
Using Ensemble Models for Malicious Web Links Detection

Claudia-Ioana Coste a

Faculty of Mathematics and Computer Science, Babes, -Bolyai University,
Mihail Kogalniceanu Street, no. 1, Cluj-Napoca, Romania

Keywords: Malicious Web Links Detection, Machine Learning Algorithms, Ensemble Models, Particle Swarm
Optimization, Nature-Inspired Algorithms, Web-Malware.

Abstract: Web technology advances faster than humans can adapt to it and develop the proper online skills. Most users
are not experienced enough to have a good online knowledge on how to protect their data. Thus, many people
can become vulnerable to threats. The most common online attacks are through malicious web links, which
can deceive users into clicking them and running malicious code. The present approach proposed to advance
the field of malicious web links detection through ensemble models by developing a nature-inspired ensemble.
Our methodology is tested against two datasets, and we conduct an additional calibration step for all the mod-
els. For the first database, we managed to improve the detection accuracy from other solutions, by achieving
97.05%. In the case of the second dataset, our empirical strategy is not accurate enough, reaching just 91.12%
accuracy. The proposed ensemble is heterogeneous, having a weight voting mechanism, where weights are
generated with the Particle Swarm Optimization algorithm. To build the ensemble we compared 12 individual
machine learning models, including Logistic Regression, Support Vector Machine, Adaptive Boosting, Ran-
dom Forest, Decision Tree, K-Nearest Neighbor, Perceptron, Nearest Centroid, Passive Aggressive Classifier,
Stochastic Gradient Descent, KMeans, and different variants for Naive Bayes.

1 INTRODUCTION

With the latest development of web applications,
there were significant improvements in web security,
but as well in producing new web malware. These
threats have become more and more sophisticated af-
fecting many people with poor online abilities. An
important category of attacks are malicious links
which can be spread through social media posts, pri-
vate messages, SMSs, and emails. The main security
issues associated with suspicious links are perform-
ing redirections or downloading programs without the
user’s consent (i.e. drive-by-downloads), executing
malicious code that can use browser’s resources and
leaking personal information. Finally, malicious links
can contribute to the disinformation phenomenon by
pointing to fake news and low-quality online content
such as clickbait articles.

In 2022, it was stated by (IT, 2023), that some
of the most common top level domains are included
in malicious links. For instance, 54% of them be-
long to .com domain and 8.4% have the .net domain.
From the domains included under .com, some of the

a https://orcid.org/0000-0001-8076-9423

most common ones are Adobe, Google, Myportfo-
lio, Backblazeb2, Weebly. Moreover, the shortened
URLs are a constant threat since they may hide mali-
cious links. In 2021, the most common malware link
found in emails was a Trojan with the aim of steal-
ing browser’s information (e.g., stored credentials, lo-
gin information etc.) (IT, 2023). Developing a solu-
tion for malicious links involves a complex pipeline
where the classification should be robust, sensitive,
and fast enough to not influence users’ online experi-
ence (Saxe et al., 2018).

To our consideration, malicious web links detec-
tion can be seen as a binary classification problem,
where the input is a text representing an URL and
the output should be a class malicious or benign.
The present solution proposes a URL preprocessing,
where features are extracted from the URL to form the
feature vector using the term frequency-inverse docu-
ment frequency (TF-IDF) method. Thus, we can split
our problem definition into two stages: feature extrac-
tion and classification. The feature extraction phase
can be described as f : WebLinks −→ Rd , f(web link)
= (x1, x2, x3, ..., xd), where d is the number of features
and xd , for each d ∈ N is a feature. Next, the classifi-
cation is taking as input the feature vector computed

Coste, C.
Using Ensemble Models for Malicious Web Links Detection.
DOI: 10.5220/0012381800003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 657-664
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

657



with TF-IDF formula and it returns a class benign or
malicious, encoded as 0 or 1. f : Rd −→ R, f(X) =
class.

