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Abstract: This paper introduces a new approach to solving a continuous-time version of the multi-agent path finding
problem. The algorithm translates the problem into an extension of the classical Boolean satisfiability problem,
satisfiability modulo theories (SMT), that can be solved by off-the-shelf solvers. This enables the exploitation
of conflict generalization techniques that such solvers can handle. Computational experiments show that the
new approach scales better with respect to the available computation time than state-of-the-art approaches
and is usually able to avoid their exponential behavior on a class of benchmark problems modeling a typical
bottleneck situation.

1 INTRODUCTION

Multi-agent path finding (MAPF) (Silver, 2005;
Ryan, 2008; Luna and Bekris, 2011) is the prob-
lem of navigating agents from their start positions to
given individual goal positions in a shared environ-
ment so that agents do not collide with each other.
The standard discrete variant of the MAPF problem is
modeled using an undirected graph in which k agents
move instantaneously between its vertices. The space
occupancy by agents is modeled by the requirement
that at most one agent reside per vertex and via move-
ment rules that forbid conflicting moves that traverse
the same edge in opposite directions.

Standard discrete MAPF however lacks expres-
siveness for various real life problems where contin-
uous time and space play an important role such as
robotics applications and/or traffic optimization (Fel-
ner et al., 2017; Ma, 2022).

This drawback of standard MAPF has been miti-
gated by introducing various generalizations such as
MAPF with continuous time (MAPFR) (Andreychuk
et al., 2022). This allows more accurate modeling
of the target application problem without introduc-
ing denser and larger discretizations. Especially in
applications, where agents correspond to robots, it is
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important to consider graph edges that interconnect
vertices corresponding to more distant positions. It
is unrealistic to consider unit time for such edges as
done in the standard MAPF, hence general duration
of actions must be adopted. The action duration of-
ten corresponds to the length of edges which implies
fully continuous reasoning over the time domain.

In this paper, we show how to solve the MAPFR
problem by directly translating it to a satisfiability
modulo theories (SMT) (Barrett and Tinelli, 2018)
problem. SMT extends the classical Boolean sat-
isfiability problem to formulas whose atomic sub-
formulas may not only be formed by propositional
variables, but also by first-order predicate language
formulas whose syntax is restricted to certain pred-
icate and function symbols and whose semantics by
interpreting those predicate and function symbols ac-
cording to a given first-order theory. This allows the
exploitation of decision procedures for such theories
by so-called SMT solvers. Typical theories include
the linear theory of integers, the theory of bit-vectors,
and the theory of free function symbols. In this paper,
we will use the theory of quantifier free linear real
arithmetic (QF_LRA), which will allow us to reason
about time in MAPF modeled in a continuous manner.

State-of-the-art approaches for MAPFR such as
Continuous-time Conflict-based Search (CCBS) (An-
dreychuk et al., 2022), a generalization of Conflict-
based Search (CBS) (Sharon et al., 2015) that repre-
sents one of the most popular algorithms for MAPF,
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search for optimal plans. However, in real-world ap-
plications, where the formalized MAPF problem re-
sults from an approximation of the original appli-
cation problem, an overly strong emphasis on opti-
mality is often pointless. Moreover, it may result in
non-robust plans that are difficult to realize in prac-
tice (Atzmon et al., 2020). Hence we aim for a sub-
optimal method whose level of optimality can be
adapted according to the needs of the given applica-
tion domain.

Unlike methods based on CCBS that approaches
the optimum from below by iterating through plans
that still contain collisions, our method approaches
the optimum from above, iterating through collision-
free plans. This has the advantage that—after finding
its first plan—our method can be interrupted at any
time, still producing a collision-free, and hence feasi-
ble plan. This anytime behavior is highly desirable in
practice (Li et al., 2021).

Another advantage over existing methods is the
fact that the objective function is a simple expression
handed over to the underlying SMT solver. This al-
lows any objective function that the SMT solver is
able to handle without the need for any algorithmic
changes.

We did experiments comparing our method with
the state-of-the-art approaches CCBS and SMT-
CCBS (Andreychuk et al., 2022) on benchmark prob-
lems with various numbers of agents. The results
show that our method is more sensitive to time-outs
than the existing approaches, typically being able to
solve more instances than existing approaches for
high time-outs and less for lower time-outs. Fu-
ture improvement of computer efficiency will conse-
quently make the method even more competitive.

Moreover, for one class of benchmark problems—
modeling a bottleneck situation where all agents have
to queue for passing a single node, the new method
usually avoids the exponential behavior of CCBS and
SMT-CCBS whose run-times explode from a certain
number of agents on. Such bottleneck situations fre-
quently occur for certain types of application prob-
lems (e.g., in traffic problems or navigation of charac-
ters in computer games through tunnels and the like).

Further Related Work: Existing methods for gen-
eralized variants of MAPF with continuous time in-
clude variants of Increasing Cost Tree Search (ICTS)
(Walker et al., 2018) where durations of individual ac-
tions can be non-unit. The difference from our gen-
eralization is that agents do not have an opportunity
to wait an arbitrary amount of time but wait times are
predefined via discretization. Similar discretization
has been introduced in the Conflict-based Search al-

gorithm (Cohen et al., 2019). Since discretization in
case of ICTS as well as CBS brings inaccuracies of
representation of the time, it is hard to define opti-
mality. Moreover, a more accurate discretization of-
ten increases the number of actions, which can lead to
an excessively large search space.

Our method for MAPFR comes from the stream
of compilation-based methods for MAPF, where the
MAPF instance is compiled to an instance in a dif-
ferent formalism for which an off-the-shelf efficient
solver exists. Solvers based on formalisms such as
Boolean satisfiability (SAT) (Surynek, 2019), Con-
straint Programming (CP) (Ryan, 2010), or Mixed-
integer Linear Programming (MILP) (Lam et al.,
2022) exist. The advantage of these solvers is that any
progress in the solver for the target formalism can be
immediately reflected in the MAPF solver that it is
based on.

