way haptic feedback. On this basis, in a 
future Internet, surgeons will be able to extend their 
physical skillsets over remote geographical distances 
via a B5G-supported telecommunications network. 
Consequently, current shortages of surgeons and high-
quality surgical care, and long-distance limitations in 
travel would be greatly reduced. Furthermore, surgical 
precision and patient safety would be enhanced. 

3 TASK-TECHNOLOGY FIT 
(TTF) THEORY AND 
PREDICTVE MODELLING 
FOR REMOTE ROBOTIC 
SURGERY APPLICATIONS 

The theoretical construct of Task-Technology Fit 
(TTF) denotes the measurement of the degree to 
which the functional capacity of a tool or system is 
adequate for user needs or requirements (Goodhue, 
1995; Dishaw & Strong, 1998). The theory of TTF 
can be traced to the earlier theories of Cognitive Fit, 
which suggests that effective, efficient problem 
solving relies on matching characteristics of problem 
representation and problem task (Vessey, 1991, 1994; 
Vessey & Galleta, 1991), and Task-System Fit, which 
is “the fit between task requirements and the 
functionality of the IS [Information Systems] 
environment” (Goodhue, 1992). A TTF conceptual 
model of a haptic-enabled IoS is proposed and 
illustrated in Figure 2 (Gatara et al., 2021). 

 
Figure 2: Conceptual Task-Technology Fit (TTF) Model 
for Quality of Experience (QoE) with Quality of Task 
(QoT) Perspective of a Haptic-Enabled Internet of Skills. 
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The model in Figure 2 links task and technology 
characteristics in (i) the master (control) domain and 
(ii) the remote (controlled) domains. First, task 
characteristics denote the most critical needs of the 
human technology user. User needs can be specified 
as surgeons’ most critical task demands in remote 
robotic surgery (tele-haptic surgical task 
performance). 

To perform critical minimally invasive robotic 
surgery tasks (grasping, palpation, and incision), the 
user (surgeon) concurrently uses (i) a manipulator 
(hand controller) and touch haptic device (remote 
controller) as part of the Human System Interface 
(HSI) in the master (control) domain and (ii) 
manipulators (grasper, palpation probe, and end-
effector tip (cutter)) in the remote (controlled) 
domain. 

4 INSTRUMENT SCALE (ITEM) 
MEASURES FOR  
TASK-TECHNOLOGY FIT 
(TTF) MODEL VARIABLES 

The Task-Technology Fit (TTF) model developed for 
this research links task and technology characteristics 
in (i) the master (control) domain and (ii) the remote 
(controlled) domains. 

First, task characteristics denote the most critical 
needs of the human technology user (Nance, 1992). 
User needs can be specified as surgeons’ most critical 
task demands in remote robotic surgery (tele-haptic 
surgical task performance). For example, these 
include (i) control movement (motion) of remote 
assistant robotic arms (telemanipulators) e.g. to 
manipulate a needle drive (end effector) tool (surgical 
instrument) with wrist-like movements (1A), (ii) 
visualisation (with magnification) of the operative 
(surgical) field (area) e.g. for immersive stereoscopic 
view and endoscopic three-dimensional (3-D) High-
Definition (HD) imaging (2A), and (iii) feeling and 
control of grasping force when operating on patient 
e.g. to displace tender organs (retraction) and soft 
tissue (clutching) (3A). The items used to measure 
these dimensions are detailed in Table 1.  

Second, technology characteristics denote critical 
support functions for the most critical needs of the 
task performer (human user) (Dishaw et al., 2002). 
For example, there are critical corresponding support 
tools used by the surgeon including (i) 
interchangeable needle driver (end effector) tool 
(surgical instrument) attached to a lateral robotic arm 
with functional support i.e. movement up to 7  
 

Table 1: Measurement Items for the Task (Characteristics) 
Construct (TC). 

