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Abstract: The use of fractal geometry in computer graphics enables the modeling of natural objects which mathematical 
description using traditional Euclidean geometry is difficult. However, fractals, due to their properties and 
specific description, create application problems, especially related to computational and memory efficiency. 
There are known attempts to solve these problems using graphic hardware and special algorithms. One of the 
methods that could bring good results is the quite old and rarely used algorithm of raymarching with SDF 
(Signed Distance Functions). The aim of the article is to analyze the possibility of using this method to 
increase the efficiency of fractal modeling. Demonstration application that allows testing various modeling 
cases has been developed, also taking into account the hardware of modern graphics cards. Research was 
carried out for 5 different types of fractals (Sierpinski pyramid, Menger sponge, Julia set, Mandelbulb object, 
fractal tree). The fractal image generation time and memory consumption were considered. For the Menger 
sponge, different model generation methods were also compared: traditional boundary generation and those 
using raymarching with SDF. The conducted research has shown that raymarching is a method worth 
considering. Moreover, the application of raymarching with SDF can bring many measurable benefits.  

1 INTRODUCTION 

1.1 Motivation 

Modern computer graphics often aim to provide a 
realistic or even hyperrealistic representation of 
reality. In the case of computer games or films, the 
world created is supposed to provide the recipient 
with the impression of strong immersion - to be 
sufficiently convincing in its impact so that the 
viewer or player feels a part of it as much as possible 
(Slater, 2003, Berkman and Akan, 2019). This is a 
challenge both for programmers, artists and designers 
of broadly understood digital art, as well as for the 
equipment that must meet the requirements. The 
appearance of fractal geometry has revolutionized the 
approach to modeling objects in computer graphics. 
This made it possible to imitate elements of nature, 
natural objects or other components of the real world, 
where a mathematical description using traditional 
Euclidean geometry is difficult or even impossible. 
Benoit B. Mandelbrodt, the originator of fractal 
modeling and the term "fractal" itself, points out the 
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problem of describing the irregularities of the real 
world in the introduction to his book "The Fractal 
Geometry of Nature" (Mandelbrodt, 1992). 
According to him, nature, in order to be described, 
requires an additional, completely different level of 
complexity than that known before the appearance of 
fractal geometry (Mandelbrodt, 1992). At the same 
time, the complexity and diversity of natural objects 
in the world around us make it impossible to create a 
unified and universal fractal description (Peitgen et 
al., 2013, Barnsley, 2012). The most commonly used 
methods are: L-system (Lindenmayer system) 
(Prusinkiewicz and Lindenmayer, 1996) and IFS 
(Iterated Function System) (Barnsley, 2012).  

The combination of modeling based on fractal 
geometry with realistic graphics methods creates 
application problems. The problem is not only the 
effectiveness of the description of a real and complex 
natural object, but above all the computational 
efficiency of implementing such a task. There are 
visible benefits of using fractal objects as models in 
simulations, computer games and films. However, 
despite the rapid development of the equipment used, 
a compromise is still necessary between the quality of 
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created graphics and the speed of calculations. Hence 
the need to look for methods of effectively using 
hardware to implement graphic applications in fractal 
modeling.  

1.2 The Aim of the Article  

Ray tracing (RT) is one of the basic methods of 
realistic graphics. The need for real-time 
implementation results in a growing interest in using 
modern hardware capabilities to generate images 
using RT techniques. On the other hand, there are 
many methods to support realistic graphics 
calculations. One of them is a quite old raymarching 
algorithm that works with object description using 
Signed Distance Functions (SDF). An algorithm that 
seems to complement fractal modeling with RT 
techniques quite well. 

The aim of the article is to analyze the efficiency 
of generating 3D fractals using the raymarching 
algorithm with SDF and the hardware capabilities of 
a modern graphics card. 

2 USED METHODS – THE STATE 
OF THE ART 

3D fractal visualization is a complex and complicated 
process. The surface of a fractal object is non-
differentiable and obtaining reflection properties or 
applying a texture requires appropriate, expensive 
approximation. On the other hand, modern 
applications based on the RT technique use a fairly 
standardized set of tools as well as geometric and 
graphic capabilities. This makes it possible to use 
graphic libraries that operate on hardware solutions - 
which significantly speeds up the image creation 
process. A typical modeling approach used today is 
constructive solid geometry (CSG). A method that 
can be perfectly combined with RT techniques.  

