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Abstract: Object detection in low-light scenarios is a challenging task with numerous real-world applications, ranging
from surveillance and autonomous vehicles to augmented reality. However, due to reduced visibility and
limited information in the image data, carrying out object detection in low-lighting settings brings distinct
challenges. This paper introduces a novel object detection model designed to excel in low-light imaging con-
ditions, prioritizing inference speed and accuracy. The model leverages advanced deep-learning techniques
and is optimized for efficient inference on resource-constrained devices. The inclusion of cross-stage par-
tial (CSP) connections is key to its effectiveness, which maintains low computational complexity, resulting
in minimal training time. This model adapts seamlessly to low-light conditions through specialized feature
extraction modules, making it a valuable resource in challenging visual environments.

1 INTRODUCTION

Object detection using deep learning is a fundamen-
tal task in the realm of computer vision that involves
identifying and localizing objects of interest within
an image or video. Object detection holds a cru-
cial role in computer vision systems, finding appli-
cations across various fields such as video surveil-
lance (Gajjar et al., 2017), medical imaging (Adel
et al., 2010), (Li et al., 2019b), autonomous driving
(Li et al., 2019a), and robot navigation (Truong et al.,
2015), (Karaoguz and Jensfelt, 2019). The advent of
deep learning, particularly convolutional neural net-
works (CNNs), has led to significant advancements in
the accuracy and efficiency of object detection. This
literature review explores the key contributions and
trends in object detection using deep learning tech-
niques.

Two-stage detectors and one-stage detectors rep-
resent distinct methods for object detection. Two-
stage detectors, such as Faster R-CNN, employ a two-
step process for object detection. In the first stage,
they generate a set of region proposals using a re-
gion proposal network (RPN). Region proposals are
refined and classified in the second stage to obtain
the final detections. This two-stage architecture pro-
vides more accurate object localization and is well-
suited for complex scenes and small objects, but it

has a very high inference time and is computation-
ally expensive. In comparison, single-stage object
detectors perform region proposal and object detec-
tion in a single pass through the network. The (You
Only Look Once) YOLO (Redmon et al., 2016) intro-
duced a single-stage end-to-end object detection ap-
proach. It makes predictions for bounding boxes and
class probabilities in a single pass by analyzing the
entire image once. YOLO achieved real-time infer-
ence speed and demonstrated competitive accuracy.
Subsequent versions, such as YOLO v3 (Redmon and
Farhadi, 2018), YOLO v4 (Bochkovskiy et al., 2020),
and YOLO v6 (Li et al., 2022), further improved ac-
curacy and extended the model’s capabilities. One-
stage detectors are faster than two-stage detectors but
relatively less accurate.

The proposed model is better than the other ad-
vanced single-shot detectors, leveraging state-of-the-
art methods to enhance precision while reducing com-
putational complexity. Its architecture, comprising
a backbone, neck, and head, is designed for effi-
ciency and effectiveness. The backbone, with its
lower computational demands and cross-stage partial
(CSP) connections, ensures smoother gradient flow.
The neck excels at integrating features across diverse
scales, facilitating semantic and spatial information
sharing. Meanwhile, the head streamlines the predic-
tion of classifications and bounding box coordinates.
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A key advantage lies in adopting a state-of-the-art
loss function from the literature, which accounts for
bounding box overlap and size similarity, resulting in
faster convergence and superior accuracy.

Our research paper introduces a novel architecture
for object detection, meticulously designed to opti-
mize efficiency and effectiveness, with the following
key contributions:

• A carefully crafted backbone network, drawing
inspiration from Inception ResNetV2 and incor-
porating CSP connections for superior perfor-
mance in image-related tasks.

• A multi-block approach features three distinct
block types (A, B, and C), each tailored to ex-
tract features at different resolutions, enabling ef-
fective object detection across various scales and
complexities.

• Including cross-stage partial (CSP) connections in
all block types ensures smooth gradient flow dur-
ing training, improving convergence and model
performance.

• Multi-scale object detection capability allows our
architecture to adapt to objects of varying sizes
and spatial distributions dynamically.