The earlier MAPF method related to SMT (the
SMT-CBS algorithm) (Surynek, 2019) separates the
rules of MAPF into two logic theories, one theory for
conflicts between agents and one theory for the rest of
the MAPF rules. The two theories are used to resolve
conflicts between agents lazily similarly as it is done
by the CBS algorithm.

The application of SAT and SMT solvers to plan-
ning problem different from MAPF is not new (Rin-
tanen, 2021; Leofante, 2023; Cashmore et al., 2020),
usually in the context of temporal and numerical
planning—extensions of the classical planning prob-
lem with numerical variables. SMT solvers have
been used for specific planning problems with mul-
tiple agents (Kolárik and Ratschan, 2023), employing
however a synchronous model that identifies each step
of the unrolled planning problem with a fixed time pe-
riod.
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2 PROBLEM DEFINITION

We follow the definition of multi-agent path finding
with continuous time (MAPFR) from (Andreychuk
et al., 2022).
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We define a MAPFR problem by the tuple
(G,M,A,s,g,coord), where G = (V,E) is a directed
graph with V modeling important positions in the en-
vironment and E modeling possible transitions be-
tween the positions, M is a metric space that mod-
els the continuous environment, A = {a1,a2, ...,ak}
is a set of agents, functions s : A→ V and g : A→
V define start and goal vertices for the agents, and
coord : V → M assigns each vertex a coordinate in
metric space M.

The edges E define a set of possible move ac-
tions, where each e = (u,v) ∈ E is assigned a dura-
tion eD ∈R>0 and a motion function eM : [0,eD]→M
where eM(0) = coord(u) and eM(eD) = coord(v). In
addition to this, there is infinite set of wait actions as-
sociated with each vertex v∈V such that an agent can
wait in v any amount of time. The motion function
for a wait action is constant and equals to coord(v)
throughout the duration of the action.

Collisions between agents are defined via
a collision-detection predicate ISCOLLISION ⊆
A×A×M×M such that ISCOLLISION(ai,a j,mi,m j)
if and only if the bodies of agents ai and a j overlap at
coordinates mi and m j. For this purpose, we assume
that the bodies are open sets and overlapping is
understood to be strict. Hence agents are permitted to
touch if they are assumed to have a closed boundary
which is not defined as a collision.

The algorithm described in this paper is abstract in
the sense that it does not explicitly restrict the class of
motion actions. Instead it assumes that it is possible
to do collision detection and avoidance, as described
in Section 5. This is possible, for example, if the
agents and motion functions are described by poly-
nomials, due to the fact that the theory of real closed
fields allows quantifier elimination. Note that this al-
lows the modeling of non-constant agent speed and
of movements along non-linear curves. Still, in our
implementation, for reasons of efficiency and ease of
implementation, the motion functions are required to
be linear.

Given a sequence of actions π = (e1,e2, ...,en),
we generalize the duration and motion functions from
individual actions to overall π which we denote by
πD and πM , respectively. Let π[: n′] = (e1,e2, ...,en′)
denote the prefix of the sequence of actions, then
πD = ∑

n
i=1 eiD and analogously π[: n′]D = ∑

n′
i=1 eiD.

The motion function πM needs to take into account
the relative time of individual motion functions eiM ,
that is: πM(t) = e1M(t) for t ≤ e1D, ..., πM(t) =
en′M(t − π[: n′−1]D) for π[: n′−1]D ≤ t ≤ π[: n′]D,
..., πM(t) = enM(enD) for πD < t. The last case means
that the agent stops after executing the sequence of
actions and stays at the coordinate of the goal vertex.

Definition 1. There is a collision between sequences
of actions πi and π j if and only if ∃t ∈ [0,max{πiD,
π jD}] such that ISCOLLISION(ai,a j,πiM(t),π jM(t)).

Definition 2. A pre-plan of a given MAPFR prob-
lem (G,M,A,s,g,coord) is a collection of sequences
of actions π1, π2, ..., πk s.t. for every i ∈
{1, . . . ,k},πi(0) = s(ai) and πi(πiD) = g(ai). A plan
for given MAPFR problem P is a pre-plan of P whose
sequences are pair-wise collision free.

We define several types of cost functions that we
denote by cost(Π), for a given plan Π. For exam-
ple, we will work with sum-of-costs (in this case,
cost(Π) = ∑

k
i=1 cost(πiD)), or makespan.

For a MAPFR problem P, we denote by opt(P)
its optimal plan and by optpre(P) its optimal pre-plan.
Clearly cost(optpre(P))≤ cost(opt(P)), but optpre(P)
is much easier to compute than opt(P) since it directly
follows from the plans of the individual agents.

For our approach, the following two observations
are essential:

• Multiple subsequent wait actions can always be
merged into a single one without changing the
overall motion.

• It is always possible to insert a wait action of zero
length between two subsequent move actions—
again without changing the overall motion.

Due to this, we can restrict the search space to plans
for which each wait action is immediately followed
by a move action and vice versa. Our SMT encoding
will then be able to encode wait and move actions in
pairs, which motivates counting the number of steps
of plans by just counting move actions. Hence, for
a sequence of actions π we denote by |π| the number
of move actions in the sequence, and for a plan Π, we
call |Π| := maxk

i=1|πi| the number of steps of plan Π.