Constructive solid geometry (CSG) was proposed 
in computer graphics at the end of the last century 
(Foley et al., 1990) as an effective method of solid 
modelling. CSG is free-shape "building from blocks" 
using the boolean operation. This gives surprising 
effects from the designer's point of view – seemingly 
complex shapes of modelled objects can very often be 
obtained using a fairly simple CSG model (Roth, 
1982). This feature of CSG modeling convinced the 
authors of this publication to use CSG in constructing 
3D fractals. Simple data structure (specific binary 
tree) needed to store information in CSG and wide 
possibilities of practical use made CSG widely used 

in the most popular graphic tools. Both for CAD and 
3D computer graphics and animation. The main 
advantage of CSG used in realistic graphics is the 
possibility of using a CSG tree and integrating the 
solid modeling process with ray tracing (Glassner, 
1989, Watt, 2000). CSG can also be used in game 
development, enabling real-time solid modeling 
(Ansari, 2011).  

The first attempts of modeling fractals using RT 
techniques but also using distance estimation were 
described by Hart, Sandin and Kauffman in 1989 
(Hart et al., 1989). However, the authors of this article 
did not use the term raymarching - they wrote about 
“ray traversal” and “unbounding spheres”. The term 
“ray marching” in the context of estimating the 
distance of the surface of complex objects first 
appeared in 1984 (Tuy and Tuy, 1984) and later in 
1989 (Perlin and Hoffert, 1989). Applications for 
generating fractals using raymarching were continued 
by Hart in 1996 (Hart, 1996). In publications 
(Tomczak, 2012, Shriwise et al., 2017), the authors 
use raymarching with SDF as a rendering method to 
create an image of implicit surfaces. There are several 
websites dedicated to the topic of raymarching with 
SDF (Raymarching, 2016, Wong, 2016, 
Raymarching, 2020, Bovenzi, 2022, Walczyk, 2023). 
In modern graphics engines, SDF is used to generate 
fonts (SDF fonts, 2023). In modern graphic 
applications, SDF is used to obtain appropriate effects 
(shading, ambient occlusion) rather than for modeling 
(Mesh Distance Fields, 2023).  

The practical use of raymarching with SDF is rare, 
and there are not many articles on this topic. Some 
very interesting examples of the use of Raymarching 
and SDF in creating fractals (Angramme, 2021, 
Petrov, 2020) and in the hardware environment 
(Granskog, 2017) can be found on the Internet, 
however they do not include analysis of the effects 
and consequences of using this technique. The 
authors do not know of a publication in which an 
extensive analysis of the use of raymarching with 
SDF for the generation of 3D fractals in the hardware 
environment of a graphics card was carried out.  

3 MATERIALS AND METHODS 

3.1 Main Assumptions 

Raymarching is a geometry modeling method rarely 
used in modern graphic solutions. It is difficult to 
look for this method in ready-made applications or 
even among library facilities. Moreover, if we want 
to use the hardware solutions of modern graphics 
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cards and appropriate libraries to implement the 
method, a completely new test environment and 
demonstration software must be developed. On the 
other hand, many different varieties of 3D fractals are 
currently being considered (Peitgen et al., 2013). 
Varieties that differ in terms of visual, geometric and 
optical properties. They also differ in terms of 
mathematical description. To analyze the use of the 
raymarching algorithm, the developed demonstration 
application should provide the opportunity to select 
fractals from a wide group of different solutions. The 
following set of initial assumptions was made to build 
the demonstrator software. 
 Ray marching will be used for rendering. 
 There will be a set of at least five types of 

fractal objects with different properties and 
different mathematical descriptions. 

 A virtual camera will be developed that will 
allow the user to observe generated objects 
from any observer position (freely defined). 

 The possibility of applying texture and color to 
the surface of any used fractal will be 
considered.  

 A set of procedures will be developed to 
determine the geometric parameters of a fractal 
object for rendering purposes. 