Variable Scale Item Source 

TC 1A Control movement (motion) of 
remote assistant robotic arms 

(telemanipulators) e.g. to 
manipulate a needle driver (end 

effector) tool (surgical 
instrument) with wrist-like 

movements. 

Saracino 
et al. 

(2019), 
Yang et 

al. 
(2013) 

TC 2A Visualisation (with magnification) 
of the operative (surgical) field 

(area) e.g. for immersive 
stereoscopic view and endoscopic 

3-D HD imaging. 

TC 3A Feel and control grasping force 
when operating on patient e.g. to 

displace tender organs (retraction) 
and soft tissue (clutching). 

TC 4A Palpation manoeuvres when 
operating on patient e.g. to detect 
neoplastic lesions in solid organs 

(hollow viscus). 

TC 5A Incision (dissection) when 
operating on patient e.g. to cut 
soft tissue without damaging 
embedded vessels and nerves. 

TC 6A Suturing when operating on 
patient e.g. to insert needle 

(puncture tissue), loop the suture 
thread (stitch), and tie the knot. 

TC 7A Feel and reproduce true-to-life 
(realistic) haptic feedback when 
operating on patient e.g. to sense 
kinaesthetic (force/joint-related) 
and vibrotactile (cutaneous/skin-

related) sensations. 

Degrees of Freedom (DoF) (1B), (ii) 
digitalstereoscopic camera (optic lens) with 
progressive magnification up to 15 times (15x) (2B), 
and (iii) interchangeable grasper tool (surgical 
instrument) attached to a lateral robotic arm with 
functional support i.e. laparoscopic forceps (5mm, 
37cm) or fenestrated-grasper (3B). These identified 
corresponding task (user need) and technology 
(support function) characteristics (A and B pairs) will 
be measured using five seven (7)-point Likert 
measures on a scale from 1 (= to an extremely small 
extent) to 7 (= to an extremely large extent) (Yang et 
al., 2013). The items used to measure these 
dimensions are detailed in Table 2. 
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Table 2: Measurement Items for the Technology 
(Characteristics) Construct (TC). 

Variable Scale Item Source
TC 1B Control movement (motion) of 

remote assistant robotic arms 
(telemanipulators) e.g. via 

interchangeable needle drive (end 
effector) tool (surgical instrument) 
attached to lateral robotic arm with 
functional support i.e. movement up 

to 7 DoF. 

Saracino 
et al. 

(2019), 
Yang et 

al. 
(2013) 

TC 2B Visualisation (with magnification) 
of the operative (surgical) field 
(area) e.g. digital stereo scoping 
camera (optic lens) attached to 

lateral robotic arm with functional 
support i.e. progressive 
magnification up to 15x. 

TC 3B Feel and control grasping force 
when operating on patient e.g. Feel 

and control grasping force when 
operating on patient e.g. via 
interchangeable grasper tool 

(surgical instrument) attached to 
lateral robotic arm with functional 
support i.e. laparoscopic forceps 

(5mm, 37cm) or fenestrated grasper. 
TC 4B Palpation manoeuvres when 

operating on patient e.g. via 
interchangeable 

laparoscopic/ultrasound probe tool 
(surgical instrument) attached to 

lateral robotic arm with functional 
support i.e. single-use and 

disposable with cross-section of less 
than 15 x 10 mm (diameter of 5 to 

12 mm). 
TC 5B Incision (dissection) when operating 

on patient e.g. via interchangeable 
end-effector tip (cutter) tool 

(surgical instrument) attached to 
lateral robotic arm i.e. sterile Carbon 

steel blade. 
TC 6B Suturing when operating on patient 

e.g. via interchangeable needle 
driver (end-effector) tool (surgical 

instrument) attached to lateral 
robotic arm i.e. on CT-2 needles cut 
to 6 inches (for placement 0-Vicryl 

sutures). 
TC 7B Feel and reproduce true-to-life 

(realistic) haptic feedback when 
operating on patient e.g. via force-

sensing for multiple degrees of 
motion and force-awareness 

(combined) i.e. sigma.7 haptic 
(master) interface 

(kinaesthetic/vibrotactile feedback). 
 