3 ALGORITHM

Our goal is to encode the planning problem in an SMT
theory that is rich enough to model time and to rep-
resent conflict generalization constraints. Since SMT
solvers only encode a fixed number of steps, we have
to use a notion of optimality that takes this into ac-
count. Hence the first optimization criterion is the
number of steps, and the second criterion cost, which
we optimize up to a given δ > 0:

Definition 3. A plan Π satisfying a MAPFR problem
P is minstep δ-optimal iff

• |Π|= min{|Π| |Π is a plan of P}, and
• cost(Π)≤ (1+δ) inf{cost(Π′) | |Π′|= |Π|}.
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The result is Algorithm 1. It searches from be-
low for a plan of minimal number of steps, and then
minimizes cost for the given number of steps using it-
erative bisection. For this, it uses a function findplan
that searches for a plan with a fixed number of states
whose cost is between some minimal and maximal
cost and that we will present in more details below in
Algorithm 2.

Algorithm 1: Main algorithm MAPF-LRA.

MAPF-LRA(P,δ)→ popt
Input:

- a MAPFR problem P = (G,M,A,s,g,coord)
- δ ∈ R>0

Output:
- popt: a minstep δ-optimal plan for P

h← |optpre(P)|
tmin← cost(optpre(P))
C← /0

(p,C)← findplan(P,h, tmin,∞,C)
while p =⊥ do

h← h+1
(p,C)← findplan(P,h, tmin,∞,C)

popt← p
while cost(popt)> (1+δ)tmin do

let t̂ ∈ (tmin,cost(popt))
(p,C)← findplan(P,h, tmin, t̂,C)
if p =⊥ then tmin← t̂ else popt← p

return popt

When using a SAT solver to implement the func-
tion findplan, it would be an overkill to encode the
whole planning problem at once, since we would have
to encode the avoidance of a huge number of poten-
tial collisions. Instead, we will encode this informa-
tion on demand, initially looking for a pre-plan, and
adding information on collision avoidance only based
on collisions that have already occurred.

However, whenever a collision occurs, we do not
only avoid the given collision, but also collisions that
are in some sense similar. We will call this a general-
ization of a collision which we will also formalize in
Section 5.

So denote by ϕP,h,t,t an SMT formula encoding the
existence of a pre-plan Π of MAPFR-problem P with
number of steps h and cost in [t, t], that is, |Π|= h and
cost(Π)∈ [t, t] (see Section 4 for details). We will use
an SMT solver to solve those formulas and assume
that for any formula ϕ encoding a planning problem,
sat(ϕ) either returns the pre-plan satisfying ϕ or ⊥ if
ϕ is not satisfiable.

The result is Algorithm 2 below.

Algorithm 2: Function findplan that searches for a plan
with a bounded cost.

findplan(h, tmin, tmax,C)→ (p,C′)
Input:

- h ∈ N0
- tmin ∈ R≥0
- tmax ∈ R≥0∪{∞}
- C: a set of formulas that every plan must satisfy

Output:
- p: either a plan Π with

|Π|= h and cost(π) ∈ [tmin, tmax], or
⊥, if such a plan does not exist

- C′: a set of formulas that every plan must satisfy
p← sat(ϕP,h,tmin,tmax ∧

∧
ϕc∈C ϕc)

while ¬[p =⊥∨ p is collision-free] do
let ϕcnew represent the generalization of

collisions in p
C←C∪{¬ϕcnew}
p← sat(ϕP,h,tmin,tmax ∧

∧
ϕc∈C ϕc)

return (p,C)

Note that if p ̸= ⊥, the pre-plan p may have sev-
eral collisions. The algorithm leaves it open for which
of those collisions to add collision avoidance infor-
mation into the formula ϕcnew . The algorithm leaves
it open, as well, how much to generalize a found col-
lision occurring at a certain point in time. In our ap-
proach, we use a specific choice here that we will de-
scribe in Section 5.

Theorem 1. The main algorithm is correct, and if t̂ is
chosen as (1−c)tmin+ctmax, for some fixed c∈ (0,1),
then it also terminates.

Proof. Since |optpre(P)| is a lower bound on the
number of steps of any plan of P, h ≤ min{|Π| |
Π is a plan of P} at the beginning of the first while
loop. After termination of the first while loop, h =
min{|Π| | Π is a plan of P}. Moreover, the second
while loop does not change h, and hence the result
of the algorithm certainly satisfies the first condition
of Definition 3. Throughout the first loop, tmin is a
lower bound on all collision free plans, and through-
out the second loop, it is a lower bound on all collision
free plans that take h steps, and popt contains a h-step
plan. Hence, after termination of the second loop also
the second condition of Definition 3 holds.

Finally, if c ∈ (0,1), cost(popt)− tmin goes to zero
as the second-while loop iterates. Hence the termina-
tion condition of this loop must eventually be satis-
fied.
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4 SMT ENCODING

In this section, we present an encoding of the plan-
ning problem from Section 2 as an SMT formula
in the quantifier-free theory of linear real arithmetic
QF_LRA. Here we concentrate on the formula ϕP,h,t,t
that models time constraints of the agents and their
paths in graph G but does not model collisions of the
agents and metric space M. We leave the SMT encod-
ing of collision avoidance to the next section.

Variables. As usual in planning applications of
SAT solvers (Rintanen, 2021), we unroll the plan-
ning problem in a similar way as in Bounded Model
Checking (Biere, 2021), where each step 0,1, . . . ,h
corresponds to one wait and one move action. As
a consequence, unrolling over h steps corresponds to
search for a pre-plan Π with |Π|= h.

Note that h corresponds to the maximum of the
steps of all agents, so an agent that already reached
the goal in step j < h may remain in the same state in
steps j, . . . ,h, without any further actions.

Each agent is modeled using a separate set of
Boolean and real-valued variables. For each agent
a ∈ A and discrete step j, we define variables V [ j]

a ,
T [ j]

a , w[ j]
a and m[ j]

a : We model the vertex position of the
agent by V [ j]

a which is a Boolean encoding of a vertex
v ∈V using O(|V |) or O(log(|V |)) Boolean variables.
We will use the notation V [ j]

a = v to denote a constraint
that expresses that an agent occupies vertex v ∈ V at
the beginning of discrete step j. We will also use
V [ j]

a ̸= v as an abbreviation for ¬
(

V [ j]
a = v

)
.

