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Abstract: The integrating of biological prior knowledge for disease gene associations has shown significant promise in 
discovering new biomarkers with potential translational applications. GediNET is a recent tool that is 
considered an integrative approach. In this research paper, we aim to enhance the functionality of GediNET 
by incorporating ten different machine learning algorithms. A critical element of this study involves utilizing 
the Robust Rank Aggregation method to aggregate all the ranked lists over the cross-validations, suggesting 
the final ranked significant list of disease groups. The Robust Rank Aggregation is used to re-score disease 
groups based on multiple machine learning. Moreover, a comprehensive comparative analysis of these ten 
machine learning algorithms has revealed insights regarding their intrinsic qualities. This facilitates 
researchers in determining which algorithm is most effective in the context of disease grouping and 
classification. 

1 INTRODUCTION 

Recently, integrating pre-existing biological 
knowledge and machine learning methods has 
become a noteworthy strategy in diverse study 
domains, such as bioinformatics, genomics, and 
biomedical data analysis (Libbrecht & Noble, 2015). 
The incorporation of current information about 
biological systems and processes enhances the 
accuracy, interpretability, and generalizability of 
machine learning models (Gligorijević & Pržulj, 
2015; Qumsiyeh & Jayousi, 2021). The random forest 
algorithm has gained recognition as a resilient and 
adaptable machine learning technique that effectively 
leverages available biological data across a diverse 
set of applications (Boulesteix et al., 2012; Qi, 2012). 

Comparing various machine learning algorithms 
is of utmost importance to determine the most 
appropriate strategy for a specific task or problem. 
Every algorithm possesses distinct strengths, 
weaknesses, and assumptions that can have a 
substantial influence on its performance and 
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suitability (Uddin et al., 2019). In this research, we 
concisely analyze various prominent machine 
learning methods, namely Random Forest (Ho, 
1995), Support Vector Machines (SVM) (Cortes & 
Vapnik, 1995), Decision Tree (Breiman et al., 2017), 
Tree Bag GBM (Natekin & Knoll, 2013), KNN 
(Zhang, 2016), AdaBoost (Wang, 2012), XGBoost 
(Chen & Guestrin, 2016), LightGBM (Ke et al., 
2017), CatBoost (Prokhorenkova et al., 2018), and 
Logistic Regressions (Stoltzfus, 2011). Additionally, 
we have suggested using the robust rank aggregation 
method (Kolde et al., 2012) to rescore the disease 
groups utilizing the ranked group lists of each of those 
ML algorithms. 

The generic approach, Grouping, Scoring, and 
Modeling (G-S-M), is a feature selection technique 
that performs grouping sections rather than individual 
feature selections. The G-S-M mainly consists of 
three components. The grouping (G), the scoring (S), 
and the modeling (M) components. The G component 
is for detecting or extracting groups. In component G, 
a biological database, that represent a biological 
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knowledge, is used to create groups of genes. The 
output of the G component is an et of groups.  

The set of groups are serving as input to the S 
component. The S component is performing scoring 
and ranking of those groups. The task of the S 
component is to compute a score-based machine 
learning that measures its contribution to the 
classification of the two-class data by computing 
different performance measurements, such as 
accuracy.  

The M component is for training the final  
machine learning model. The M component uses the 
top-ranked groups by considering the genes 
associated with those groups. A subdataset is 
extracted   and RF model is trained on the extracted 
subdataset. Finally, the model is evaluated on the 
testing dataset represented by those genes, and the 
performance statistics are recorded.  

The G-S-M treats a set of genes as a group, while 
the feature spaces are transformed into groups. The 
groups are determined based on pre-existing 
knowledge or could be computed by applying a 
specific algorithm to the feature space, such as a 
clustering algorithm. The G-S-M was implemented in 
many bioinformatics tools that use pre-existing 
biological knowledge (Ersoz et al., 2023; Jabeer et al., 
2023; Qumsiyeh, Salah, et al., 2023; Qumsiyeh, 
Yazıcı, et al., 2023; Yousef, Ülgen, et al., 2021; 
Yousef et al., 2023), such as gene-disease 
associations or microRNA target genes. Also, G-S-M 
was implemented, where the k-means clustering 
algorithm was used to detect the groups. For example, 
GediNET (Qumsiyeh et al., 2022) and GediNET Pro 
(Qumsiyeh, Yazıcı, et al., 2023) are G-S-M models 
where disease-gene associations were used to 
determine the groups. maTE (Yousef et al., 2019) is 
another G-S-M model that uses microRNA gene 
target associations for group detections. We refer to 
(Kuzudisli et al., 2023; Yousef, Kumar, et al., 2021) 
for more details, 