The Use construct in Table 3 reflects the extent to 
which the task performer has come to depend on the 
technology tool and its support functions (Thompson 
et al., 1991; Igbaria et al., 1997; Junglas et al., 2009).  

Table 3: Measurement Items for the Use (Dependence) 
Construct (UD). 

Variable Scale Item Source 
UD 1 I am very dependent on the use 

hand telemanipulators (finger 
controllers) to perform tasks 

using robotic arms (with 
attached surgical tools e.g. 

needle driver). 

Saracin
o et al. 
(2019), 
Yang et 

al, 
(2013) 

UD 2 My work is highly dependent on 
the use of hand telemanipulators 
(finger controllers) to perform 
tasks using robotic arms (with 

attached surgical tools e.g. 
probe). 

UD 3 The use of hand 
telemanipulators (finger 

controllers) to perform tasks 
using robotic arms (with 

attached surgical tools e.g. 
cutter) allows me to do more 

than would be possible without 
them. 

The User Performance construct in Table 4 on the 
other hand reflects the effectiveness, efficiency, and 
quality with which tasks are completed using the 
technology and its support functions to perform the 
most critical tasks needed (Hiltz & Johnson, 1990; 
Torkzadeh & Doll, 1999; Hou, 2012).  

Five seven (7)-point Likert measures on a scale 
from 1 (= to an extremely small extent) to 7 (= to an 
extremely large extent) measure the Use and User 
Performance outcomes resulting from the “Fit” 
between Task and Technology characteristics 
depicted in Figure 3. The presence of this “Fit” is 
essential for optimal use and user performance 
(Nance, 1992).  

 
Figure 3: The Fit between Task and Technology 
Characteristics. 
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Thus, task-technology fit (TTF) is examined for its 
effects on Use and User Performance. The specific 
items used to measure these dimensions are detailed 
in Table 3 (above) and Table 4 (below). 

Table 4: Measurement Items for the User Performance 
Construct (UP). 

Variable Scale Item Source
UP 1 The hand telemanipulators (finger 

controllers) I use to control 
assistant robot and perform tasks 
using robotic arms (with attached 

surgical tools e.g. grasper) 
increases my productivity (easier 

task execution). 

Saracino 
et al 

(2019), 
Yang et 
al (2013)

UP 2 The hand telemanipulators (finger 
controllers) I use to control 

assistant robot and perform tasks 
using robotic arms (with attached 
surgical tools e.g. probe) increases 
my productivity (time reduction in 

task completion). 
UP 3 The use of hand telemanipulators 

(finger controllers) to perform 
tasks using robotic arms (with 

attached surgical tools e.g. optic 
lens) decreases errors, increasing 

quality (capability enhancement in 
task execution). 

5 DATA COLLECTION AND 
DEMOGRAPHIC USER 
PROFILE OF RESPONDENTS 

We collected preliminary data from 20 practising 
robotic surgeons (n = 20) via an electronic (online) 
survey designed to elicit user responses. 

There were 19 male users (95%) and 1 female user 
(5%), mostly aged 51 years and above (40%) and 
between 46 and 50 years (35%). There were 18 right-
handed dominant users (90%), plus 1 left-handed user 
(5%) and 1 ambidextrous user (5%). Additionally, 17 
robotic surgeons (85%) were trained as Senior 
Faculty versus 3 as Junior Faculty (15%). Also, most 
of the robotic surgeons (65%) were reported to have 
undergone more than 10 simulator hours. 
Furthermore, 9 users (45%) were reported to have 
expert microsurgery experience, whereas 4 users 
(20%) were proficient. A further 11 users (55%) had 
expert robotic experience, whereas at least 7 robotic 
surgeons (35%) were expert-level laparoscopic 
practitioners. Notably, 5 users (25%) reported 
proficient videogame experience. The respondent 
user demographic profile for this preliminary cohort 

of practising robotic surgeons (n = 20) is provided in 
Table 5. 