Next, we model time constraints of the agent using
real variables T [ j]

a , w[ j]
a , and m[ j]

a . The variables T [ j]
a

model the absolute time when the agent occupies
a vertex that corresponds to V [ j]

a , before it takes fur-
ther actions within discrete step j (or later). The vari-
ables w[ j]

a model the duration of wait actions and the
variables m[ j]

a the duration of move actions.
Finally, we use an auxiliary real variable λ that, for

a pre-plan Π, corresponds to cost(Π). The objective
is to minimize this variable. There may be arbitrary
linear constraints on the variable, allowing specifica-
tion of rich cost functions.

Constraints. We define (1) initial and goal condi-
tions on the agents, (2) constraints that ensure that
the agents follow paths through the graph G, and (3)
time constraints that correspond to occurrences of the
agents at vertices of the graph. For that, we only use
the variables defined above.

The initial and goal conditions ensure that each
agent a visits the start and goal vertex at the beginning
and end of the plan, respectively: V [0]

a = s(a)∧V [h]
a =

g(a).
To ensure that the agents follow paths through the

graph G, we use for each agent a and j < h a con-
straint ensuring that the pair of vertex positions V [ j]

a

and V [ j+1]
a corresponds to an edge of the graph G.

However, this is not necessarily the case for an al-
ready finished agent, that is, if V [ j]

a = g(a), then also
V [ j+1]

a = g(a) is allowed.
The time constraints ensure that the initial value

of time of all agents is zero: T [0]
a = 0. For j > 0,

they assume that during each discrete step, an agent
may first wait and then it moves, resulting in the con-
straint T [ j]

a = T [ j−1]
a +w[ j−1]

a +m[ j−1]
a . For the waiting

times, we require w[ j]
a ≥ 0. In addition, we ensure

that at least one agent starts to move at the beginning
of a plan without waiting, asserting

∨
a∈A w[0]

a = 0.
For the moving times, if j < h we ensure that m[ j]

a

corresponds to the duration of the edge between V [ j]
a

and V [ j+1]
a . In addition, m[ j]

a = 0 if j = h or V [ j]
a =

g(a)∧V [ j+1]
a = g(a).

Note that agents are modeled asynchronously,
meaning that for a pair of agents a,b ∈ A, T [ j]

a
and Tb

[ j] corresponds not necessarily to the same mo-
ment in time. This implies that comparing times
and the corresponding positions of agents, in order to
check whether there are collisions, cannot be done in
a straightforward way, and in the worst case, variables
corresponding to all discrete steps must be examined.

We present two variants of cost functions: sum
of costs, defined as λ = ∑a∈A T [h]

a , and makespan,
defined as λ = maxa∈A T [h]

a . To ensure that the for-
mula ϕP,h,t,t satisfies the bounds of the cost func-
tion, we simply require λ ≥ t ∧ λ ≤ t. An ex-
ample of an alternative cost function is λ =

∑a∈A ∑
h−1
j=0

(
2m[ j]

a +w[ j]
a

)
which prefers minimizing

moving times over waiting times and can therefore
result in more power-optimal plans.

Building the formula ϕP,h,t,t from scratch after
each increase of the number of steps h would be in-
efficient. Hence we build the formula incrementally.
However, some parts of the formula (e.g., the cost
functions or constraints such as V [h]

a = g(a)), explic-
itly depend on h, and hence need to be updated when
h is increased. Here we use the feature of modern
SMT solvers, that allow the user to cancel constraints
asserted after a previously specified milestone, and to
reuse the rest.
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5 COLLISION DETECTION AND
AVOIDANCE

Whenever the algorithm findplan from Section 3 com-
putes a pre-plan that still contains a collision, it
represents the generalization of collisions by a for-
mula ϕcnew whose negation it then adds to the formula
passed to the SMT solver. We will now discuss how
to first detect collisions and how to then construct the
formula ϕcnew generalizing detected collisions. Here,
we will assume precise arithmetic, deferring the dis-
cussion of implementation in finite computer arith-
metic to Section 6.

Collision Detection. Assume that two agents a
and b follow their motion functions αMa : [0,αDa]→
M and αMb : [0,αDb] → M with durations αDa
and αDb, respectively, corresponding to either a move
or a wait action. Assume that the agents start the mo-
tions at points in time τ̂a and τ̂b, respectively. To de-
termine whether there is a collision, we will use the
abstract predicate ISCOLLISION introduced in Sec-
tion 2. Based on this, we can check for a collision
of two agents that follow motion functions starting at
certain times:

Definition 4. For two motion functions αMa
and αMb with respective starting times τ̂a and τ̂b,
INCONFLICTa,b(αMa,αMb, τ̂a, τ̂b) iff

∃t ∈ [τ̂a, τ̂a +αDa]∩ [τ̂b, τ̂b +αDb] .

ISCOLLISION(a,b,αMa(t− τ̂a),αMb(t− τ̂b)).

We will now discuss the construction of the for-
mula ϕcnew that generalizes collisions of pre-plans
found in Algorithm 2. A found pre-plan may result
in several such collisions. We start with generaliz-
ing one of them and consider two cases: The case of
a collision between two moving agents, and the case
of a collision between a waiting and a moving agent.
We can ignore the case when both agents are wait-
ing: Such a conflict either should have been avoided
already in the previous discrete steps, or the agents
must in the case of a conflict overlap right at the be-
ginning of a pre-plan, resulting in a trivially infeasible
plan.

Collisions While Moving. In this case, one of the
two agents has to wait until the conflict vanishes. We
are interested in waiting the minimal time and hence
define SAFEa,b(αMa,αMb, τ̂a, τ̂b) :=

inf{τa | τ̂a < τa,

¬INCONFLICTa,b(αMa,αMb,τa, τ̂b)}.