The G-S-M performs scoring for each group in the 
S component by extracting its associated sub-dataset 
from the input two-class dataset for each group. Then, 
an internal cross-validation is performed to assign a 
score that represents the power of the group in the 
classification of the diseases.  In the original tool, the 
Random Forest is used in both the S and M 
components. In the M component, the evaluation of 
the tool is performed by training the RF on the top-
ranked group genes and testing it on the test set that 
was split out.  

In this study, we have conducted a comparison 
study to discover the effect of the machine learning 
algorithm on both the S and M components. 

However, the study mainly aims to see how different 
machine learning algorithms score the groups. We 
examine the effect on the tool's performance in the 
top-ranked groups.  

2 DATASETS 

Our study sourced ten distinct human gene expression 
datasets from the Gene Expression Omnibus (GEO) 
database (Clough & Barrett, 2016). Detailed 
information about the 10 datasets is presented in 
Table 1. Each dataset was characterized by 
identifying the disease name and the total number of 
samples. Furthermore, these samples were divided 
into positive and negative categories. 

Table 1: Description of the 10 datasets used in the study. 

GEO 
Accession Disease Total 

Samples 
Negative 
Samples 

Positive 
Samples 

GDS1962 Glioma 180 23 157
GDS2545 Prostate cancer 171 81 90
GDS2771 Lung cancer 192 90 102

GDS3257 Lung 
adenocarcinoma 107 49 58 

GDS4206 Leukemia 197 157 40

GDS5499 Pulmonary 
hypertension 140 41 99 

GDS3837 Lung cancer 120 60 60

GDS4516_4718 Colorectal 
cancer 148 44 104 

GDS2547 Prostate cancer 164 75 89
GDS3268 Colitis 202 73 129

3 METHOD 

The GediNET tool was considered in this study for 
testing the effect of the machine learning algorithm 
on the S and M components. Besides, Random Forest, 
Decision Tree, Support Vector Machines (SVM), 
Tree Bag GBM, KNN, AdaBoost, XGBoost, 
LightGBM, CatBoost, and Logistic Regressions were 
used in this study.  

We have updated the S component to include all 
10 ML algorithms for that purpose. The one 
considered in the S component will be used directly 
in the M component for training and testing the 
model.  

The process of disease group ranking is a pivotal 
component of the GediNET framework. Initially, 
GediNET employed robust rank aggregation to 
compute ranks for each group. This computation 
relied heavily on scores derived from lists generated 
over 100 MCCV iterations (Xu & Liang, 2001). 
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With the introduction of GediNET_ML, there 
comes an added complexity of having multiple 
ranked lists, one from each machine learning 
algorithm integrated into GediNET. To reconcile 
these multiple-ranked lists and produce a unified list, 
we revisited the robust rank aggregation method. 
Each individual ranked list from GediNET_ML was 
input to the robust rank aggregation, producing an 
aggregated ranked list of disease groups. 

Table 2 presents the pseudo-code that describes 
the main algorithm of the study.  

Table 2: Pseudo-code of the main algorithm outlining the 
integration of ten machine learning algorithms with the 
GediNET tool. 