Table 5: Respondent User Demographic Profile (n = 20). 

Variable(s) Frequency Percent (%)
Gender

Male 19 95%
Female 1 5%
Total 20 100%

Missing 0 0%
Age

36-40 years 3 15%
41-45 years 2 10%
46-50 years 7 35%
51 years and 

above
8 40% 

Total 20 100%
Missing 0 0%

Hand Dominance
Right-Handed 18 90%
Left-Handed 1 5%

Ambidextrous 1 5%
Total 20 100%

Missing 0 0%
Training Level
Junior Faculty 3 15%
Senior Faculty 17 85%

Total 20 100%
Missing 0 0%

Simulator Hours
None 2 10%

Less than 5 
Hours

2 10% 

6 – 10 Hours 3 15%
More than 10 

Hours
13 65% 

Total 20 100%
Missing 0 0%

Microsurgery Experience
Novice 4 20%

Advanced 
Beginner

0 0% 

Competent 3 15%
Proficient 4 20%

Expert 9 45%
Total 20 100%

Missing 0 0%
Robotic Experience

Novice 1 5%
Advanced 
Beginner

1 5% 

Competent 4 20%
Proficient 3 15%

Expert 11 55%
Total 20 100%

Missing 0 0%
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Table 5: Respondent User Demographic Profile (n = 20) 
(cont.). 

Variable(s) Frequency Percent (%)
Laparoscopic Experience

Novice 6 30%
Advanced 
Beginner 

1 5% 

Competent 4 20%
Proficient 2 10%

Expert 7 35%
Total 20 100%

Missing 0 0%
Videogame Experience 

Novice 6 30%
Advanced 
Beginner 

3 15% 

Competent 4 20%
Proficient 5 25%

Expert 2 10%
Total 20 100%

Missing 0 0%

6 MEASUREMENT 
INSTRUMENT (CONSTRUCT) 
RELIABILITY AND VALIDITY 

A Partial Least Squares Structural Equation 
Modelling (PLS-SEM) algorithm was run to estimate 
parameters of measurement model constructs. 
Confirmatory Factor Analysis (CFA) was conducted 
to test construct measures for their internal 
consistency, convergent, and discriminant validities. 
PLS-SEM functions efficiently with small sample 
sizes and attains high statistical power levels with 
small sample sizes even when the data is non-
parametric or highly skewed (Hair et al., 2021), such 
as the preliminary sample (n = 20) used for 
preliminary nature of analysis in this study. 

Composite Reliability (pc) scores for the dimensions 
of Task, Technology, Use, and User Performance were 
satisfactory. Composite Reliability (pc) ranged from 
0.000 to 1.000, with higher values indicating higher 
levels of reliability (Hair et al., 2021). In more advanced 
research however, values between 0.700 and 0.900 are 
generally considered as satisfactory (Nunnally & 
Bernstein, 1994; Hair et al., 2021). The composite 
reliability scores for each latent Task, Technology, Use, 
and User Performance dimensions were found to be 
satisfactory (greater than 0.700). Thus, internal 
consistent reliability was established. 

The descriptive statistics for these four 
dimensions are presented in Table 6. 

Table 6: Descriptive Statistics. 

Variable Range Mean SD Skewness Kurtosis
Task 5.55 4.721 1.404 -0.189 0.127

Technology 6.00 4.173 1.578 0.073 0.014
Use 4.00 5.360 1.125 0.023 -0.502
User 

Performance 6.20 5.391 1.466 -1.095 2.038 

Further, the Average Variance Extracted (AVE) 
values for each of the Task, Technology, Use, and 
User Performance constructs exceeded the prescribed 
threshold of 0.500 (Hair et al., 2021). Thus, results 
also reflected acceptable convergent validity. 