Note that τ̂a < SAFEa,b(αMa,αMb, τ̂a, τ̂b) ≤ τ̂b +
αDb. Here, the lower bound is a consequence
of the assumption that agents are open sets which
makes collisions happen in the interior of those
sets. The upper bound follows from the fact that
INCONFLICTa,b(αMa,αMb, τ̂b + αDb, τ̂b) is always
false.

Assume that we detected a conflict between two
move actions starting at times τ̂a and τ̂b and hence
INCONFLICTa,b(αMa,αMb, τ̂a, τ̂b). We know that any
value of τa with τ̂a ≤ τa < SAFEa,b(αMa,αMb, τ̂a,
τ̂b) also leads to a conflict. In addition—letting the
second agent wait—any value of τb with τ̂b ≤ τb <
SAFEb,a(αMb,αMa, τ̂b, τ̂a) also leads to a conflict.

However, we know even more. For see-
ing this, observe that INCONFLICTa,b is invariant
wrt. translation along the time-axes, that is, for
every ∆ ∈ R, INCONFLICTa,b(αMa,αMb, τ̂a, τ̂b) iff
INCONFLICTa,b(αMa,αMb, τ̂a +∆, τ̂b +∆) which can
be seen by simply translating the witness t from Def-
inition 4 by the same value ∆. Due to this, the same
conflict happens for all pairs (τa,τb) with the same
relative distance as the relative distance of (τ̂a, τ̂b).
Hence we know that both

τ̂a− τ̂b ≤ τa− τb < SAFEa,b(αMa,αMb, τ̂a, τ̂b)− τ̂b

and

τ̂b− τ̂a ≤ τb− τa < SAFEb,a(αMb,αMa, τ̂b, τ̂a)− τ̂a

lead to a conflict.
Multiplying the second inequality by −1, we get

τ̂a−SAFEb,a(αMb,αMa, τ̂b, τ̂a)< τa− τb ≤ τ̂a− τ̂b

and combining the result with the first inequality, we
get

τ̂a−SAFEb,a(αMb,αMa, τ̂b, τ̂a)< τa− τb

∧ τa− τb < SAFEa,b(αMa,αMb, τ̂a, τ̂b)− τ̂b.

For applying this to the variables of the SMT en-
coding described in Section 4, we denote this formula
by ϕmm(a,b,αMa,αMb, τ̂a, τ̂b,τa,τb), replacing the ar-
guments by the corresponding terms from the SMT
encoding. More concretely, we observe that the start
of a move action of agent a at step ja is modeled by
the term Ta

[ ja]+wa
[ ja] and the start of a move action

of agent b at step jb by the term Tb
[ jb]+wb

[ jb].
Now assume that we detected a conflict of two

agents a and b moving along respective edges (ua,va)
and (ub,vb), starting in discrete steps ja and jb and
times T̂a

[ ja]+ ŵa
[ ja] and T̂b

[ jb]+ ŵb
[ jb] (the hats denot-

ing the values assigned to the respective variables). In
this case, INCONFLICTa,b(αMa,αMb, T̂a

[ ja] + ŵa
[ ja],
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T̂b
[ jb]+ ŵb

[ jb]), and the formula ϕcnew has the form

Va
[ ja] = ua∧Va

[ ja+1] = va

∧ Vb
[ jb] = ub∧Vb

[ jb+1] = vb

∧ ϕ
mm(a,b,(ua,va)M,(ub,vb)M,

T̂a
[ ja]+ ŵa

[ ja], T̂b
[ jb]+ ŵb

[ jb],

Ta
[ ja]+wa

[ ja],Tb
[ jb]+wb

[ jb]).

This means that there are 6 possibilities how to
resolve such a conflict (changing one of the four ver-
tices of edges along which the two move actions took
place or changing one of the two starting times of the
move actions).

Now we also discuss conflicts where a waiting
agent participates.

Collisions While Waiting. We also have to ensure
that no collisions happen while an agent a is wait-
ing. In principle, the motion function αMa can also
be constant, and hence one might be tempted to just
specialize the formula for two moving agents to this
case. However, unlike move actions, wait actions do
not have fixed durations, but their duration is a con-
sequence of the timing of the previous and following
move action. We take this into account, generalizing
the given conflict over arbitrarily long wait actions.

So assume an agent a waiting at a point xa ∈ M
and an agent b following motion function αMb start-
ing from time τ̂b. Assume that a collision happens
at a certain point in time t̂. So we have τ̂b ≤ t̂ ≤
τ̂b +αDb∧ ISCOLLISION(a,b,xa,αMb(t̂− τ̂b)).

Let τ̂a be the end of the move action of the waiting
agent a before this waiting period and let τ̂′a be the
starting time of the move action of the waiting agent
after this waiting period.

So we compute the beginning of the collision
t a,b,xa,αMb,τ̂b

:=

inf{τ̂b ≤ t ≤ t̂ | ISCOLLISION(a,b,xa,αMb(t− τ̂b))}

and its end ta,b,xa,αMb,τ̂b :=

sup{t̂ ≤ t ≤ τ̂b +αDb |
ISCOLLISION(a,b,xa,αMb(t− τ̂b))}.

So for any wait action of agent a starting at τa
and ending at τ′a and any move action of agent b
starting at τb, the collision happens if the upper

bound ta,b,xa,αMb,τ̂b is after the end of the previous ac-
tion and the lower bound t a,b,xa,αMb,τ̂b

is before the
beginning of the next action. The result is

τa− τb < ta,b,xa,αMb,τ̂b − τ̂b

∧ t a,b,xa,αMb,τ̂b
− τ̂b < τ

′
a− τb,

which we will denote by ϕwm(a,b,xa,αMb, τ̂b,τa,
τ′a,τb).