Input: Dataset D, GediNET: Components S and M 
1. Initialize GediNET_tool with components S and M 
2. Define a list of machine learning algorithms:  
    ML_algorithms = [RandomForest, DecisionTree, 
SVM, TreeBagGBM, KNN, AdaBoost, XGBoost, 
LightGBM, CatBoost, LogisticRegression] 
3. Update the S component to include all algorithms 
from ML_algorithms 
4. For each algorithm in ML_algorithms: 
    4.1. Set the current algorithm in the S component 
    4.2. Train the M component using the selected 
algorithm on Dataset D 
    4.3. Evaluate the performance of the model on test 
data 
    4.4. Generate a ranked list of disease groups using 
the model 
    4.5. Store the ranked list for robust rank aggregation 
5. Initialize an empty list: aggregated_ranked_list 
6. For each list generated in Step 4: 
    6.1. Input the list to the robust rank aggregation 
method 
    6.2. Combine the list with aggregated_ranked_list 
7. Output the aggregated_ranked_list 

4 EVALUATIONS 

Our study comprehensively evaluated the machine 
learning models, employing a 100-fold cross-
validation technique to measure performance.  Each 
iteration randomly splits the dataset, allocating 90% 
of the subsets for training and 10% for thorough 
testing and assessment. To conduct a comprehensive 
assessment of the prediction abilities of our models, 
we utilized a wide range of performance metrics, 
including accuracy, sensitivity, specificity, F1-
measure, Area Under Curve (AUC), and precision 
(Mothilal et al., 2020). The core measure of proper 

classification was accuracy, while sensitivity and 
specificity assessed the models' capacity to accurately 
detect true positive and true negative cases, 
respectively. The F1-Measure provides a 
comprehensive evaluation of both precision and 
recall, whereas the AUC metric evaluates the 
discriminatory capability of the models. The 
precision highlighted the validity of affirmative 
forecasts. This enabled us to comprehensively assess 
the efficacy of our models, resulting in significant 
insights that can inform their practical 
implementation and enhance the reliability of our 
research outcomes. 

5 RESULTS 

In Table 3, the AUC represents the classification 
performance of different machine learning models on 
various datasets. Higher AUC values indicate better 
discrimination between positive and negative classes.  
The following are specific observations from Table 3. 
Concerning Decision Trees (DT), DT performs 
reasonably well, with AUC scores ranging from 0.54 
to 0.9. It achieves the highest AUC on GDS1962 (0.9) 
but has a relatively lower AUC on some other 
datasets. Random Forest (RF) consistently performs 
well, with AUC values ranging from 0.597 to 1.0. It 
achieves the highest AUC on GDS3257, 
GDS4516_4718, and GDS5499 (all perfect AUCs of 
1.0), indicating predictive solid classification power. 
Gradient Boosting Machine (GMB) shows variability 
in its performance, with AUC scores ranging from 
0.614 to 0.972. It performs well on GDS3837 and 
GDS3257. K-Nearest Neighbors (KNN) has AUC 
scores ranging from 0.464 to 0.975. It performs well 
on GDS1962, GDS3257, and GDS3837. LightGBM 
generally performs well, with AUC values ranging 
from 0.464 to 0.976. It excels on GDS3257.  Logistic 
Regression has AUC scores ranging from 0.503 to 
0.9. It performs reasonably well but tends to have a 
lower AUC compared to ensemble methods. NB 
shows AUC scores ranging from 0.741 to 0.98, 
performing well on GDS4516_4718. Real AdaBoost 
achieves AUC scores ranging from 0.809 to 0.975, 
performing well on GDS3257. SVM has AUC scores 
ranging from 0.806 to 0.975, performing well on 
GDS1962 and GDS3257.  XGBoost consistently 
performs well, with AUC values ranging from 0.786 
to 0.99. It achieves the highest AUC on GDS1962 and 
GDS3257. 

However, it is crucial to acknowledge that the 
presentation of mean AUC values alone may not 
comprehensively represent the models' performance. 
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Table 3: The mean AUC of 100 iterations. The results are for the top 2 groups. 

DataSet/ 
Mean Genes 

DT RF GMB KNN Light 
GBM 

Logistic 
Regression

NB Real 
AdaBoost 

SVM X 
GBoost 

GDS1962 0.9 0.99 0.92 0.975 0.82 0.9 0.97 0.975 0.99 0.865
GDS2545 0.639 0.856 0.821 0.831 0.712 0.741 0.809 0.8 0.786 0.835
GDS2547 0.554 0.838 0.733 0.751 0.461 0.688 0.831 0.808 0.842 0.788
GDS2771 0.554 0.647 0.614 0.704 0.573 0.606 0.718 0.668 0.679 0.674
GDS3257 0.97 1 0.96 1 0.464 0.96 0.976 0.992 0.97 0.992
GDS3268 0.54 0.776 0.762 0.72 0.527 0.671 0.643 0.639 0.798 0.743
GDS3837 0.917 0.972 0.931 0.967 0.656 0.871 0.944 0.958 0.983 0.975
GDS4206 0.463 0.597 0.469 0.629 0.472 0.503 0.64 0.586 0.608 0.558