Current solution proposes a nature-inspired en-
semble that could advance the research in malicious
web links detection. To our considerations, this
type of ensemble was not yet applied to malicious
web links detection. The ensemble is heterogeneous,
and it is formed with some of the best performing
machine learning (ML) algorithms and as a meta-
classifier to adjust the weights, a Particle Swarm Op-
timization (PSO) algorithm is used. For the ML
models depicted to form the ensemble, we tested a
total of 12 methods, such as: Naive Bayes (NB)
variants (e.g., Bernoulli NB, Multinomial NB, Com-
plement NB), Perceptron, Passive Aggressive Clas-
sifier (PAC), Stochastic Gradient Descent Classifier
(SGD), Nearest Centroid (NC), Logistic Regression
(LR), Adaptive Boosting (ADA), Decision Tree (DT),
Random Forest (RF), KMeans, K-Nearest Neighbor
(KNN), and Support Vector Machine (SVM) with dif-
ferent kernel values (e.g., polynomial, linear, radial
basis function and sigmoid). The approach is tested
against two datasets: D1 (GTKlondike, 2019) and D2
(Siddhartha, 2021). The best result for D1, an accu-
racy of 97.05%, is achieved with an ensemble formed
out of seven ML algorithms, improving the solution
provided in (Pakhare et al., 2021). On the second
dataset, D2, an ensemble with 3 classifiers achieved
just 91.12% accuracy, being not as efficient as the ap-
proach in (Alsaedi et al., 2022). Still, we proposed a
novel detection model using TF-IDF for dataset D2.

The present approach is structured in four sec-
tions. In the next section, an overview of the current
state of the art is detailed in the domain of malicious
web links detection using ensemble models. The 3
section tackles the empirical methodology used for
the experiments. The 4 part discusses the results of
our experiments together with relevant comparisons.
The last section draws conclusions and presents future
directions for research.

2 PREVIOUS WORK

There has been work done considering ensemble
models when detecting malicious web links. Some
works take into consideration features extracted from
the link and others from the web content of the web
page. In both cases, ensembles are a better alternative
to single models considering accuracy. Additionally,
nature inspired algorithms are used for malicious web
links detection, especially Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO).

2.1 Ensemble Models

Work done by (Pakhare et al., 2021) considers run-
ning individual models and ensemble models. The en-
semble is formed with three ML models, and the final
output is decided by an equally defined voting mech-
anism. The best ML individual model is LR, achiev-
ing 94.31% accuracy. The best ensemble was the one
containing KNN, DT and sigmoid SVM with an ac-
curacy of 94.93%. The preprocessing is done with the
TF IDF method. Similarly, (Subasi et al., 2021) com-
pares multiple types of homogeneous ensembles (e.g.,
AdaBoost, Random Subspace, Multi Boost, Bagging)
with multiple ML algorithms. All models are tested
using a private dataset containing 5000 URLs. Ran-
dom Subspace used in conjunction with KNN outper-
forms the rest with 89.24% accuracy rate.

Another stacked ensemble type was proposed by
(Alsaedi et al., 2022) with three RF models and a
MLP as meta-classifier. Each RF model is specif-
ically tuned for a particular feature category. All
extracted features fall into three categories: lexical,
WHOIS features and Google Cyber Threat Intelli-
gence (CTI) characteristics. The RF model was cho-
sen based on multiple experiments where its perfor-
mance was compared with other ML models, includ-
ing some deep learning methods. The proposed so-
lution reaches 96.8% accuracy. The dataset used
is found in (Siddhartha, 2021). For experiments,
20,000 links were randomly sampled for each class.
This same dataset is used in (Shetty et al., 2023)
and in (Zhang and Yan, 2023). In (Shetty et al.,
2023) there is a comparison between tree-models
in a multi-classification problem with four classes:
benign, phishing, defacement, and malware. The
weighted average across all classes is 97% for preci-
sion, recall and F1 score. Considering malicious web
links detection as a multi-classification and a binary
problem, (Zhang and Yan, 2023) is delivering a com-
plex neural network (NN) model. The methodology
involves extracting features from the URL at a word-
piece level. For classification, it used a multi-head
attention mechanism connected to a Convolutional
Neural Network (CNN) with N-gram. Word piece
representation of URL features is compared with char
and char & word representation. (Zhang and Yan,
2023) is using two datasets to prove their approach
and the Multi-filter CNN model was compared with
other deep learning methods proposed by literature.