 The possibility of using any model of light 
reflection from the surface of a fractal object 
will be taken into account. 

 The possibility of traditional procedural 
generation (boundary description) will be 
added for at least one of the shapes to enable 
comparison with the raymarching method. The 
possibility of using any model of light 
reflection from the surface of a fractal object 
defined in this way will be included.  

 The user of the demonstration application will 
receive a convenient interface (GUI) enabling 
full operation of the task (changing object 
parameters, saving a copy of a set of objects, 
printing an image, etc.). 

 Software that will combine the operation of the 
demonstration application with support for a 
modern graphics card and enable hardware 
implementation of key operations will be 
created. 

 The demonstration application will run in real 
time. However, this assumption may be 
difficult to meet for all the considered objects, 
especially for models generated based on the 
boundary description. 

 Modern tools will be used to assess the 
efficiency of algorithms, implementation 
complexity and memory usage.  

3.2 Raymarching Algorithm   

Raymarching (also known as sphere tracing) is a form 
of path tracing that estimates the coordinates of a ray 
intersecting an object on the scene.  

The ray is defined as a point in space r(t) in which 
it currently is located and a direction. Placing of the 
virtual camera defines the starting point ro for the first 
iteration. Every pixel of the render target screen 
requires at least one ray with direction calculated to 
go through that pixel (multisampling can be used to 
reduce any visual artifacts. In each iteration the 
distance t means the longest distance that a ray can be 
traced along its direction without intersection. The 
location of a ray position is moved by that distance 
and the algorithm “marches” in this way (Figure 1) 
until the current t is not smaller than the pre-defined 
value ϵ. Tradeoff between algorithm speed and 
accuracy can be easily adjusted by changing the 
parameters ϵ, maximum amount of steps and a 
distance a ray can go forward. Usually, the algorithm 
stops after finding the first intersection. 

 
Figure 1: Illustration of raymarching algorithm. 

Ambient occlusion can be deduced from the 
number of steps taken before hitting an object. The 
technique also allows to calculate shadows by casting 
some additional rays starting from the original 
intersection point. Normal vectors can be estimated 
using gradient of partial derivatives calculated from 
surface distance mappings with a small position shift 
from the original intersection point. 

3.3 Signed Distance Functions (SDF)  

To calculate the maximum distance t, each object has 
to be represented in a way that allows efficient 
determination of the length between a ray’s current 
position and the object’s surface. Signed distance 
functions fulfill the purpose of storing the scene 
description in a form convenient for raymarching. 
Signed distance function f(x) is the function that 
returns a distance (typically Euclidean) between any 
given point x and object surface. Sign expresses the  
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Figure 2: A set of 3D fractals available in the demonstration application. From left to right: Sierpinski pyramid, Menger 
sponge, Julia set, Mandelbulb, fractal tree.  

distinguishment between the inside and outside of a 
given model. 

In this approach the data is stored within code in 
the form of mathematical functions and as such must 
be first described using one from variety of model 
definitions. Shapes like Menger sponge or Sierpinski 
pyramid can be deconstructed into simple objects – 
cubes, tetrahedrons, etc. Distance functions formulas 
for primitive 3D shapes are relatively easy to define 
and they can be used as input for SDF-based CSG 
operations such as intersection, union, and difference. 
Defining the CSG tree works the same as in any 
typical mesh-represented 3D model. Moreover, 
blending objects built using CSG primitives is very 
easy with the usage of a polynomial smoothing 
function. Working with symmetry and self-
repetitiveness of fractals is intuitive when described 
by the distance function. Modulo operator allows for 
creating foldings without the need for computational-
costly recursive iterations. By deciding on the amount 
of foldings and repetitions one can produce a finite 
approximation of an infinite fractal shape that will fit 
the need and hardware possibilities. 

Some fractal shapes do not have a continuous 
surface that can be defined using primitive shapes and 
for those signed distance functions are a great 
alternative. 3D projection model of a four-
dimensional Julia set is mapped using the escape-time 
algorithm based on quaternions. For others, like 
Mandelbulb which is a 3D interpretation of 
Mandelbrodt set, Cartesian coordinates are 
transformed into polar to conduct some operations on 
them and then converted back as an output. 