GDS4516_4718 0.984 1 1 1 0.8 1 1 1 1 1
GDS5499 0.832 0.871 0.917 0.865 0.65 0.779 0.885 0.924 0.975 0.903

Mean 0.7353 0.8547 0.8127 0.8442 0.6135 0.7719 0.8416 0.835 0.8631 0.8333

Table 4: The mean number of genes for the 100 iterations. The results are for the top 2 groups. 

DataSet/ 
Mean Genes 

DT RF GMB KNN Light 
GBM

Logistic 
Regression

NB Real 
AdaBoost 

SVM X 
GBoost

GDS1962 31.8 27.8 14.3 37 93.3 68.5 23.6 26.5 64.8 31
GDS2545 31.8 149 48.6 76.6 127.1 87.9 252.7 40 182.3 171.7
GDS2547 118.3 97.9 47.2 90.2 68.7 92.9 350.6 45.2 94.1 65.4
GDS2771 75.7 100.7 97.7 35.5 57.2 109.8 40.3 17.3 138.3 81.2
GDS3257 160.4 64.7 151.2 32 76.2 69.7 330 71.2 62.2 110.6
GDS3268 67.7 93 56.7 57.3 105.4 139 221.6 43 110.1 56
GDS3837 279.3 108.8 119.3 83.3 77.8 72 275.3 85.4 63.1 79.6
GDS4206 22.8 82.11 24.9 20.1 42.1 58.2 320.6 17.5 107.6 65.4

GDS4516_4718 100.8 41.84 30.5 68.6 34.9 45.7 90.2 17.5 53.2 34.5
GDS5499 196.1 79.63 49.6 85.9 87.2 119.7 205.2 103.1 112.3 96.5

Mean 108.47 84.548 64 58.65 76.99 86.34 211.01 46.67 98.8 79.19
 

The inclusion of standard error measures, which may 
provide a more nuanced understanding of the 
robustness of the models, could be one way to 
account for the substantial variations in AUC scores 
that occur across numerous folds. In contrast, the 
Gradient Boosting Machine and Naive Bayes models 
show greater variability in their performance across 
the datasets. Consequently, while Random Forest and 
XGBoost appear superior based on mean AUC 
scores, a more detailed analysis that includes 
variability metrics is essential to accurately assessing 
their performance across diverse datasets. 

Models differ in the average number of genes 
used for training, as indicated in Table 4. Notably, 
Naive Bayes uses a relatively high average number of 
genes, while Decision Trees and Logistic Regression 
use fewer genes. Random Forest and Gradient 
Boosting Machine use an average of a moderate 
number of genes. 

The choice of the number of genes used can 
influence model complexity and potentially affect 
AUC scores. Using more genes can increase model 
complexity, which may impact generalization. While 
models like RF and XGBoost achieve high AUC 

scores, they also tend to use a moderate number of 
genes on average, indicating a balance between 
predictive power and model complexity. Decision 
Trees and Logistic Regression, which use fewer 
genes, achieve decent AUC scores, suggesting they 
may be more economical models. Naive Bayes stands 
out for using a high number of genes while still 
achieving competitive AUC scores on specific 
datasets (e.g., GDS4516_4718). 

5.1 Comparison of Top-Ranked 
Diseases by 5 Machine Learning 
Models 

We have selected 5 ML models to perform deep 
analysis on the top 100 diseases ranked by each 
model. Each ML model output a table with its top 100 
ranked disease groups.  