2.2 Nature-Inspired Solutions

Exploring ensemble methods and GA, (Sajedi, 2019),
proposed a solution with REP trees and a meta-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

658



classifier developed with GA. This approach is com-
pared with other homogeneous ensemble types (e.g.,
AdaBoost, Bagging, Decorate, Rotation Forest) and
multiple classifiers. The features are manually engi-
neered and extracted from the HTML and JavaScript
files. Their proposed approach has an accuracy of
95.38% on a small dataset containing a total of 4,400
web pages.

The PSO algorithm is used to optimize classifica-
tion process for phishing websites detection. For in-
stance, in (Gupta and Singhal, 2017), PSO is used to
better train an ANN model. Their proposed model
outperforms the Back Propagation Neural Network
(BPNN). The dataset is retrieved from (PhishTank,
2023), having 31 attributes and 11,055 records. Simi-
larly, to improve detection of phishing links, (Ali and
Malebary, 2020) is using PSO for feature weighting
and the classification is done by multiple ML models
(e.g., BPNN, SVM, KNN, DT, RF, NB). For feature
selection, PSO-optimization is compared with GA,
information gain, wrapper, and chi-square test. The
best performance is reached by RF with PSO fea-
ture selection, with 96.83% accuracy. The dataset has
11,055 phishing and non-phishing websites. Another
solution proposed by (Lee et al., 2020) is using PSO
for malicious web links detection. More specifically,
PSO is run for feature selection to improve the ac-
curacy of NB and SVM classifiers. This approach
reaches 99% accuracy for both estimators. Moreover,
the PSO algorithm is used as well in an ensemble
but to build an intrusion detection system. (Aburom-
man and Reaz, 2016) is proposing a KNN-SVM-PSO
ensemble. PSO is used in comparison with meta-
optimized PSO and with weighted majority voting.

3 METHODOLOGY

The methodology followed when driving experiments
for our approach can be split into the next steps:

1. Preprocessing;

2. Balancing the datasets;

3. Run individual methods;

4. Run PSO ensemble models.

3.1 Preprocessing

The first step of our methodology involves prepro-
cessing the database with TF-IDF vectorizer from
Python Sklearn library (Pedregosa et al., 2011). For
the experiments we used two databases, one from
(GTKlondike, 2019) (D1) and the other one from

(Siddhartha, 2021) (D2). Both datasets were pre-
viously used in other malicious web links detec-
tion solutions. The dataset (GTKlondike, 2019) was
used in (Pakhare et al., 2021) and the dataset (Sid-
dhartha, 2021) was used for binary classification in
(Alsaedi et al., 2022) and for multi-label classifica-
tion in (Zhang and Yan, 2023) and (Shetty et al.,
2023). There are not many details on how the data
within the first dataset was collected, but there are a
total of 420,464 samples (344,821 benign and 75,643
malicious). The second dataset is freely available
on Kaggle and it was formed by aggregating multi-
ple datasets such as ISCX-URL-2016 (Mamun et al.,
2016), (malwaredomainlist, 2010), (Marchal et al.,
2014), (PhishTank, 2023), and (Joerg, 2017). D2 pro-
vides 651,191 URLs (428,102 benign, 32,520 mal-
wares, 94,111 phishing and 96,455 defacement). We
preprocessed it for binary classification, the malware,
phishing, and defacement classes were merged. Even-
tually, in D2 there were 428,102 legitimate samples
and 223,086 malicious ones.

The TF-IDF preprocessing was done following
the methodology from (Pakhare et al., 2021), using
a TFIDF vectorizer.

3.2 Balancing the Datasets

Because in this domain of malicious web links de-
tection is quite common to deal with dataset imbal-
ancement problems, we chose to equal the number of
malicious and benign links. Thus, as in the methodol-
ogy followed by (Pakhare et al., 2021), from the first
dataset D1 (GTKlondike, 2019) we used in experi-
ments 75,643 legitimate links and 75,643 malicious
ones. From the second dataset D2 (Siddhartha, 2021)
we chose to randomly depict just 20,000 records from
each class, as in (Alsaedi et al., 2022).