The Task, Technology, Use, and User 
Performance constructs were also tested for their 
discriminant validity.  

First, their indicator cross-loadings were 
evaluated. The outer loadings on all indicators on the 
associated construct did not score higher than any of 
its cross-loadings (correlations) on other constructs. 
Therefore, discriminant validity was established. 
Results of indicator cross-loadings are presented in 
Table 7. 

Table 7: Cross-Loadings. 

 Task Technol
ogy

Use User 
Performance

TaC1 0.705 0.383 0.216 -0.191
TaC2 0.732 0.587 0.407 -0.017
TaC3 0.867 0.732 0.253 0.210
TaC4 0.611 0.543 0.209 0.316
TaC5 0.793 0.511 0.358 0.170
TaC6 0.817 0.539 0.340 0.183
TaC7 0.845 0.778 0.283 0.101
TeC1 0.664 0.618 0.391 0.097
TeC2 0.602 0.761 0.444 0.194
TeC3 0.768 0.875 0.445 0.308
TeC4 0.661 0.819 0.308 0.476
TeC5 0.546 0.818 0.497 0.486
TeC6 0.584 0.854 0.549 0.324
TeC7 0.569 0.835 0.440 0.412
UDe1 0.429 0.285 0.618 0.245
UDe2 0.196 0.456 0.855 0.471
UDe3 0.410 0.556 0.935 0.518
UP1 0.141 0.273 0.565 0.883
UP2 0.214 0.474 0.484 0.964
UP3 0.203 0.045 0.224 0.116

Second, the Fornell-Larker Criterion was used to 
further establish discriminant validity. The square 
root of the AVE for each of the Task, Technology, 
Use, and User Performance variables was higher than 
correlations between these constructs and other latent 
variables. Therefore, discriminant validity was 
further established. Results of the Fornell-Larker 
criterion valuation with the square root of the 
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reflective constructs’ AVE on the diagonal, the means 
and standard deviations of study constructs, and 
correlations between the constructs in the off-
diagonal positions, are presented in Table 8. 

Table 8: Fornell-Larker Criterion Results. 

 Mean 
(SD) Task Technology Use User 

Performance

Task 4.72 
(1.40) 0.771    

Technology 4.17 
(1.58) 0.769 0.801   

Use 5.36 
(1.12) 0.398 0.552 0.814  

User 
Performance 

5.39 
(1.47) 0.181 0.431 0.529 0.758 

Third, we further assessed discriminant validity using 
the Heterotrait-Monotrait (HTMT) ratio of 
correlations. Using HTMT as a criterion, all ratios 
were found to be below the conservative threshold 
value of 0.85, thus ascertaining the discriminant 
validity of the Task, Technology, Use, and User 
Performance measures. Results of the HTMT ratio 
values for all pairs of constructs in the measurement 
model are presented in Table 9. 

Table 9: Heterotrait-Monotrait (HTMT) Ratio of 
Correlations. 

 Task Technology Use User 
Performance

Task   
Technology 0.868  

Use 0.517 0.646  
User 

Performance 0.409 0.478 0.778  

7 RESULTS: POLYNOMIAL 
REGRESSION AND RESPONSE 
SURFACE ANALYSIS 

We modelled a relationship between Task and 
Technology characteristics as independent variables 
and Use and User Performance as dependent 
variables, respectively, as a non-linear function. This 
approach can have greater explanatory potential than 
traditional moderated regression analyses. Moreover, 
it can be used as an alternative method, as it outputs 
more precise information on combinations 
(interactions) of variables, beyond the results of more 
conventional moderator analyses. 

First, polynomial regression (Edwards, 1993) was 
used to examine task and technology impacts on use 
and user performance.  