In our analysis of the interactions table associated 
with Figure 1, and while performing a deep analysis for 
the most common disease among those selected 5 ML, 
we observe that SQUAMOUS CELL CARCINOMA 
OF LUNG disease appears as intersections of Logistic 
Regression, RF, SVM and XGBoost. 
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Leukemia appears in several rows with different 
subtypes (e.g., ACUTE MONOCYTIC LEUKEMIA, 
ADULT ACUTE LYMPHOCYTIC LEUKEMIA). 
The disease is common among multiple models. The 
MALIGNANT NEOPLASM OF COLON disease is 
common among several models, including RF, SVM, 
DT, and Logistic Regression. Besides, the 
MALIGNANT NEOPLASM OF PANCREAS 
(Pancreatic cancer)  disease is common among RF, 
SVM, DT, Logistic Regression, SVM, and XGBoost. 

 
Figure 1: The Intersection of Top 100 Ranked Diseases by 
5 Machine Learning Models. 

5.2 Analysis of Jaccard Similarity 
Among Machine Learning Models' 
Disease Predictions 

The Jaccard similarity in Table 5 provides a measure 
of similarity between different lists of diseases 
generated by various machine learning models. 
Higher Jaccard similarity values indicate more 
significant overlap or similarity between disease lists.  
XGBoost and RF have the highest similarity among 
the models (0.01). SVM has slightly lower similarity 
with XGBoost and RF (0.01 and 0.02, respectively). 
Decision Tree and Logistic Regression have the 
lowest similarity with the other models (mostly 0.00). 

The average similarity across all models is 
moderate, ranging from 0.16 to 0.19. This suggests 
some commonality in the disease predictions across 
models, but they also have differences. 

In summary, while there is some overlap in 
disease predictions among the machine learning 
models, they also exhibit distinct differences in the 
diseases they identify as important. This can be 
valuable in ensemble learning or considering diverse 
perspectives in disease prediction tasks. 

Table 5: Jaccard Similarity Comparison of Common 
Disease Predictions Among Machine Learning Models. 

 X GBoost RF  SVM  DT  Logistic 
Regression

XGBoost    1.00 0.01 0.01 0.00 0.01 
RF 0.01 1.00 0.02 0.00 0.02
SVM 0.01 0.02 1.00 0.00 0.02
DT 0.00 0.00 0.00 1.00 0.00
Logistic 
Regression

0.01  0.02 0.02 0.00 1.00 

All Lists  0.17 0.19 0.17 0.05 0.16

5.3 Analysis of Jaccard Similarity 
Among Machine Learning Models' 
Genes Predictions 

In this section, we have considered the GDS1962 
(Disease = Glioma-derived stem cell factor effect on 
angiogenesis in the brain) dataset with its top 100 
ranked genes of each of the 5 selected ML models. 
The genes are ranked based on their associations with 
the disease group during the scoring and ranking 
stage in GediNET. The Robust Rank Aggregation 
method (Kolde et al., 2012) is used to score and rank 
those genes for each ML model. 

 
Figure 2: The intersection of Top 100 Ranked Genes by 5 
Machine Learning Models. 

In our analysis of the interactions table associated 
with Figure 2, we have identified that among the 
various models examined, DT, RF, SVM, and 
XGBoost stand out as having the most intersections, 
with 8 shared genes. These genes are CD44, TP53, 
VIM, NES, IGFBP2, EZH2, VEGFA, and 
EIF4EBP1. Additionally, RF and SVM models share 
8 genes, including CEBPD, TNC, TEAD1, 
CDKN2C, DNMT1, HAS2, TYMS, and ANXA5. 

It's worth noting that while these models share 
some common genes, they also exhibit a significant 
degree of uniqueness. For instance, SVM has 42 out 
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of 100 genes not found in any of the other models, 
while XGBoost has 43 out of 100 genes that are 
unique to it. This variety in gene selection suggests 
that each model has its strengths and preferences 
regarding gene selection. Knowing these differences 
can help with future research and analysis in the field. 