2 RELATED WORKS

This section summarizes the recent advancements in
object detection. Several works were proposed for
object detection, and the effectiveness of convolu-
tional neural networks (CNN) classifiers has been
shown in (Coman et al., 2018) to outperform tradi-
tional machine learning techniques focused on fea-
ture extraction. In the context of object detection,
the faster region-based convolutional neural network
(Faster-RCNN) with InceptionV2 architecture is uti-
lized in (Galvez et al., 2018a) to identify five indi-
viduals and one quadrotor within the given image. In
(Galvez et al., 2018b), the authors have presented a
low-shot transfer detector using a deep architecture
and a controlled transfer learning framework to ad-
dress the challenges of limited training data in ob-
ject detection. An object detection approach was in-
troduced in (Xu et al., 2018) with a region selection
network for selecting regions from which to consider
features and a gatting network to transform the fea-
ture maps. A novel object detection model in (Zeng
et al., 2013) is designed to train multi-stage classi-
fiers. In (Liu et al., 2016), a single-stage detector
(SSD) has been designed, incorporating convolutional
outputs for bounding boxes connected to several fea-
ture maps within the network. Enhancing small ob-

ject detection through contextual information fusion
within the faster R-CNN framework is presented in
(Fang and Shi, 2018). In (Beery et al., 2020) Con-
text, R-CNN presented with the attention to access a
camera-specific memory bank and improve object de-
tection by incorporating contextual information from
previous frames.

3 PROPOSED METHOD

The proposed architecture, comprising a backbone,
neck, and head, is carefully designed to optimize the
efficiency and effectiveness of object detection.

3.1 Backbone Network

The proposed architecture’s backbone draws inspira-
tion from the highly effective Inception ResNetV2
model while incorporating cross-stage partial (CSP)
connections, renowned for its exceptional perfor-
mance in image-related tasks. The architectural de-
sign in Figure 1 consists of a meticulously designed
backbone that is crucial to the entire model. At its
core, the backbone comprises several important ele-
ments, each with a specific purpose. It all begins with
the stem, which serves as the initial feature extrac-
tor. Strategically, it reduces the spatial dimensions
of the input image by a factor of 8. This dimension
reduction proves instrumental in capturing essential
features while efficiently processing the input data.
Moving forward, Block A takes center stage, featur-
ing an inception module with shortcut connections.
What sets Block A apart is the incorporation of CSP
connections, which involve the deliberate splitting of
feature maps.

This architecture includes ten Block A units, ex-
celling at extracting high-resolution features from the
input, which is crucial for subsequent stages. Follow-
ing Block A, the reduction Block A comes into play,
effectively reducing the spatial resolution by a stride
of 16. This strategic reduction enhances the receptive
field, enabling more comprehensive feature analysis
in subsequent stages.

Block B shares the idea of Block A but focuses on
mid-resolution feature maps. A total of 20 Block B
units contribute to extracting vital mid-level features.
Subsequently, reduction Block B follows suit, reduc-
ing spatial resolution with a larger stride of 32. This
strategic choice enables the model to detect objects of
varying sizes and scales efficiently. Block C emerges
as a critical component, specializing in refining low-
resolution features, ultimately optimizing the model
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for detecting objects with fine details and spatial com-
plexity.

All three block types (A, B, and C) feature CSP
connections, ensuring smooth gradient flow during
training and facilitating improved convergence. The
architecture captures outputs at three distinct scales
after blocks A, B, and C to enable multi-scale object
detection. This enables the model to adapt dynami-
cally to diverse object sizes and spatial distributions.

3.2 Neck and Decoupled Head

The neck component in Figure 2 processes feature
maps from different scales, effectively combining
spatial richness and semantic enrichment. The fusion
of these features, through up-sampling and down-
sampling, ensures the sharing of crucial semantic
information and spatial resolution across all three
scales, enhancing the model’s comprehensiveness and
robustness in object detection. Following the neck
component, the decoupled head, featuring dedicated
convolutional layers, takes center stage. It is designed
explicitly to predict classification scores and bound-
ing box coordinates for each of the three scales. This
architecture employs three separate decoupled heads,
one for each scale, ensuring precise object detection
and accurate localization. This holistic design show-
cases a well-coordinated flow that optimizes the en-
tire model’s ability to detect and identify objects ef-
fectively across multiple scales and complexities.

3.3 Training

The proposed object detection model was employed
with the optimization algorithm, stochastic gradient
descent (SGD), with a learning rate of 0.01. The
model was trained with 11 epochs, each processing
batches of size 32. To aid in convergence and op-
timization, the SGD optimizer was configured with
a momentum of 0.9 and a weight decay of 0.0005,
which helps control the magnitude of weight updates
during training.

Mixed precision training was adopted to enhance
the training process further and accelerate compu-
tations. This method optimizes memory usage and
speeds up training by reducing computational costs
while maintaining adequate numerical precision.

Using mixed precision training allowed for faster
convergence while maintaining the model’s perfor-
mance quality. The chosen hyperparameters, includ-
ing the learning rate and batch size, were selected
to balance the trade-off between model convergence
and optimizing computational efficiency. The model
follows an anchor point-based approach and incor-

porates task-assignment learning. Anchor points are
predefined reference points used during the object de-
tection process to facilitate the efficient localization
of objects. Task assignment learning optimizes the
assignment of bounding boxes to anchor points, fur-
ther enhancing the model’s overall performance.