Latent variable scores obtained from PLS-SEM 
analysis were used to compute Task (X) and 
Technology (Y) characteristics, their interaction 
(X*Y), and the quadratic terms (X2, Y2), in turn used 
to predict Use and User Performance outcomes (Z) as 
per the following polynomial equation [where bn 
denotes the respective beta coefficients for 
corresponding X, Y, and Z terms, and e represents a 
random disturbance term]: 

Z = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + e (1)

where: 
Z = Use or User Performance 
X = The Task 
Y = The Technology 
The above variables were centred at their 

midpoints i.e. ‘4’ for 7-point Likert scales. Centring 
is recommended for polynomial regression analyses 
(Edwards, 1994). Further, Aiken and West (1991) 
suggested that centering reduces the likelihood of 
collinearity. With the above formula, coefficients for 
the terms X (b1), Y (b2), X2 (b3), XY (b4) and Y2 (b5) 
were obtained. 

Table 10: Polynomial Regression Results (Use). 

Use 
Predictor Beta (β) Standard 

Error
Constant (b0) 1.222*** 0.336
Task (b1X) -0.215 0.580

Technology (b2Y) 0.541 0.516
Task2 (b3X2) 0.067 0.288

Task*Technology (b4XY) -0.074 0.171
Technology2 (b5Y2) 0.074 0.359

R2 = 0.333, F = 1.399 

Table 11: Polynomial Regression Results (User 
Performance). 

User Performance 
Predictor Beta (β) Standard 

Error
Constant (b0) 1.121*** 0.376
Task (b1X) -1.046 0.649

Technology (b2Y) 0.925 0.577
Task2 (b3X2) 0.475 0.322

Task*Technology (b4XY) -0.254 0.402
Technology2 (b5Y2) 0.072 0.192

R2 = 0.508, F = 2.896 

Second, Response Surface Methodology (RSM) 
(Edwards, 2002) was used to plot three-dimensional 
(3D) surfaces relating Task and Technology to Use 
and User Performance. 

Regression beta (β) coefficients resulting from 
equation (1) as presented in Tables 10 and 11 above, 
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were used to estimate stationary points (X0, Y0), 
principal axes (p10, p11, p20, p21), and shapes along lines 
of congruence and incongruence (a1, a2, a3, a4). 
Surface values for prediction of Use and User 
Performance are shown in Tables 12 and 13. 

Table 12: Response Surface Analysis Results (Use). 

Use 
Stationary 

Point 
X0 -0.572 

(-0.014)
Y0 -3.941 

(-0.058)
First Principal 

Axis 
Intercept (P10) -4.570 

(-0.064)
Slope (P11) -1.099 

(-0.029)
(-P10/(1+P11) -46.138 

(-0.019)
Second 

Principal Axis 
Intercept (P20) -3.421 

(-0.044)
Slope (P21) 0.910 

(0.030)
Shape Along 

Line of 
Congruence (Y 

= X) 

Slope: a1 (b1 + 
b2) 

0.326 
(0.639)

Curvature: a2 
(b3 + b4 + b5) 

0.067 
(0.350)

Shape Along 
Line of 

Incongruence 
(Y = -X) 

Slope: a3 (b1 - 
b2) 

-0.756 
(-0.463)

Curvature: a4 
(b3 - b4 + b5) 

0.215 
(0.097)

Table 13: Response Surface Analysis Results (User 
Performance). 

User Performance 
Stationary 

Point 
X0 -1.167 

(-0.003)
Y0 -8.481 

-0.011)
First Principal 

Axis 
 

Intercept (P10) -8.818 
(-0.010)

Slope (P11) -0.289 
(-0.018)

(-P10/(1+P11) -46.138 
(-0.019)

Second 
Principal Axis 

Intercept (P20) -4.443 
(-0.014)

Slope (P21) 3.462 
(0.012)

Shape Along 
Line of 

Congruence (Y 
= X) 

Slope: a1 (b1 + 
b2) 

-0.121 
(-0.177)

Curvature: a2 
(b3 + b4 + b5) 

0.293 
(1.124)

Shape Along 
Line of 

Incongruence 
(Y = -X) 

Slope: a3 (b1 - 
b2) 

-1.971 
(-0.993)

Curvature: a4 
(b3 - b4 + b5) 

0.801 
(0.234)

 

The response for the Task (X) and Technology 
(Y) predicting Use (Z) is shown in Figure 4. 