5.4 Aggregating Multiple Algorithmic 
Rankings Using Robust Rank 
Aggregation 

Here, we tackle the problem of aggregating rankings 
from ten different machine learning algorithms, each 
run on a subset of groups, to produce unique rankings 
using the Robust Rank Aggregation technique. The 
objective is to create a unified ranking that robustly 
represents the collective preferences of the 
algorithms. To achieve this, we follow a systematic 
approach. First, we initialize an empty list to 
accumulate the rankings from each of the ten 
algorithmically generated files. Subsequently, we 
iterate through the files, extract the rankings, and 
store them in an aggregate list of ranks. Once all 
rankings are gathered, we employ the Robust Rank 
Aggregation algorithm to harmonize these diverse 
rankings into a single, comprehensive ranking of the 
groups. Due to the specific implementation and 
choice of the library for the aggregation process, the 
details may vary. Finally, we save the re-ranked 
groups to a designated output file, allowing for further 
analysis or application of the consolidated ranking. 
Table 6 illustrates the final aggregated list. This 
procedure guarantees the production of a strong, 
aggregated ranking that incorporates the findings of 
several machine learning algorithms, offering a useful 
tool for analysis and decision-making. 

Table 6 presents the aggregated rankings of 
various disease groups based on consolidating 
outputs from ten machine-learning algorithms. The 
 

Table 6: Final aggregated list of disease group rankings, 
generated by combining the results of ten machine learning 
algorithms through the Robust Rank Aggregation approach. 

Disease p-value 
ADENOMA OF LARGE INTESTINE 2.33442E-12 
ACUTE MONOCYTIC LEUKEMIA 2.03267E-11 
ENDOMETRIAL CARCINOMA 8.93323E-10 
CHILDHOOD EPENDYMOMA 2.78325E-09 
RENAL CARCINOMA 3.27519E-09 
ADENOCARCINOMA OF LUNG 
(DISORDER) 4.05483E-09 

ADULT MEDULLOBLASTOMA 6.48745E-09 
NEUROFIBROMA 1.00241E-08 

diseases are listed alongside their corresponding p-
values, signifying their statistical significance. The 
diseases range from "ADENOMA OF LARGE 
INTESTINE" with the lowest p-value, indicating the 
highest significance, to "ADENOCARCINOMA OF 
PANCREAS." The table showcases the power of the 
Robust Rank Aggregation approach in synthesizing 
diverse algorithmic outputs into a unified ranking. 

6 DISCUSSION AND 
CONCLUSIONS 

The incorporation of ten different machine learning 
(ML) algorithms into GediNET represents a 
significant advancement in the field of disease 
grouping significance investigations. Our study 
improved the GediNET tool's functionality and gave 
a thorough understanding of the efficacy and 
applicability of several machine learning algorithms 
in this field. 

A noteworthy finding from our research is that 
models, especially the Random Forest and XGBoost 
algorithms, have similar gene selections. The co-
occurrence of 10 genes, such as MDM2, IL6, and 
VEGFA, highlights the possible significance of these 
genes in the classification of diseases. However, the 
notable uniqueness in gene selection that XGBoost 
and SVM displayed—42 and 43 distinct genes, 
respectively—points to the various advantages and 
inclinations of these models. Diversity like this could 
provide a more comprehensive viewpoint and 
possibly highlight various aspects of the biological 
material being studied. The robust, aggregated 
ranking produced by harmonizing the insights of 
multiple ML algorithms offers a holistic perspective 
that has the potential to revolutionize decision-
making processes and analyses in bioinformatics and 
genomics. 

Observing the degree of distinct gene selections 
made by models like SVM and XGBoost was 
remarkable.  Unexpectedly high degrees of 
differentiation raise concerns about the strengths and 
inherent biases of individual algorithms regarding 
disease classification. 

Compared to our earlier work, the Random Forest 
technique has proven essential to utilizing biological 
data. Furthermore, our research demonstrated the 
potential of additional algorithms such as SVM, 
XGBoost, and others. The findings show that 
although RF is still a good option, expanding the 
algorithmic approach can produce more insightful 
results. 
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Like all studies, our research has its limitations. 
The accuracy and completeness of the input data 
determine how well machine learning algorithms 
work and provide results. Despite our best efforts to 
ensure thorough feature selection and data 
pretreatment, biases present in the original datasets 
may nevertheless affect the outcomes. Additionally, 
the choice of hyperparameters and model 
configurations can affect the algorithms' 
performance, which we aimed to optimize but might 
not be the best for all scenarios. 