4 DATASET AND IMAGE
COLLECTION

The image collection dataset available in IEEE Data-
port (Gao et al., 2022) is considered for the automo-
tive object detection scenario. This dataset comprises
camera images corresponding to six classes with var-
ied dimensions. The dataset contains 19,740 images
and labels. We randomly selected 15,777 images for
training and 1800 images for validation and testing.
The camera image of size 1440× 1080× 3 pixels is
resized to 416× 416× 3. There may be one or more
objects in one image, so the location of each object is
pre-annotated. All the objects in the dataset are cat-
egorized into six distinct groups: person, car, cyclist,
bus, truck, and motorbike. Although the dataset’s au-
thor mentions six classes, there seem to be only four
classes (pedestrian, bicycle, car, and truck). There-
fore, the dataset is highly imbalanced.

Annotating Dataset: Since the dataset consists of
a few inconsistent labels, the necessity for annota-
tion arises. Instead of manual annotation, we em-
ployed a pre-trained Faster RCNN for object detec-
tion, and subsequently, we recorded the associated
bounding box coordinates, storing them in a CSV file.
This method allowed us to annotate the entire dataset
seamlessly.

5 EVALUATION OF THE
STATE-OF-THE-ART CNNs

In this section, we perform a comprehensive assess-
ment of various deep-learning benchmark models us-
ing the Automotive dataset (Gao et al., 2022). We
evaluate the YOLOv5n, YOLOv6n, YOLOv8n, and
RT-DETR models, all of which are designed for
single-stage object detection. The models are trained
to predict bounding boxes and class probabilities di-
rectly from the entire image, enabling real-time de-
tection. It’s worth noting that our evaluation identi-
fied specific dataset-related challenges. Notably, the
dataset contains four unique classes, but the mAP cal-
culation was conducted for six classes, which can
potentially lead to inaccuracies. To provide a more
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Figure 1: Proposed Architecture Backbone.

comprehensive understanding of our model’s effec-
tiveness, especially for individual classes, we present
the evaluation results in Table 1, including precision,
recall, mAP50, and mAP50-95 metrics.

5.1 Evaluation Metrics

Proposed object detection model performance is typ-
ically assessed by measuring its accuracy using met-
rics such as Average Precision (AP) or Mean Average
Precision (mAP). These metrics involve calculating
the average of AP scores across all object classes.

We employed the mean average precision (mAP)
as the evaluation metric to assess the performance of
the proposed object detection model. Mean average
precision (mAP) extends AP for multi-class or multi-
label scenarios commonly found in object detection.
AP is computed for each class or label, and then mAP
is calculated by averaging these AP values. In object
detection, for instance, we calculate AP for each ob-
ject class to measure how well the model identifies
objects of that class. mAP then offers an overall per-
formance score, considering the precision-recall per-
formance across all object classes. Like AP, higher
mAP signifies better detection accuracy across dif-
ferent classes. A high mAP means a model has a
low false negative and a low false positive rate. We
provide a detailed breakdown of our model’s perfor-
mance shown in Table 2, which is an essential refer-
ence point critical for a deeper understanding of its
effectiveness across various object classes and detec-
tion scenarios.

To train the model, we utilize two distinct loss
functions:

Classification Loss- Varifocal loss (Zhang et al.,
2021): The varifocal loss shown in Eq. 1 is utilized as
the classification loss function. This loss function ef-
fectively tackles the issue of class imbalance between
positive and negative samples, thereby enhancing the
classification performance.

V FL(p,q) =

{
−q(qlog(p)+(1−q)log(1− p) if q > 0
−qαγ plog(1− p) if q = 0

(1)
where p is the predicted IoU-aware classification
score, and q is the target score. For a foreground
point belonging to its respective ground-truth class,
the target score q is determined as the intersection
over union (IoU) between the generated bounding box
and its associated ground truth. If the point does not
belong to its ground-truth class, the target score is set
to 0.

Bounding box loss - Complete IoU loss (CIOU)
(Zheng et al., 2020): The complete IoU (CIOU) loss
is employed for the bounding box regression task.
CIOU considers both box overlaps and size similarity,
leading to more accurate bounding box predictions es-
sential for precise object localization.

5.2 Evaluation Results

Our model’s performance evaluation was conducted
on the Automotive dataset, comprising 15,777 images
for training, 1,800 for validation, and 1,800 testing

High Precision Single Shot Object Detection in Automotive Scenarios

607



Figure 2: Proposed Architecture Neck and Decoupled head.

Table 1: Performance for all the state-of-the-art models.