Lindenmayer-systems can also be demonstrated 
using SDFs. Starting with the basic branch shape 
definition for each iteration the set of rules is applied 
to transform, split, elongate, or rotate the shape to 
form the tree. By changing the parameters growth 
process and movement of a tree-like shape can be 
simulated.  

Bounding volumes optimization (used in other ray 
tracing techniques) can be used. In the scene 
definition more complex formation can be wrapped 

within the simple ones like spheres. If the sphere is 
missed by the ray, there is no point in calculating the 
more complex function of the shape inside of it. 
Proposed solution is not optimized in such way. 

4 REALISATION AND RESULTS 

4.1 Demonstration Application 

The developed demonstration application consists of 
a set of scenes between which the user can switch. 
The scenes present examples of fractal objects. 
Objects and the camera move in time, and the user 
can use sliders to change their most important 
parameters.  

The program is presenting examples of fractal 
objects with SDF representation as well as boundary 
representation. To display an object described using 
distance estimators, surface is needed, with the 
material of a given fractal assigned to it. The 
implementation of the marching rays algorithm and 
the description of the scene with a fractal object are 
located in the pixel shader code assigned to the 
material. Each fractal therefore has a separate 
material with its own shader. 

The following 3D fractals were implemented in 
the software: Sierpinski pyramid, Menger sponge, 
Julia set, Mandelbulb object, fractal tree – Figure 2. 

In Figure 3 the main window of the demonstration 
application is shown. 

 
Figure 3: View of the running demonstration application. 
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4.2 Environment, Software and 
Hardware Dependencies  

The demo application was prepared using the Unity 
game engine on the MS Windows platform in 64-bit 
architecture. Graphics pipeline is set using DirectX 
11 and HLSL shaders. Intel Graphics Frame 
Analyzer, PresentMon – tools for analyzing the 
performance of graphic applications. 

The research was carried out using graphics card: 
Intel® Iris® Xe Graphics and NVIDIA® GeForce® 
RTX 2060.  

To perform generation performance analyses, the 
Graphics Performance Analyzers toolkit version 21.2 
was used. Additionally, to measure the average 
duration of rendering frames – the PresentMon 
application, version 1.8.1. 

Example of a figure constructed recursively – 
fragment of HLSL formula for the Sierpinski triangle: 

 

float tetrahedron(float3 p){ 
p *= _Size; 
return (max(abs(p.x+p.y)-p.z, abs(p.x-p.y)+  

  p.z)-(2.*_Size/3))/sqrt(3.0); 
} 
 
float sierpinski(in float3 p){ 

float scale = 2.5/_Size; 
for (int n = 0; n < _Iterations; n++){ 
 p *= 1.0/_Size; 
 if (p.x+p.y < 0.) { p.xy = -p.yx; } 
 if (p.x+p.z < 0.) { p.xz = -p.zx; } 
 if (p.y+p.z < 0.) { p.yz = -p.zy; } 
} 
return tetrahedron(p)*pow(scale,  

  int(-_Iterations)); 
} 

 

An example of a distance mapping function for an 
escape-time fractal – Julia’s set:  
 

float julia(in float3 p, in float4 c){ 
float4 z = float4(p, 0.0); 
float md2 = 1.0;   float mz2 = dot(z, z); 
for (int i = 0; i < _Iterations; i++){ 
 md2 *= 4.0 * mz2; 
 z = quatsqr(z) + c; 
 mz2 = dot(z, z); 
 if (mz2 > 4.0) break; 

 } 
float d = 0.25 * sqrt(mz2 / md2) * log(mz2); 
return d; 

} 

5 RESULTS AND DISCUSSION 

Several tests were carried out to assess the efficiency 
of the implementation of the raymarching algorithm 
and the use of hardware functions of the graphics 
card. Tests were also carried out to assess the 
application's memory usage. The set of generated 
fractals included, for the version using SDF: 
Sierpinski pyramid, Menger sponge, Julia set, 
Mandelbulb object and fractal tree. For the boundary 
representation, a Menger sponge was generated. The 
analysis of the results also considered: functional 
possibilities, difficulties in implementation and 
efficiency of the solutions.  