 
Figure 4: Response Surface for Task-Technology Fit (TTF) 
and Use. 

The response surface for TTF effects on use was 
saddle-shaped (stationary point: X0 = -0.572, Y0 = -
3.941). The first principal axis is not significantly 
different [t = -0.029 (P11), t = -0.019 (-P10//P11+1)] 
from the line of congruence (Y = X). Thus, a perfect 
fit between the Task and Technology leads to 
maximal use. The upward slope along the line of 
congruence (Y = X) was negative but not significant. 
The curvature along the line of congruence (Y = X) 
was positive but not significant (a2 = 0.293, t = 1.124), 
indicating that the relationship between TTF and use 
is linear. Therefore, the curvature along the line Y = 
X does not significantly change for use. The 
downward slope along the line of incongruence (Y = 
-X) was negative but not significant (a3 = -1.971, t = 
-0.993). A lack of fit between the robotic surgery task 
and support tools leads to a decrease in use. The 
curvature along the line of incongruence (Y = -X) was 
positive but not significant (a4 = 0.801, t = 0.234), 
further evidencing a linear association between TTF 
and use. 

The response for the Task (X) and Technology 
(Y) predicting User Performance (Z) is shown in 
Figure 5. 

The first principal axis is not significantly 
different [t = -0.018(p11), t = -0.019(=p10/p11+1)] from 
the line congruence (Y=X). Hence, a perfect fit 
between the task and technology leads to maximised 
user performance. The upward slope along the line of 
congruence (Y=X) is negative and not significant (a1 
= -0.121, t = -0.177). The curvature along the line 
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Figure 5: Response Surface for Task-Technology Fit (TTF) 
and User Performance. 

of congruence (Y=X) was positive but not significant 
(a2 = 0.293, t = 1.124), indicating that the relationship 
between TTF and user performance is linear. This 
indicates that the curvature along the line Y=X does 
not significantly change for user performance. The 
downward slope along the line of incongruence (Y=-
X) was negative but not significant (a3 = -0.971, t = -
0.993). Hence, the lack of fit between the robotic 
surgery task and support tools leads to a decrease in 
user performance. The curvature along the line of 
incongruence (Y=-X) was positive but not significant 
(a4 = 0.801, t = 0.234), further indicating a linear 
relationship between TTF and user performance. The 
curvature along the line Y=-X did not, therefore, 
change significantly for user performance. 

The lateral shift (Atwater et al., 1998) in use and 
user performance, in the surface along and 
perpendicular to the line of congruence (Y = X) was 
determined using the following equation: 

                 b2 – b1 
Lateral Shift = —————————— 

             2 (b3 – b4 + b5) 
where: 
b1 = The beta value for Task 
b2 = The beta value for Technology 
b3 = The beta value for Task2 

b4 = The beta value for Task*Technology 
b5 = The beta value for Technology2

 

(2)

The lateral shift in use along the line of 
congruence (Y = X) was positive (1.758), indicating 
movement of approximately two units towards the 
region where functional support levels surpass user 

needs (Y > X). Here, the technology over-fits the task. 
Hence, when the robotic surgery task and support tool 
functions over-fit user needs, there is a sharp decline 
in robotic surgeons’ dependence on use. Similarly, 
the lateral shift in user performance along the line of 
congruence (Y = X) was positive (1.230), indicating 
movement of approximately one unit toward the 
region where the robotic surgery task and support tool 
functions over-fit user needs. Thus, when the robotic 
surgery task and support tool functions over-fit user 
needs, there is a sharp decline in the effectiveness, 
efficiency, and quality, of robotic surgery task 
performance. 