3.3 Run Individual Methods

There were experiments driven with multiple ML
algorithms, such as NB variants (e.g., Bernoulli
NB, Multinomial NB, Complement NB), Percep-
tron, PAC, SGD classifier, NC, LR, ADA, DT, RF,
KMeans, KNN, and SVMs with different kernel val-
ues (e.g., polynomial, linear, radial basis function and
sigmoid). There are a total of 12 different ML mod-
els. We explicitly chose these algorithms such that
they would be suitable to work with sparse data since
the result of the TFIDF tokenization is a sparse ma-
trix. All models used in the experiments were imple-
mented in the Python Sklearn framework (Pedregosa
et al., 2011). Moreover, the algorithms were run
taking into consideration a parameters’ calibration

Using Ensemble Models for Malicious Web Links Detection

659



step, which was implemented with GridSearchCV
and RandomizedSearchCV (Pedregosa et al., 2011).
The values for the parameters were chosen accord-
ing to the documentation and our binary classification
problem. For training 75% of the dataset was used,
while the rest of 25% was used for testing. Grid-
SearchCV and RandomizedSearchCV are both using
5-fold cross-validation to find the best classifier.

3.4 Run PSO Ensemble Models

Figure 1: The PSO-ensemble model.

The proposed ensembles are heterogeneous, and we
opted for a Voting Classifier implemented in (Pe-
dregosa et al., 2011) with two voting strategies (i.e.,
’hard’ or ’soft’) and a set of weights to adjust the con-
tribution of each single classifier compounding the
ensemble. A graphical representation of the ensem-
ble is presented in Figure 1. The final decision is a
weighted average of each output given by the classi-
fiers. The ML algorithms that are going to form the
ensemble were depicted from TOP 3, TOP 5, or TOP
7 individual algorithms. This algorithm selection was
proposed because, to our considerations, an uneven
number of models forming the ensemble would be
more efficient. Moreover, in (Pakhare et al., 2021)
and (Alsaedi et al., 2022), the solutions proposed by
them are using ensembles constructed with three clas-
sifiers.

The weights are generated based on the PSO al-
gorithm. The PSO algorithm was first proposed in
(Kennedy and Eberhart, 1995) and it was inspired by
how birds cooperate in a flock when searching for
food. Each possible solution is represented by a bird,
which is described by a position and a velocity. Each
candidate stores its best position and the best global
position obtained by the flock. At each iteration, birds
are updating their positions and velocities according
to their previous records using the inertia coefficient
(w) and based on the flock’s previous positions by
considering a cognitive factor (c1) and a social pa-
rameter (c2).

In the ensemble’s case, we used 75% of data for
training and 25% for testing. The training set is fur-
ther split into 75% exclusively for training and 25%

Table 1: Details on how the PSO ensemble was calibrated.

Parameters Values
Type (Ens.) {TOP 3, TOP 5, TOP 7}
Strategy - weight
voting (Ens.)

{weight voting hard,
weight voting soft}

no iterations
(PSO)

10, 100, 300, 500

no particles
(PSO)

10, 30, 50, 80, 100

c1, c2, w (PSO) randomly uniformly dis-
tributed [0.5, 0.99]

c1, c2, w strategy
(PSO)

{exp decay, nonlin mod,
lin variation}

for validation. Based on the validation set, the PSO
algorithm tries to optimize the ensemble accuracy by
adjusting the weights. Then after the weights are gen-
erated based on the validation, the testing is done. The
calibration process of the PSO ensemble is based on
multiple experiments. The parameters used to con-
figure our nature-inspired approach are: c1 (cogni-
tive parameter), c2 (social facto) and w (inertia coef-
ficient), number of iterations, number of particles and
ensemble’s voting strategy (e.g., soft or hard). The
calibration was done in two steps to better manage
the computer’s resources and time. The first stage in-
volves the calibration of the adjusting strategies for
the PSO options parameters (i.e., c1, c2, w), their ini-
tial values and the ensemble’s strategy. During this
stage the number of PSO iterations are established
at 200 and the number of particles at 20 for the first
dataset and to 100 and 10 respectively, for the sec-
ond one. The initial values for the PSO options are
randomly generated from the 0.5 and 0.99 interval, as
in (Aburomman and Reaz, 2016). The results of the
first phase are sorted according to the testing accu-
racy and an average value is computed for the c1, c2,
and w parameters. These mean values are going to be
the initial values for the w, c1, c2 parameters for the
second phase of calibration experiments. During the
second stage, the number of iterations is calibrated to-
gether with the number of particles. Table 1 has more
details on the parameter calibration done for the PSO-
ensemble solution.