Now we again apply this to the variables of
the SMT encoding described in Section 4, replac-
ing the arguments of the formula ϕwm(a,b,xa,αMb,
τ̂b,τa,τ

′
a,τb) by their corresponding terms from the

SMT encoding. So when we detect a conflict be-
tween an agent a that waits at vertex ua at time step ja
and an agent b moving along an edge (ub,vb) at time
step jb, starting at T̂b

[ jb]+ ŵb
[ jb], the formula ϕcnew has

the form

Va
[ ja] = ua

∧ Vb
[ jb] = ub∧Vb

[ jb+1] = vb

∧ ϕ
wm(a,b,coord(ua),(ub,vb)M,

T̂b
[ jb]+ ŵb

[ jb],

Ta
[ ja],Ta

[ ja]+wa
[ ja],Tb

[ jb]+wb
[ jb]).

We ended up with a conflict clause that actu-
ally does not depend on a previous move action. In
the case where the wait action does not have a next
move action, the conflict clause can be modified in
a straightforward way.

Further Generalization. To fully exploit the com-
putational effort that is necessary to find pre-plans, we
generate generalizations for all conflicts a found pre-
plan contains. Hence we check for conflicts between
all pairs of agents, discrete steps and corresponding
move and wait actions.

We further generalize the conflicts such that we
also check for other conflicts of the given pair of
agents when taking a move action from the same
source to a different target vertex.

We did not find it useful to furthermore generalize
the conflicts to further pairs of agents and/or discrete
steps.

6 IMPLEMENTATION

Collision Detection and Avoidance. We imple-
mented the predicates and functions introduced in
Section 5 as follows:

• We assume that each agent a is abstracted into
an open disk with a fixed radius ra ∈ R>0. Hence
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for agents a and b, ISCOLLISION(a,b,ca,cb) iff
||ca− cb||< ra + rb, where ca,cb ∈M are respec-
tive centers of the disks of the agents.

• We assume that the agents move with constant ve-
locity following straight lines of the edges. As
a result, INCONFLICTa,b corresponds to checking
whether a quadratic inequality has a solution in
the intersection of the time intervals from Defini-
tion 4.

• Exploiting the observation that SAFEa,b(αMa,
αMb, τ̂a, τ̂b) ∈ (τ̂a, τ̂b + αDb] we compute
the resulting value by binary search of
the switching point τa in the interval for
which ¬INCONFLICTa,b(αMa,αMb,τa, τ̂b) and
INCONFLICTa,b(αMa,αMb,τa− ε, τ̂b), for a small
enough ε > 0.

Floating-point Numbers. Our simulations of colli-
sions of agents are based on floating-point computa-
tion whereas SMT solvers treat linear real arithmetic
precisely, using rational numbers for all computation.
There are two main issues here:

• Conversion of a floating point number to a ratio-
nal number may result in huge integer values for
the numerator and denominator, although the in-
tended value is very close to a simple rational or
even integer number.

• Conversion of rational numbers to floating point
numbers, and the following computation in float-
ing point representation may incur approxima-
tion errors (e.g., due to round-off or discretiza-
tion). For example, this may lead to the situa-
tion where—in the case of a collision between two
moving agents—the added conflict clause does
not require the waiting agent to wait long enough
to completely avoid the same collision. Hence
a very close collision may re-appear, and the same
situation may repeat itself several times.

We overcome these deficiencies with an overap-
proximation of the conflict intervals along with sim-
plification of the resulting rational numbers using
simple continued fractions and best rational approx-
imation: in the case that a floating-point value x is
respectively a lower or a higher bound of a conflict-
ing interval, the result corresponds to best rational ap-
proximation from (x− ε,x] or [x,x+ ε), respectively,
for an ε that is large enough. This not only avoids
the re-appearance of the same conflict, but also maps
floating-point values that are close to each other to
the same rational numbers, avoiding the appearance
of tiny differences between rational numbers that tend
to clog the SMT solver.

Heuristics. The formula passed to the SMT solver
often represents a highly underconstrained problem,
spanning a huge solution space. Due to this, it is
essential that the SMT solver chooses a solution in
a goal oriented way in order to maximize the chances
of hitting upon a δ-optimal plan, or at least to concen-
trate search on the most promising part of the solution
space which also concentrates the addition of conflict
avoidance clauses to this part. For this we prefer tran-
sitions to vertices that lie on shorter paths to the goal
over transitions to vertices that lie on longer paths.
This can be easily precomputed using Dijkstra’s algo-
rithm for all vertices with a fixed start and goal.

Nonetheless, using such heuristics does not evade
the problem of encoding all the transitions into the
formula, which floods the SMT solver with a lot of
constraints that are not essential at arriving at the de-
sired plan. Also, conversion of the resulting formula
to CNF might be expensive.

Tools. We implemented the resulting algorithm on
top of MathSAT5 (Cimatti et al., 2013) SMT solver.
We incrementally build the formula described in Sec-
tion 4 using API. However, since we do not even re-
quire the SMT solver itself to handle optimization, it
is easy to replace the API calls to another SMT solver
that handles QF_LRA. We also implemented a visual-
ization tool of MAPFR problems. Our tools are avail-
able online1,2 and are open-source.

7 COMPUTATIONAL
EXPERIMENTS

We compare run-times of our implementation from
Section 6 denoted as SMT-LRA and state-of-the-art
tools CCBS and SMT-CCBS, both presented in (An-
dreychuk et al., 2022), which define the MAPFR prob-
lem in a similar way. These tools search for opti-
mal plans, which is more difficult than searching for
sub-optimal plans, such as minstep δ-optimal plans in
our case. However, as discussed in the introduction,
not only that the price for getting optimal plans may
be too high, but the resulting plans may also be not
an ideal fit in practice, due to possible requirements
on flexible dispatchability of the plans, and due to the
fact that the dynamics of the agents may not be mod-
eled accurately. Based on these observations, we con-
sider the comparisons to be practically reasonable.