Future research could go deeper into 
comprehending the precise causes for the distinct 
gene selections of various models, given the insights 
from our current analysis. To further improve the 
precision and applicability of disease classification, it 
may be worthwhile to investigate integrating more 
complex or specialized algorithms or even ensemble 
approaches that combine the best features of several 
algorithms corporating feedback loops, which allow 
for continuous learning from fresh data to improve 
and refine the disease's grouping significance. This 
should be a consideration in GediNET's progress. 

In conclusion, our efforts to enhance GediNET 
have opened new horizons for understanding disease 
groupings. At the same time, we've made significant 
advances in the process of exploration and refinement 
in this domain.  The combination of biology and 
machine learning may lead to more accurate, tailored, 
and successful disease knowledge and treatment in 
the future. 

ACKNOWLEDGEMENTS 

The work of M.Y. has been supported by the Zefat 
Academic College. 

REFERENCES 

Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I. R. 
(2012). Overview of random forest methodology and 
practical guidance with emphasis on computational 
biology and bioinformatics: Random forests in 
bioinformatics. Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery, 2(6), 493–507. 
https://doi.org/10.1002/widm.1072 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. 
(2017). Classification And Regression Trees (1st ed.). 
Routledge. https://doi.org/10.1201/9781315139470 

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree 
Boosting System. Proceedings of the 22nd ACM 
SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 785–794. https://doi.org/ 
10.1145/2939672.2939785 

Clough, E., & Barrett, T. (2016). The Gene Expression 
Omnibus Database. Methods in Molecular Biology 
(Clifton, N.J.), 1418, 93–110. https://doi.org/10.1007/ 
978-1-4939-3578-9_5 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. 
Machine Learning, 20(3), 273–297. https://doi.org/ 
10.1007/BF00994018 

Ersoz, N. S., Bakir-Gungor, B., & Yousef, M. (2023). 
GeNetOntology: Identifying Affected Gene Ontology 
Groups via Grouping, Scoring and Modelling from 
Gene Expression Data utilizing Biological Knowledge 
Based Machine Learning. Frontiers in Genetics. 

Gligorijević, V., & Pržulj, N. (2015). Methods for 
biological data integration: Perspectives and 
challenges. Journal of The Royal Society Interface, 
12(112), 20150571. https://doi.org/10.1098/rsif.2015.0 
571 

Ho, T. K. (1995). Random decision forests. Proceedings of 
3rd International Conference on Document Analysis 
and Recognition, 1, 278–282 vol.1. https://doi.org/ 
10.1109/ICDAR.1995.598994 

Jabeer, A., Temiz, M., Bakir-Gungor, B., & Yousef, M. 
(2023). miRdisNET: Discovering microRNA 
biomarkers that are associated with diseases utilizing 
biological knowledge-based machine learning. 
Frontiers in Genetics, 13, 1076554. https://doi.org/ 
10.3389/fgene.2022.1076554 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., 
Ye, Q., & Liu, T.-Y. (2017). LightGBM: A Highly 
Efficient Gradient Boosting Decision Tree. Advances in 
Neural Information Processing Systems, 30. 
https://proceedings.neurips.cc/paper/2017/hash/6449f4
4a102fde848669bdd9eb6b76fa-Abstract.html 

Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust 
rank aggregation for gene list integration and meta-
analysis. Bioinformatics, 28(4), 573–580. 
https://doi.org/10.1093/bioinformatics/btr709 

Kuzudisli, C., Bakir-Gungor, B., Bulut, N., Qaqish, B., & 
Yousef, M. (2023). Review of Feature selection 
approaches based on Grouping of features. PeerJ. 

Libbrecht, M. W., & Noble, W. S. (2015). Machine learning 
applications in genetics and genomics. Nature Reviews 
Genetics, 16(6), 321–332. https://doi.org/10.1038/ 
nrg3920 

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining 
machine learning classifiers through diverse 
counterfactual explanations. Proceedings of the 2020 
Conference on Fairness, Accountability, and 
Transparency, 607–617. https://doi.org/10.1145/33510 
95.3372850 

Natekin, A., & Knoll, A. (2013). Gradient boosting 
machines, a tutorial. Frontiers in Neurorobotics, 7. 
https://doi.org/10.3389/fnbot.2013.00021 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. 
V., & Gulin, A. (2018). CatBoost: Unbiased boosting 
with categorical features. Advances in Neural 
Information Processing Systems, 31. https://proceed 

BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms

452



ings.neurips.cc/paper/2018/hash/14491b756b3a51daac
41c24863285549-Abstract.html 

Qi, Y. (2012). Random Forest for Bioinformatics. In C. 
Zhang & Y. Ma (Eds.), Ensemble Machine Learning: 
Methods and Applications (pp. 307–323). Springer. 
https://doi.org/10.1007/978-1-4419-9326-7_11 

Qumsiyeh, E., & Jayousi, R. (2021). Biomedical 
Information Extraction Pipeline to Identify Disease-
Gene Interactions from PubMed Breast Cancer 
Literature. 2021 International Conference on 
Promising Electronic Technologies (ICPET), 1–6.  

Qumsiyeh, E., Salah, Z., & Yousef, M. (2023). 
miRGediNET: A comprehensive examination of 
common genes in miRNA-Target interactions and 
disease associations: Insights from a grouping-scoring-
modeling approach. Heliyon, 9(12), e22666. 
https://doi.org/10.1016/j.heliyon.2023.e22666 

Qumsiyeh, E., Showe, L., & Yousef, M. (2022). GediNET 
for discovering gene associations across diseases using 
knowledge based machine learning approach. Scientific 
Reports, 12(1), Article 1. https://doi.org/10.1038/s415 
98-022-24421-0 

Qumsiyeh, E., Yazıcı, M., & Yousef, M. (2023). 
GediNETPro: Discovering Patterns of Disease Groups. 
Proceedings of the 16th International Joint Conference 
on Biomedical Engineering Systems and Technologies 
- BIOINFORMATICS, 195–203. https://doi.org/10.52 
20/0011690800003414 

Stoltzfus, J. C. (2011). Logistic Regression: A Brief Primer. 
Academic Emergency Medicine, 18(10), 1099–1104. 
https://doi.org/10.1111/j.1553-2712.2011.01185.x 

Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). 
Comparing different supervised machine learning 
algorithms for disease prediction. BMC Medical 
Informatics and Decision Making, 19(1), 281. 
https://doi.org/10.1186/s12911-019-1004-8 

Wang, R. (2012). AdaBoost for Feature Selection, 
Classification and Its Relation with SVM, A Review. 
Physics Procedia, 25, 800–807. https://doi.org/10.10 
16/j.phpro.2012.03.160 

Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross 
validation. Chemometrics and Intelligent Laboratory 
Systems, 56(1), 1–11. https://doi.org/10.1016/S0169-
7439(00)00122-2 

Yousef, M., Abdallah, L., & Allmer, J. (2019). maTE: 
Discovering expressed interactions between 
microRNAs and their targets. Bioinformatics, 35(20), 
4020–4028. https://doi.org/10.1093/bioinformatics/btz 
204 

Yousef, M., Kumar, A., & Bakir-Gungor, B. (2021). 
Application of Biological Domain Knowledge Based 
Feature Selection on Gene Expression Data. Entropy, 
23(1). https://doi.org/10.3390/e23010002 

Yousef, M., Ozdemir, F., Jaber, A., Allmer, J., & Bakir-
Gungor, B. (2023). PriPath: Identifying dysregulated 
pathways from differential gene expression via 
grouping, scoring, and modeling with an embedded 
feature selection approach. BMC Bioinformatics, 24(1), 
60. https://doi.org/10.1186/s12859-023-05187-2 

Yousef, M., Ülgen, E., & Uğur Sezerman, O. (2021). 
CogNet: Classification of gene expression data based 
on ranked active-subnetwork-oriented KEGG pathway 
enrichment analysis. PeerJ Computer Science, 7, e336. 
https://doi.org/10.7717/peerj-cs.336 

Zhang, Z. (2016). Introduction to machine learning: K-
nearest neighbors. Annals of Translational Medicine, 
4(11), 218–218. https://doi.org/10.21037/atm.2016.0 
3.37 

ReScore Disease Groups Based on Multiple Machine Learnings Utilizing the Grouping-Scoring-Modeling Approach

453