PSO was chosen to adjust the weights of the
ensemble model based on the work developed by
(Sajedi, 2019), where a Genetic Algorithm is a meta-
classifier for the ensemble. We chose PSO as a meta-
classifier because of its previous usages for feature
optimization as in (Gupta and Singhal, 2017) and (Lee
et al., 2020). Because of its good results on feature
selection, we propose to experiment with it for the
weighting of the classifiers within an ensemble.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

660



4 EXPERIMENTS

The next section presents details about the experi-
ments run on both single models and on ensemble
models. All experiments are developed with Python
version 3.9, using models already implemented in
Python scikit-learn library (Pedregosa et al., 2011)
version 1.0.2. The PSO implementation was from the
pyswarms library version 1.3.0 (Lester, 2017). The
empirical analysis was run on a 64-core machine with
64 GBs of RAM.

4.1 Individual Models Results

The current subsection tackles the performance of the
single algorithms on dataset D1 (Pakhare et al., 2021)
and on dataset D2 (Siddhartha, 2021). The results for
the individual algorithms run on D1 are graphically
presented in Figure 2a. It can be observed that the best
seven models are in order: SGD, PAC, Linear SVC or
SVC, Bernoulli, Complement and Multinomial NB,
LR. Thus, the ensembles for D1 are formed with:

• TOP 3 ensemble: SGD + PAC + linear SVC;

• TOP 5 ensemble: SGD + PAC + linear SVC +
Bernoulli NB + Complement NB;

• TOP 7 ensemble: SGD + PAC + linear SVC +
Bernoulli NB + Complement NB + Multinomial
NB + LR.

Comparing the results achieved by Linear SVC
and SVC, we chose to continue with Linear SVC
model because there are small differences between
their metrics and because it is more efficient con-
sidering time. Moreover, the best estimator for the
SVC model is using a linear kernel. In addition, in
Figure 2a, it could be observed that KMeans is un-
derperforming, reaching just 48.09% accuracy. This
may be due to the reason that having sparse TF-IDF
data and splitting it into just two clusters is not ac-
curate enough. Maybe working with other features,
especially less features, and in a multiclass prob-
lem, KMeans would perform better for malicious web
links detection.

The results for the single models run on D2 dataset
(Siddhartha, 2021) are presented in Figure 2b. There
is a resemblance between the results for D1 and D2,
the top seven models are almost the same. In both
cases, SGD has the best performance. While in the D1
case, SGD has a test accuracy of 96.73%, in D2 case
it achieves just 91.07% accuracy. Moreover, it can be
observed that the RF classifier manages to reach fifth
place on the D2 dataset, while for D1, RF misses the
top seven algorithms. In addition, there is not much of

a difference between the ranking obtained by NB vari-
ants and LR model by comparing the results for the
two datasets. A similarity between the results for both
datasets is the linear SVC and SVC reach almost the
same accuracy, placing them on the third and fourth
rank. For the same reasons as in the case of dataset
D1, we decided to further use Linear SVC instead of
SVC. For D2, KMeans is the worst performing algo-
rithm as it is in the D1’s case. The similarity between
the input data for D1 and D2 could be responsible for
such similar results. The top algorithms compound-
ing the ensembles are:

• Top 3 ensemble: SGD + PAC + Linear SVC;

• Top 5 ensemble: SGD + PAC + Linear SVC + RF
+ Bernoulli NB;

• Top 7 ensemble: SGD + PAC + Linear SVC + RF
+ Bernoulli NB + Multinomial NB + LR.

4.2 PSO Ensemble Results

Current subsection details the performance of the en-
semble models on both datasets. The experiments
were run on the data quantifications presented in Ta-
ble 2.

Table 2: The datasets for the experiments run on the ensem-
ble models.

Dataset D1 D2
Training 85,098 22,500
Validation 28,366 7,500
Testing 37,822 10,000
Total 151,286 40,000

Table 3: The parameters for PSO-ensemble configuration.