There are also differences concerning the function
that is being optimized which is sum of costs in the

1https://gitlab.com/Tomaqa/mapf_r
2https://github.com/Tomaqa/mapf_r-visualizer

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

54



case of CCBS and makespan in the case of SMT-
CCBS. We support both of these cost functions in
the form of a parameter. While there are certainly
instances where the choice of the cost function qual-
itatively matters, (Andreychuk et al., 2022) showed
that both the tools yield similar respective costs of the
resulting plans within their benchmarks. Hence, com-
paring such tools with different objectives also makes
sense.

In the following experiments, we will use a similar
setup to (Andreychuk et al., 2022), that is, similar to
both of the presented state-of-the-art tools.

We will start by the description of the benchmarks.
Finally, we will present and discuss computational re-
sults of the performed experiments.

7.1 Description of Benchmarks

A benchmark is specified by a graph and a set of
agents, each defined by a radius and a starting and
goal vertex. The following benchmarks use the same
radius for all agents, and hence we will not discuss
radii any more.

We did experiments with three classes of prob-
lems: empty, roadmap and bottleneck. Bench-
marks empty and roadmap are adopted from (An-
dreychuk et al., 2022) and correspond to MAPF
maps from the Moving AI repository. Our bottle-
neck benchmark is an additional simple experiment
which identifies a weakness of the state-of-the-art ap-
proaches. More detailed description of the bench-
marks follows below.

However, we exclude benchmark roadmap here.
We include all benchmarks along with further figures,
plots and tables in the extended version of the paper
(https://arxiv.org/abs/2312.08051).

We did not include benchmarks with large graphs
(i.e. with high number of vertices or edges), because
our current algorithm encodes the whole graph into
the formula, as discussed within heuristics in Sec-
tion 6.

Empty Room. This benchmark is based on a graph
that represents an empty square room with 16× 16
vertices—the result of grid approximations of MAPF
maps from the Moving AI repository (Andreychuk
et al., 2022).

Interconnection of the vertices depend on a neigh-
borhood parameter n, which defines that each ver-
tex has exactly 2n neighbors (with the exception of
boundary vertices). For example, n = 2 corresponds
to square grid, n = 3 extends the square grid of diag-
onal edges, etc. Using such a graph, it may be nec-
essary to include a high amount of useless edges in

order to cover a suitable number of realistic move-
ments of the agents. On the other hand, it might be
possible to exploit the fact that such graphs are highly
symmetric.

The resulting benchmark empty represents
a model with no physical obstacles. Still, with
an increasing number of agents k, the number of
possible collisions of the agents grows significantly,
because most of the shortest paths lead via central
regions of the graph.

Bottleneck. Benchmark bottleneck models the
problem of steering k agents from k initial vertices
through a single transfer vertex to k goal vertices.
Hence the transfer vertex represents a bottleneck ev-
ery agent has to pass through. We place the initial and
goal vertices (i.e., altogether 2k vertices) on a circle
whose center is formed by the transfer vertex.

The task here boils down to just choosing a cer-
tain order of the agents. Resolving such a benchmark
problem can still result in an exponential complexity
in the number of agents k—if just various permuta-
tions of the agents are tried, without a thorough ex-
clusion of the conflicting time intervals of particular
agents.

7.2 Experimental Setup

In the case of benchmark empty, we observe whether
particular experiments finish within a given timeout.
The set of experiments contains instances where the
number of agents ranges from 1 to 64 (none of the
tools managed to finish with more agents within the
selected timeouts). For each number of agents k ∈
{1, . . . ,64}, each start and goal vertex of each agent
is pre-generated in 25 random variants. Here, when
generating the variants for agent k + 1, all the pre-
vious k agents are reused and only the positions of
the new one are generated randomly. The result is
64×25 = 1600 instances for each neighborhood n.

The subject of our interest is how the evaluated
algorithms scale with time, so we ran all the exper-
iments with different timeouts ranging from 30 sec-
onds up to 16 minutes (with exponential growth) and
observed how many instances finished in time. We
will show the results in the form of box plots.

Our tool SMT-LRA is in addition parametrized by
a cost function—either makespan or sum of costs—
and by a sub-optimal coefficient δ ∈ {1, 1

2 ,
1
4}. In the

plots, the parameters are denoted in the form (C,δ),
where C is either M (makespan) or S (sum of costs). In
all experiments, the higher δ was, the more instances
were solved. Hence, to make the box plots more com-
pact, we merged all the variants of δ related to the
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same cost function such that the boxes of the vari-
ants with lower δ overlay the boxes of the variants
with higher δ. Also, higher values of δ correspond
to lighter colors. For example, boxes δ = 1

4 overlay
boxes δ = 1

2 , but the magnitudes of both boxes are
still visible since the number of solved instances is al-
ways lower in the case of δ = 1

4 than in the case of
δ = 1

2 . As a result, for each timeout in the box plot,
our tool always takes two columns, each consisting of
three (overlaid) boxes.

In the case of benchmark bottleneck, we only
focus on runtime of the evaluated tools for some num-
bers of agents ranging from 2 to 30. In the case of
our implementation, we again include all the variants
of parameters mentioned above. We used timeout
30 min to set some upper boundary on the runtimes
of the tools.

We executed all the benchmarks on a machine
with Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz,
with 180 cores and 1TB memory. To unify the run-
time environment, we reused and adapted the scripts
from the previous experiments (Andreychuk et al.,
2022) which are a part of the SMT-CCBS tool. These
scripts do not exploit all the available resources of the
machine, though. Still, none of the evaluated tools
use parallel computation—the cores are only used to
run multiple benchmarks concurrently.