5.1 Efficiency of Realization 

Considering hardware optimizations (use of the 
graphics pipeline by the engine, use of shaders), 
frame generation times were compared for the 
following graphics cards: Intel® Iris® Xe Graphics 
and NVIDIA® GeForce® RTX 2060. The efficiency 
comparison for these cards is presented in Table 1. 
Performance of the integrated GPU was presented 
mostly for contrast to show that the implementation 
performance heavily depends on the GPU with the 
usage of pixel shaders. The comparison shows that 
the demonstration application makes significant use 
of the GPU. 

Table 1: Comparison of implementation efficiency for 
various fractal objects (FPS – Frames Per Second, HMT – 
How Many Times the performance of GeForce 2060 is 
better, RPS – Rays Per Second). 

Scene (resolution 
1920x1080 

pixels)

FPS of 
Iris Xe

FPS of 
 GeForce 

2060 
HMT 

RPS of 
GeForce 

2060
Sierpinski 
pyramid SDF 5.6 59.6 10.6 123.6 ⋅ 106 
Menger sponge 
SDF 22.0 638.0 29.0 1323 ⋅ 106

Julia set SDF 4.78 35.0 7.3 72.6 ⋅ 106

Mandelbulb SDF 6.7 228.0 34.0 472.8 ⋅ 106

Fractal tree SDF 5.2 140.9 27.1 292.2 ⋅ 106

Menger sponge 
boundary repr. 13.27 74.8 5.6 Not 

applicable

Additionally, it is worth paying attention to the 
comparison of performance for the same fractal 
(Menger sponge) but in different implementations: 
using raymarching and SDF and in the traditional 
boundary representation. The SDF implementation is 
almost 10 times faster than the naive procedural 
generation using boundary representation (for the 
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Figure 4: Efficiency of the raymarching algorithm. 

GeForce card) and twice as fast as the static model 
imported as a scene object. However, this comparison 
may not be precise due to the multitude of 
optimization possibilities in both techniques.  

An analysis of the relationship between the 
performance (FPS) of the raymarching algorithm and 
the number of iterations was also carried out. This is 
a very important problem, because only a sufficiently 
large number of iterations ensures the expected visual 
effect. The results are presented on a chart in 
Figure 4. It is clearly visible that although the FPS 
value varies depending on the mathematical 
description and geometry, the trend of changes is 
similar for any fractal. For a small number of 
iterations, differences between fractals (geometry and 
mathematical description) strongly affect the FPS 
value. Since the frame rate was higher than the refresh 
rate of the monitor screen (144Hz), frames were 
collected using the GPA software to measure the 
estimated performance. Due to the very short 
duration, these measurements are characterized by a 
high error (a difference of up to 10% between 
subsequent measurements). Nevertheless, these 
measurements prove a tendency for the generation 
rate to decrease with increasing computational 
complexity. 

5.2 Memory Usage  

The basic advantage of raymarching is saving the 
memory needed to store data about the fractal model. 
All necessary output is calculated on the fly, all is 
stored in the code in a shape formula description. 
Experiments were carried out for a Menger sponge in 
both versions of implementation: raymarching with 

SDF and the traditional boundary representation. 
Despite differences in properties and mathematical 
descriptions, different groups of fractals are based on 
an iterative, recursive form of generation. This means 
that for each fractal, the increase in the complexity of 
the model will be exponential. Therefore, the 
asymptotic increase in the number of elements will 
always be described by an exponential function. 
Therefore, the conclusions from the analysis of the 
Menger sponge can be transferred to other fractals. 
The asymptotic relationship will be the same up to a 
constant.  

Most algorithms for the procedural generation of 
boundary representations involve dividing elements 
into smaller parts and possibly transforming them. 
For the Menger sponge, the number of vertices after 
n iterations will be 8*20n. The vertices are stored in 
memory for model reconstruction. Even if we assume 
optimization of memory consumption, e.g. by 
removing elements with duplicate coordinates, the 
exponential growth quickly creates an object that 
takes up so much memory that it may exceed the 
application capabilities. For example, for the 5th 
iteration we can get as many as 25,600,000 vertices. 
Of course, we are talking about the maximum number 
of vertices – in practice, some of them may be 
rejected (effect of culling).  