Parameters D1 D2
Type (Ens.) TOP 7 TOP 3
Strategy - weight
voting (Ens.)

soft soft

no iterations (PSO) 100 100
no particles (PSO) 30 10
w (PSO) 0.815 0.747
c1 (PSO) 0.739 0.7904
c2 (PSO) 0.829 0.671
w strategy (PSO) exp decay exp decay
c1 strategy (PSO) lin variation exp decay
c2 strategy (PSO) nonlin mod nonlin mod

For both datasets, the calibration phase of the en-
semble’s parameters was done over two phases. In
the first stage, the strategy parameters were calibrated
(i.e., w strategy, c1 strategy, c2 strategy, ensemble’s

Using Ensemble Models for Malicious Web Links Detection

661



(a) D1. (b) D2.
Figure 2: The accuracy and weighted average of F1 score for D1 and D2 for individual algorithms (metrics computed on the
testing set as an average of 10 different data splits).

strategy, its ML algorithms) and the initialization val-
ues for w, c1, and c2. Little differences have been
found in the experiments considering the first calibra-
tion stage. Still, we depicted the values for the best
performance and continued with the second phase of
calibration. The chosen values for the parameters
are detailed in Table 3 for both datasets. It can be
observed that the calibration is rather similar, with
some exceptions such as the type of the ensemble,
the number of particles, the initialization values for
c2, the social parameter, and its updating policy. The
lin variation strategy is tuning the parameter linearly
decreasing or increasing it, while exp decay is up-
dating the parameter exponentially. The nonlin mod
strategy means that the parameter is updated consid-
ering a nonlinear modulation index. The initialization
values for w, c1, and c2 were computed as an aver-
age of the best ten ensemble configurations. From the
experiments run, there were little differences, at most
1%, between the performance obtained for different
values for the parameters.

All in all, the final experiment involves running
the obtained configuration on five different data splits
to get the proper results, which are going to be com-
pared with other similar approaches. The obtained ac-
curacy for D1 is detailed in Table 4 together with the
generated weights. It can be observed that the best
performing algorithm from the individual models has
the highest weight in the ensemble. This is true, as
well, for the least performing ML method, LR. The
rest of the intelligent mechanisms are weighted ac-
cording to the validation set, trying to adjust the en-
semble to be robust and flexible.

Considering the first stage of experiments for the
D2 ensemble, there were no significant differences
between the parameters. Still, the methodology tries
to maximize the performance of our algorithm and

continues with the values that obtain the best accu-
racy scores. The tuned values for the PSO-ensemble
are presented in 3. The last experiment on D2 runs
the fine-tuned configuration on five data splits. The
D2 ensemble reaches an accuracy of 91.112% as it is
displayed in Table 4. Moreover, in the same table,
there are detailed the obtained weights from running
PSO. As was observed in the case for D1 dataset, the
best performing individual algorithm has the largest
weight. In this case, the SGD algorithm has the
largest weight, and it is followed by the Linear SVC,
which is the third performing algorithm. PAC has the
lowest weight, even though it is in second place con-
sidering its efficiency as a solo algorithm. This may
be because the PSO-ensemble is trained to be robust
and more flexible, such that on the testing set (unseen
data) it would still perform well enough. Taking into
consideration the time used for training and testing
an ensemble as seen in Table 4, running an ensem-
ble is considerably more expensive than using a sin-
gle model. SGD has a training time of approximately
2,416 ms on D1 and 612 ms on D2. The same thing is
observable for the testing time which is smaller com-
pared to the testing time of the ensembles. SGD has 2
ms for testing on D1 and 0.58 ms for D2. In this case,
using ensembles is a trade-off between accuracy and
running time because accuracy is improved compared
with the single models.

4.3 Comparisons and Discussion

For this approach, we chose to follow the data pre-
processing methodology from (Pakhare et al., 2021).
In this way, the comparison provided is very accu-
rate and relevant. Moreover, the dataset was freely
available, and the methodology was proposing TF-
IDF lexical features. Lexical features are not time

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

662



Table 4: The generated weights and the final metrics (i.e. accuracy, F1 score - weighted average, training and testing time) for
the PSO ensembles.