Model Precision Recall mAP50 mAP50-95
YOLO v8n (yolov8, 2023) 0.811 0.831 0.83 0.68
YOLO v6n (Li et al., 2022) 0.792 0.732 0.773 0.575
YOLO v5n (yolov5, 2023) 0.811 0.831 0.83 0.68
RT-DETR (Lv et al., 2023) 0.863 0.897 0.915 0.781

Proposed SSD Model 0.859 0.408 0.406 0.257

Table 2: Class-wise performance evaluation table for the proposed single shot detection model.

Class Images Precision Recall F1-Score mAP-50 mAP50-95
Person 2378 0.94 0.45 0.6 0.45 0.30

Car 2378 0.85 0.4 0.544 0.4 0.28
Bicycle 2378 0.827 0.38 0.53 0.39 0.26
Truck 2378 0.85 0.44 0.56 0.4 0.25

images, providing a diverse representation of real-
world scenarios. Object detection metrics were em-
ployed to gauge our model’s efficacy, including the
mean average precision (mAP), precision, recall, and
F1 score. It is worth noting that the dataset presents
certain challenges, primarily stemming from an im-
balanced class distribution and limited samples avail-
able for classes such as motorbike and bus, which
can introduce bias into the model’s performance eval-
uation. As a result, the model might exhibit rela-
tively strong performance for classes with larger sam-
ple sizes while encountering challenges in accurately
detecting and classifying instances of motorbikes and
buses. Upon testing, it was observed that the dataset
contains only four unique classes, but the mAP calcu-
lation was conducted for six classes. This discrep-
ancy in class count could lead to inaccuracies and
misleading results during evaluation. Consequently,
the mAP, though a widely used metric, might not ac-
curately depict the full extent of our model’s accuracy.
To address this limitation, we offer a comprehensive

breakdown of performance metrics for each class. By
highlighting precision, recall, and F1 scores for ev-
ery category, we shed light on our model’s specific
strengths and weaknesses. The resultant confusion
matrix is shown in Figure 3, and the precision-recall
(PR) curve is shown in Figure 4. Sample inferences
obtained from distant objects are shown in Figure 5,
from crowded areas are shown in Figure 6, and from
shadows and low light conditions are shown in Figure
7. The model presents visual insights through sam-
ple inferences, showcasing our model’s robust perfor-
mance in complex real-world scenarios. Despite the
challenges posed by the dataset, our model’s adapt-
ability and resilience, particularly in low-light condi-
tions, make it a promising solution for a wide range
of practical object detection tasks. It is important to
mention that the proposed method is trained on unbal-
anced datasets, which is also an influential factor in
the real-time performance of object detection tasks.

A confusion matrix is depicted with a total of
seven classes, and we identified that the dataset is im-
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Figure 5: Sample Inferences: Predictions of distant objects.

balanced and does not have any samples of motor-
bikes, and the bus class is not included in our annota-
tions generated with faster RCNN as it contains very
few samples in the dataset. This lack of samples is
causing the variation in the resulting matrix presented
in Figure 3 and the results presented in Table 4. Also,
the test set we used for the model does not include
the truck, resulting in the PR curve in Figure 4 be-
ing plotted with only 3 classes. The proposed model
was tailored to improve inference speed on resource-
constrained devices by incorporating CSP connec-
tions. This strategic integration significantly enhances
the model’s ability to perform rapid inferences.

Figure 3: Confusion matrix of the proposed model with 7x7
class accuracies.

Figure 4: Precision-Recall Curve.

6 CONCLUSION

Leveraging convolutional neural networks (CNNs),
the proposed high-precision single-shot object detec-
tion model excels at optimizing precision and compu-
tational efficiency.

The proposed model demonstrates adaptability
by detecting objects across various scales and sizes,
paving the way for practical implementation. We
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Figure 6: Sample Inferences: Predictions at crowded areas and groups of objects.

Figure 7: Sample Inferences: Predictions shadows and low light conditions.

evaluated prominent benchmark models, including
YOLOv5n, YOLOv6n, YOLOv8n, and RT-DETR
models. Notably, the proposed approach effectively
addresses challenges inherent to the dataset, such as
class discrepancies, imbalanced data distribution, and
the impact of low lighting conditions, ensuring robust
object detection even in less-than-ideal visibility sce-
narios.

The core strength of our object detection model
lies in its sophisticated architecture. The seamless co-
ordination among the backbone, neck, and decoupled
head components enables the detection of objects in
diverse and complex scenarios. The proposed model

was optimized for efficient resource-constrained de-
vice inference, ensuring shorter training times by in-
corporating CSP (cross-stage partial) connections. In-
tegrating advanced loss functions like varifocal loss
and complete IoU loss for classification and bounding
box regression further enhances the model’s accuracy
and robustness.
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