An experiment was performed with two Menger 
sponges corresponding to the above theoretical 
analysis. To make the comparison more reliable, an 
imported ready-made static 3D model of the Menger 
sponge with 5 levels of recursion was used. The 
results (dumps of content from the graphics card 
memory) are summarized in Table 2. Over 17 million 
vertices are drawn for the boundary representation in 
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specific implementation conditions. Such 
complicated models can be easily made using SDF – 
creating not only 3D, but also real-time animated 
fractal objects. 

Table 2: Comparison of implementation efficiency for 
different representations (Graphics card statistics). 

 Boundary 
representation 

Raymarching 
with SDF 

FPS 195.7 (5.1ms) 377.9 (2.6ms) 
Tris 14.9 M 202 
Verts 17.1 M 125 
Mesh memory usage 329.6MB 1.0MB 
Screen resolution 1920 x 1080 1920 x 1080 

Presented implementation used pixel shaders and 
DirectX® 11 pipeline for simplicity. It is worth 
mentioning that in a modern API like Vulkan® or 
DirectX® 12 when combining raymarching with 
normal rendering, computer shader can be used 
instead of pixel shader to better utilize the pipeline in 
asynchronous manner and output whatever is needed 
to a texture or directly to the render target view.  

5.3 Functionality 

Modeling with raymarching and SDF solves the 
problem of efficiency and allows creating high-
resolution visualizations of fractal objects. The shape 
of objects and the position of the camera change in 
real time. A constant number of rays is used each time 
to generate one image frame. The time needed for 
calculations depends on which part of the frame the 
displayed object occupies and the complexity of the 
procedure of generating it (as shown in the chart in 
Figure 4). For example, Mandelbulb in the first 
iteration is just a sphere, which is the easiest shape to 
calculate distance to.  

Some fractals require less operations repeated in 
each iteration to achieve the required result, so they 
converge faster. A suitable number of iterations for 
the given resolution is about 5 - more details cannot 
be rendered without increasing the number of pixels 
available. This is also the reason why the curves 
stabilize – not much is changing in generating the 
image and the amount of calculations become similar. 

A different shape of curve for the Menger Sponge 
is caused by the complexity of this algorithm being 
exponential. In contrary to Sierpinski pyramid, where 
all small tetrahedrons are drawn based on their 
calculated position, Menger Sponge implementation 
depends on the usage of CSG operations to cut the 
holes inside the cube recursively. 

The number of pixel shaders is related to the 
screen resolution, multisampling, etc. and does not 
change significantly with scene complexity. Profiling 
the raymarching algorithm is not difficult because the 
entire code is contained in one shader and there are 
specific parameters responsible for the balance 
between quality and generation speed (recursion 
level, number of steps for the marching ray).  

Calculating normal vectors allows to add lighting 
simulations. When designing a display algorithm, 
shading, anti-aliasing can be added, lighting 
parameters and coefficient values changed. 
Additionally, it is possible to use space folding 
operations, CSG operations and processing of the 
behavior of observed points (for example for Julia 
sets). Creating a boundary representation for fractal 
objects would be costly and very complicated. 

Many stages of image generation (lighting 
simulation, shading, anti-aliasing) require writing the 
shader code yourself. However, those can be reused 
for any objects if the mapping function returns the 
distance between the position of the ray and the the 
nearest object. Objects can be positioned relative to 
each other, building increasingly complex scenes. 
Adding shadow casting for the Menger sponge with 
20 levels of recursion depth (Figure 5) reduces 
performance from about 250 FPS to 165 FPS, but it is 
still higher than the refresh rate of high-quality 
displays. The shapes can also be replicated with a 
small increase in generation time by using space 
transformation operations. An important advantage of 
using the path tracing is the ability to easily add visual 
effects: ambient occlusion, glow. Additionally, this 
happens without  much  larger computational costs. 

The disadvantages of using the SDF include the 
lack of sufficient accuracy. For the Menger sponge, 
there are no visual differences when increasing the 
recursion depth above 5, because individual cubes 
begin to overlap. 

 
Figure 5: Menger sponge’s shading effect. 