Weights obtained for the PSO ensemble (weight, classi-
fier)

Acc. F1
score

Training
time (ms)

Testing
time (ms)

D1 {(1.61, SGD), (1.05, ComplementNB), (1.01,
BernoulliNB), (0.73, PAC), (0.57, MultinomialNB),
(0.29, LinearSVC), (0.26, LR)}

97.0546 97.0545 3,291,308 58

D2 {(0.58, SGD), (0.38, LinearSVC), (0.26, PAC)} 91.112 91.107 107,317 4

dependent; they are not directly dependable if the on-
line content of a web link changes over time. Thus,
their methodology enables the experiments to be eas-
ily reproducible. In (Pakhare et al., 2021), the authors
propose LR, as the best individual algorithm with an
accuracy of 94.31% and the majority voting ensemble
KNN-DT-SVM with 94.93% accuracy. The graphical
representation from Figure 3 presents the accuracies
previously obtained in literature and our obtained per-
formances. It can be observed that with SGD (96.66%
accuracy) as a single algorithm, we managed to sur-
pass the best accuracy reached for the KNN-DT-SVM
ensemble in (Pakhare et al., 2021). Moreover, our Top
7 ensemble (97.05% accuracy) tested against dataset
D1 manages to further improve the accuracy. It is
clear and logical for an ensemble model to improve
accuracy of single models. As well, it can be ob-
served that, the ensemble presented in (Pakhare et al.,
2021) improved the classification with 0.62% com-
pared with the single model, while in our case, we
improved performance with just 0.39%.

The model proposed in (Alsaedi et al., 2022)
reaches 96.8% accuracy. The algorithm is an ensem-
ble as well, formed out of three RFs, and a MLP,
that works as a meta-classifier. We proposed to keep
the TF-IDF methodology developed on D1 and ap-
ply it on D2, such that we were able to intra-compare
our methods. Moreover, their used features such
as Google CTI-based characteristics and WHOIS in-
formation are time-dependent features, which may
change over time. The process of feature retrieval
is time-consuming, and it may not even be accurate.
Even though the comparison between our proposed
models and the ensemble proposed by (Alsaedi et al.,
2022) may not be error-less or precise, there is still
a contribution to their research by applying a new
methodology and a new ensemble model. Moreover,
there are differences because (Alsaedi et al., 2022)
split the dataset into training 70% and 30% for test-
ing and they added a feature selection step.

Even though the current results on D2 are satis-
factory, they do not manage to improve the results ob-
tained in (Alsaedi et al., 2022). With SGD as a single
algorithm, an accuracy of 90.95% is obtained as it can
be seen in 3. With the TOP 3 ensemble, an improve-

ment is made with respect to the individual model,
the ensemble achieving 91.122%. Even though our
TF-IDF and PSO-ensemble approach is inaccurate in
this case, we must conclude that maybe the charac-
teristics extracted by (Alsaedi et al., 2022) (lexical,
WHOIS information and Google CTI-based features)
are more relevant than TF-IDF features. This could
support the fact that maybe time-dependent features
could add valuable information to the input data and
reduce the complexity of the ML model. To conclude
that our model is worse than theirs, there needs to be
more experiments using the same feature categories
as input. Still, we managed to propose a novel ap-
proach using a PSO-weights ensemble and TF-IDF
features on the D2 dataset. An improvement we could
add to our proposed methodology could be adding a
feature selection step. In addition, the TOP 3 ensem-
ble used for D2 may overfit and to prevent that we
could rerun the ensemble experiments on the TOP 5
and TOP 7 ensemble as well.

Figure 3: Comparisons between our approaches and models
presented in (Pakhare et al., 2021) and (Alsaedi et al., 2022).

5 CONCLUSIONS

Because of the continuous improvements made in the
web security field, attackers come with new ways of
deceiving the detection mechanisms. Consumers are

Using Ensemble Models for Malicious Web Links Detection

663



affected as well; they are easily lured into clicking
malicious links. The current approach proposed a
novel PSO ensemble to improve and advance research
done in the maliciousness detection problem of web
links. Our ensemble is heterogeneous, combining
multiple ML algorithms that proved to be efficient in-
dividually. The combining mechanism uses weights,
which are generated with the PSO algorithm on a vali-
dation set. The experiments follow a calibration stage,
and they are tested on two different datasets. The re-
sults achieved on the first dataset (97.05% accuracy)
improve the previous solution. In contrast, for the
second dataset, our approach is not so accurate com-
pared to the solution found in literature. There are
still things to improve, but, to our considerations, we
manage to propose an innovative empirical approach
on malicious web links detection.