8 DISCUSSIONS 

In this paper, we investigated the potential transition 
from technical system-oriented QoS to user-focused 
QoE and QoT Internet configurations of the future. 
We also explored the advent of an ultra-reliable and 
ultra-low-latency B5G network and haptic-enabled 
Internet. We applied this configuration to the use case 
of remote robotic surgical task performance (tele-
haptic surgery applications) from the novel data-
driven evidence-based QoE/QoT perspective of 
Task-Technology Fit (TTF) theory and predictive 
modelling. 

The analysis of non-linear impacts on use and 
user performance represents a perspective of task-
technology equilibrium. This mechanism enables 
more sophisticated and dynamic insights into the 
effectiveness of TTF, and is useful for observing the 
extent to which Information Technology (IT) 
functions affect tool use and user performance levels. 
Our findings show that when there is excessive 
functional support for robotic surgery tasks, there is 
an increasing likelihood of a lower dependence 
among users, on using the technology whereby they 
will more likely perceive that they deliver lower 
quality MIS robotic surgery task performance, with 
diminishing effectiveness and efficiency. This 
finding represents an “IT surplus”, the supply of tool 
functions that could exceed user task requirements 
(Yang et al., 2013, p. 700). This is an extreme that 
signifies a misfit, which can adversely affect task 
productivity (Oh and Pinsonneault, 2007). Further, an 
overfit can result in declining information 
accessibility and processing performance, and has 
been attributed to an excess of support functions that 
can be termed as redundant (Jarvenpaa, 1989). 
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9 IMPLICATIONS FOR 
RESEARCH AND PRACTICE: 
THEORETICAL AND APPLIED 
CONTRIBUTIONS 

From a more theoretical standpoint, an atomistic 
approach (Yang et al., 2013), said to involve the 
articulation and measurement of separate components 
(p. 712) was used. This novel approach signifies a 
more pragmatic, nuanced perspective of TTF 
impacts. It can be applied to subsequent research 
where the interaction effects of TTF warrant further 
investigation. Moreover, the detailed analysis of use 
and user performance effect differentials modelled 
using three-dimensional (3-D) surfaces represents 
richer insights into testing non-linear TTF. 

From a more practical standpoint, the findings of 
this study can serve as key guidelines with which to 
enhance or reduce functional support related to 
robotic surgery support tool use and surgeon user 
performance. This can be an important benchmark 
with which robotic surgery support tool designers can 
calibrate the responsiveness of functional support to 
user task needs. Further, the findings indicate that 
excess or inadequate functional robotic surgery tool 
support for surgeons’ user needs can lead to adverse 
use and user performance impacts. Hence, robotic 
surgery support tool designers must be acutely aware 
of these task-technology differentials to attain a state 
of congruence between supporting functions and 
robotic surgeon’s needs. 

10 CONCLUSIONS 

In light of recent developments in ultra-reliable and 
ultra-low latency communications that will come to 
define next-generation digital networks, we 
conceptualised the emerging transition from QoS-
centric content-delivery networks to QoE and QoT 
focused skillset-delivery network configurations that 
will typify closed-loop control architectures for 
haptic-enabled and B5G Internets. We offer the novel 
task-technology fit (TTF) conceptualisation and 
predictive modelling and empirical analysis 
perspective as a diagnostic tool. This vision of an 
Internet of the future will involve the task performer 
in a domain-specific technology user-focused context 
(remote setting) performing tasks as the human-in-
the-loop (HITL), through immersive real-time 
human-to-machine/robot (H2M/R) interactions. 
Through this preliminary study, we examine the 
mission-critical user scenario of tele-haptic (remote) 

robotic surgery, expected to become a reality in the 
era of B5G. With a haptic-enabled Internet and B5G 
network to augment user skills, future robotic 
microsurgeons will be ably supported to perform 
seamless tele-haptic (remote) surgical tasks.  
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