7.3 Results

Empty Room. Recall that benchmark empty is
parametrized by its neighborhood n which means that
vertices have approximately 2n neighbors. We did ex-
periments with n∈ {2,3,4,5}, all of which are shown
in box plots in Figure 1.

We firstly focus on the comparison of the selected
cost functions in the case of our tool. We see that
usually the cases that optimize sum of costs perform
better than the cases optimizing makespan. Observe,
though, that the results are similar in the case of δ = 1

4
which correspond to the boxes at the base. We ex-
plain these as that in the case of sum of costs there
are more possibilities how to reduce the cost of the
plan than in the case of makespan where the cost usu-
ally depends on just one agent, regarding the symme-
try of the graph. We assume that at the same time
this is the reason why, in the case of makespan, there
are lower increases of the number of solved instances
with growing δ compared to the variant which op-
timizes sum of costs. Also notice that in the cases
of neighborhood n = 2 and especially n = 5, there
are quite low performance growths with increasing δ.
However, (Andreychuk et al., 2022) showed that these
corner cases of n are actually the least useful bench-

marks: benchmarks with n= 3 offer much faster plans
than in the case of n = 2, and n = 5 on the other hand
provide only very low improvement over the case of
n = 4. All in all, our approach scales well with the
growing timeouts, in every case of neighborhood n,
cost function and parameter δ.

Now we also focus on the state-of-the-art tools,
where we will actually confirm the observations made
in (Andreychuk et al., 2022). These tools are con-
sistent in the sense that the lower parameter n, the
faster is their algorithm—because there are less pos-
sible paths to the goals. In our case, the observation
holds as well, but with one exception in the case of
n = 2 vs. n = 3, where the runtime of the experiments
with the lowest neighborhood is higher. The reason
is that the graphs with higher n allow that the shortest
paths to the goals take less edges—which in our case
becomes more important than the number of possible
choices, because our current algorithm is sensitive to
the number of edges in the graph which we all encode
into the formula.

The state-of-the-art tools usually perform better
than our tool when the timeout is less or equal to
1 min. SMT-CCBS performs especially well in the
case of n = 2 because it maps a lot of time points to
the same values since many of them are integer val-
ues. We however consider this case to be the least
useful benchmark referring the earlier discussion and
in addition since the square grids are not too realistic
models and can also be handled by standard MAPF
approaches (which are currently much faster than
MAPFR approaches). Although SMT-CCBS scales
better with time than CCBS, the highest growth of the
number of solved instances still occurs in the case of
our approach, even in the cases of δ = 1

4 which cor-
respond to the boxes of our algorithm at the base. In
the cases of n ≥ 3 and δ = 1, which correspond to
the upmost boxes of our algorithm, we outperform the
state-of-the-art tools if the timeout is high.

Bottleneck. We summarize the runtimes of bench-
mark bottleneck of particular tools in Table 1. In
the case of SMT-CCBS, we excluded the built-in veri-
fication of the solutions which here seemed to be very
time-consuming. In our case we merge all the cor-
responding cases of parameter δ into single column
since the runtimes were almost the same regardless
the parameter. We further merge both cost functions M
and S into one column s.t. the respective runtimes are
separated by a pipe character.

It is clear that runtimes of both state-of-the-art
solvers exhibit exponential relationship with the num-
ber of agents k, while our algorithm is much less sen-
sitive. For example, CCBS is fastest until k = 6 but
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Figure 1: Comparison of the number of solved instances of benchmark empty with given n wrt. a given timeout.

after that point our SMT-LRA dominates the runtime.
The reason is that we resolve the conflicts of agents
using the learning mechanism of generalized conflict
clauses where the timing constraints efficiently ex-
clude inappropriate orderings of the agents, making
the benchmark fairly easy for our approach—which
is consistent with the observation that such a prob-
lem is indeed trivial, as discussed in the description of
benchmarks. For example, the problem is easily solv-
able using an ad-hoc approach. Nevertheless, such
bottlenecks may appear as a part of more complex
problems where a sophisticated algorithm instead of
an ad-hoc should be used.

8 CONCLUSION

We have demonstrated how to solve the continuous-
time MAPF problem (MAPFR) by direct translation
to SAT modulo linear real arithmetic. While the ap-
proach insists only on sub-optimality up to a certain
factor, it shows several advantages over state-of-the-
art algorithms, especially better scaling wrt. an in-
creasing time budget and its ability to efficiently han-
dle bottleneck situations. Our approach also allows
for easy change of the objective function to another.
The downside is a certain basic translation effort, es-
pecially for problems depending on large graphs.

In future work we will explore a lazy approach to
translation that only generates the information neces-
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Table 1: Comparison of the runtimes in seconds of bench-
mark bottleneck with a given number of agents.

k SMT-CCBS CCBS SMT-LRA(M|S)
2 0.00 0.00 0.01 | 0.01
3 0.47 0.00 0.02 | 0.02
4 > 1800 0.00 0.04 | 0.02
5 ? 0.01 0.03 | 0.03
6 ? 0.05 0.07 | 0.05
7 ? 0.45 0.08 | 0.06
8 ? 3.52 0.15 | 0.08
9 ? 43.99 0.15 | 0.11

10 ? 720.27 0.22 | 0.14
11 ? > 1800 0.26 | 0.17
15 ? ? 0.46 | 0.42
20 ? ? 0.79 | 0.97
30 ? ? 4.88 | 5.63

sary for solving the current problem instance. This
will be especially relevant in practical applications
where similar problems have to be solved repeatedly.
Moreover, we will generalize the method to problems
with non-linear motion functions, allowing both non-
linear geometry of the involved curves and the mod-
eling of non-linear dynamical phenomena such as ac-
celeration of agents. The method will also benefit
from the fact that the efficiency of SMT solvers is cur-
rently improving with each year.
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