Considering future work, we propose to develop
a real-time reporting framework that aims to collect
data associated with a link, including time-dependent
features that can improve detection algorithms and re-
duce their complexity. Time-dependent features in-
clude network information if the web link was in-
cluded in blacklists or whitelists. The framework is
supposed to get a snapshot with the current link data.
Moreover, we propose to test this PSO-ensemble
against larger datasets to further prove its efficiency
and robustness.

REFERENCES

Aburomman, A. A. and Reaz, M. B. I. (2016). A novel
svm-knn-pso ensemble method for intrusion detection
system. Applied Soft Computing, 38:360–372.

Ali, W. and Malebary, S. (2020). Particle swarm
optimization-based feature weighting for improving
intelligent phishing website detection. IEEE Access,
8:116766–116780.

Alsaedi, M., Ghaleb, F. A., Saeed, F., Ahmad, J., and Alasli,
M. (2022). Cyber threat intelligence-based malicious
url detection model using ensemble learning. Sensors,
22(9):3373.

GTKlondike (2019). Machine-learning-for-security-
analysts. Dataset website.

Gupta, S. and Singhal, A. (2017). Phishing url detection by
using artificial neural network with pso. In 2017 2nd
International Conference on Telecommunication and
Networks (TEL-NET), pages 1–6. IEEE.

IT, A. (2023).
Joerg, S. (2017). Using-machine-learning-to-detect-

malicious-urls. faizan dataset website.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-

mization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages
1942–1948. IEEE.

Lee, O. V., Heryanto, A., Ab Razak, M. F., Raffei, A. F. M.,
Phon, D. N. E., Kasim, S., and Sutikno, T. (2020).
A malicious urls detection system using optimization
and machine learning classifiers. Indonesian Jour-
nal of Electrical Engineering and Computer Science,
17(3):1210–1214.

Lester, J. V. (2017). Welcome to pyswarms’s documenta-
tion!

malwaredomainlist (2010). Malware domain list. malware-
domainlist.

Mamun, M. S. I., Rathore, M. A., Lashkari, A. H.,
Stakhanova, N., and Ghorbani, A. A. (2016). Detect-
ing malicious urls using lexical analysis. In Network
and System Security: 10th International Conference,
NSS 2016, Taipei, Taiwan, September 28-30, 2016,
Proceedings 10, pages 467–482. Springer.

Marchal, S., François, J., State, R., and Engel, T. (2014).
Phishstorm: Detecting phishing with streaming ana-
lytics. IEEE Transactions on Network and Service
Management, 11(4):458–471.

Pakhare, P. S., Krishnan, S., and Charniya, N. N. (2021).
Malicious url detection using machine learning and
ensemble modeling. In Computer Networks, Big Data
and IoT, pages 839–850. Springer, Singapore.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

PhishTank (2023). PhishTank - Out of the Net, into the Tank
- Developer Information. PhishTank website.

Sajedi, H. (2019). An ensemble algorithm for discovery of
malicious web pages. International Journal of Infor-
mation and Computer Security, 11(3):203–213.

Saxe, J., Harang, R., Wild, C., and Sanders, H. (2018). A
deep learning approach to fast, format-agnostic detec-
tion of malicious web content. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 8–14, San Fran-
cisco, CA, USA. IEEE, IEEE.

Shetty, U., Patil, A., and Mohana, M. (2023). Malicious
url detection and classification analysis using machine
learning models. In 2023 International Conference
on Intelligent Data Communication Technologies and
Internet of Things (IDCIoT), pages 470–476. IEEE.

Siddhartha, M. (2021). Malicious urls dataset. Kaggle -
Malicious URLs dataset.

Subasi, A., Balfaqih, M., Balfagih, Z., and Alfawwaz, K.
(2021). A comparative evaluation of ensemble classi-
fiers for malicious webpage detection. Procedia Com-
puter Science, 194:272–279.

Zhang, L. and Yan, Q. (2023). Detect malicious websites by
building a neural network to capture global and local
features of websites. Research Square.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

664