Objects may behave in a way that is difficult to 
predict due to the multiple compositions of space – 
Figure 6 and the multitude of iterative operations, 
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forcing heuristic adjustment of appropriate 
parameters. The lack of accuracy that results from 
performing n calculations on floating-point numbers 
limits the quality of generation more than the speed 
of visualization itself. On the other hand, the lack of 
continuity of solids caused by the use of space 
transformations and some distance estimator 
formulas means that even with increased image 
resolution, obtaining a higher number of details could 
prove problematic. 

 
Figure 6: An example of undesirable distortion of the 
Menger sponge. 

5.4 Functionality Comparison of 
Representations 

Using the boundary representation is characterized by 
low efficiency of image generation due to the rapidly 
increasing number of calculations for geometric 
transformations with increasing recursion levels. 
However, there are ready-made methods of 
displaying (rendering) the scene image, culling 
optimizations, easy texturing, adding collision 
components, and the ability to store the shape of 
objects as appropriate data structures. The main 
benefits of using the raymarching algorithm are 
presented in Table 3. 

With boundary representation, fractal objects can 
be modeled volumetrically by adding primitives to 
the scene via scripts. The fractal objects created in 
this way cause a significant drop in the efficiency of 
the generated image and, without the use of complex 
hardware optimizations, do not match the level of 
detail of objects described using raymarching with 
SDF. Moreover, adding each additional object to the 
scene means the need to process its vertices. The 
largest number of recursion levels that have been 
achieved in practice for the generated Menger sponge 
is three (Table 4). Each subsequent level of recursion 
results in an overflow in hardware memory, and 
finally, forced termination of the program. 

 
 

Table 3: Key benefits of using the raymarching algorithm. 

Application Raymarching  
with SDF 

Modelling with 
boundary 

representation

Modelling of 
non-

differentiable 
surfaces 

Accurate modeling, 
tracking the escape 

route of specific 
points 

Necessary use of 
interpolation, 
tessellation, 
volumetric 

modeling, even 
when using RT

Modelling of 
fractal tree 

Creating many 
branches and 

multiplying trees at 
low cost 

Need to use 
instancing 

techniques to 
maintain efficiency

Modeling 
objects 

recursively 
based on 

primitive shapes

Mostly linear 
computational 

complexity thanks 
to the use of space 

folding 

Exponential 
increase in 

computational 
complexity 

depending on the 
level of recursion

Technology 
stack 

Any 3D pipeline 
engine that is able to 

execute pixel or 
compute shader 

Requires usage of 
3D modeling tools

Memory and 
computational 

cost 

Low, structure in 
the code, 

calculations only for 
what is visible 

High, many vertices 
to process, many not 

visible 

Table 4: The number of shader calls for scenes depicting a 
Menger sponge with three levels of recursion. 

Scene (resolution 
1920x1080 pixels)

Pixel shader 
calls per frame 

Vertex shader 
calls per frame

Boundary representation 8809000 1054000
Raymarching with SDF 7759000 7504

6 SUMMARY 

The article presents how raymarching can be turned 
into a well-suited solution for generating fractal 
shapes using modern hardware. It can generate real-
time animated visualizations of three-dimensional 
fractal models. Comparisons of different fractal 
groups and modeling techniques were described. 
Both speed and memory performance were studied. 
Despite not utilizing most of the 3D pipeline features 
the algorithm proved to be very efficient. Numerous 
techniques of describing fractal shapes were explored 
along with the parameters that allow for the shape, 
color and camera manipulations.  

SDFs provide a convenient tool for 
mathematicians to define shapes and transformations 
directly in code, without extensive knowledge of the 
3D modeling tools. Raymarching can be incorporated 
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as a stage of a larger rendering solution or treated as 
standalone.  

There is a lot of potential to optimize raymarching 
path tracer in a similar manner to a standard ray 
tracing by implementing proper bounding volume 
hierarchy and binary space partitioning.  

On the Internet (Raymarching, 2020) you can find 
the statement that “raymarching is the unappreciated 
cousin of ray tracing”. Articles on this topic are rare. 
The conducted research has shown that it is worth 
addressing this issue. Moreover, the practical use of 
raymarching with SDF can bring many measurable 
benefits.  
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