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Abstract: Access control has become ubiquitous in contemporary computer systems but creating policies is an costly and
errorprone task, thus it is desirable to automize it. Machine learning is a common tool to automate such tasks.
But typical modern machine learning (ML) techniques require large example sets and do not give guarantees
which makes it hard to learn policies with them. Inductive logic programming (ILP) is a symbolic form of
ML that addresses these limitations. We show how ILP can be used to create generalized file access policies
from examples. To do so we introduce two strategies to use the ILASP ILP framework to create file access
rulesets for AppArmor. Further, we introduce concepts to generate negative examples for the learning tasks.
Our evaluation shows the feasibility of our strategies by comparing them with AppArmor’s default tooling.

1 INTRODUCTION

Access control systems are ubiquitous in contempo-
rary computer systems. From file access rules to pro-
cess permissions like capabilities to permissions in
distributed systems, there are various forms of access
control systems (Anderson, 2020). What they all have
in common is the use of some sort of policy to de-
scribe the permissions that are granted to subjects.

The policy description language (PDL), and what
a policy expresses depends on the system. Especially
for large and complex systems, defining a policy is
a time-intensive and error-prone task (Nobi et al.,
2022). Hence, automating this task seems desirable
and ML (Machine Learning) is applied to do so. How-
ever, generating policies with typical ML methods
poses two significant challenges. First, common ML
approaches often require large example sets. Yet, for
many policy application domains such policy data sets
either do not exist or are not publicly available (see,
e.g., (Nobi et al., 2022) for a survey on the topic).
Second, many common ML techniques do not offer
hard guarantees on the properties of the policies they
generate. Modern ML relies heavily on probabilis-
tic methods which usually fail to give robust guaran-
tees on the behavior of its output in every edge case
(Rechkemmer and Yin, 2022). However, especially
for policies, certainty that some actions are always (or
never) allowed is desirable.

Inductive Logic Programming (ILP) (Muggleton,
1991; Cropper and Dumančić, 2022) is an symbolic

ML technique that addresses these challenges, there-
fore it was already used in contemporary research to
learn policies (Law et al., 2020a; Calo et al., 2019;
Cunnington et al., 2019b). ILP relies on logic, rather
than statistics which leads to rather different strengths
and weaknesses from those seen in ML systems built
on neural networks (Cropper and Dumančić, 2022).

The present paper takes the first step in using
ILP to generate access control policies for common
mandatory access control (MAC) systems. We use
the ILASP (Law et al., 2014) ILP framework to learn
file access policies for AppArmor. To investigate how
ILP can be used to learn such policies, we introduce
and evaluate two distinct strategies for applying ILP
to policy learning. The first strategy aims to craft a
learning task in such a way that the resulting solu-
tions can be directly transpiled to AppArmor’s PDL,
while the second approach learnes pattern that can be
applied to distinct parts of the file system (FS). We
then compare the two strategies in terms of the poli-
cies they generate and the resources they require. To
do so, we introduce a method for generating exam-
ples, and in particular negative examples, for an arbi-
trary application. Finally, we learn policies for a cus-
tom test application and compare the strategies with
AppArmor’s aa-logprof.

We choose to use a custom test application, rather
than a real-world application or even benchmark
suites. This has several reasons: First, as we will
show below, the current ILP frameworks do not scale
to the complexities involved in writing policy for most
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real-world applications. This is particularly true for
the first learning strategy. In order to compare our
two strategies in terms of the quality of the policies
they produce, we therefore need to stick to small ap-
plications for now. Second, for most real-world ap-
plications we run into at least one of the following
problems: (A) There is no comprehensive set of ex-
amples and no easy way to automatically create them
(indeed, this is an active area of research; see Related
Work in section 3). (B) There is no reference policy
to compare with. Even if such a policy exists, it is
often written with a very particular use case in mind
(e.g. running an nginx for a chat server inside a snap
container on Ubuntu). By using a custom application,
we can ensure that we can verify the learned policy
against the actual behavior of the application.

2 PRELIMINARIES

Terminology for Logic Programming: is used in
the remainder of this work. We assume basic famil-
iarity with logic programming concepts, such as pred-
icates, constant symbols, arity, and literals. For an
overview, the reader is referred to (Apt et al., 1997).
Further we discuss rules, each rule has the form head
:- body, where the head applies if the condition in
the body is true. Rules without a body, i.e., those who
allways apply are called facts.

A model of a program is a set of ground facts in-
volving the predicate symbols and constants occur-
ring in the program that “satisfies every rule”. An an-
swer set (AS) is a very particular kind of model; one
which satisfies a certain minimality property. Logic
programming with AS semantics is called Answer Set
Programming (ASP) (Lifschitz, 2019), and it is the
basis for the ILASP framework (described below) that
we use in this paper. Note that ASP is different from
the better known Prolog, which works in a fundamen-
tally different way. However, the details are not rel-
evant to this paper. It is noteworthy that a logic pro-
gram may have many possible ASs in general. We
cannot give a full introduction to ASP in this paper
and refer the reader to (Lifschitz, 2019). However, no
in-depth knowledge beyond what we introduced here
should be necessary.

Inductive Logic Programming (ILP): is a sym-
bolic Machine Learning approach, that first became
popular in the 1990s but is an ongoing research topic
(Muggleton, 1991; Cropper and Dumančić, 2022).
There are multiple modern ILP frameworks (for an
overview see (Cropper and Dumančić, 2022)). While
most ML systems are based on statistics, ILP is based

on first-order logic. This is the main reason, why
many ILP systems, can learn meaningful rules from
small example sets (Law et al., 2014; Cropper and
Dumančić, 2022). In this paper, we use an ILP frame-
work called ILASP (Law et al., 2014) because it is
publicly available and well-documented.

ILP tasks typically involve three input compo-
nents (Cropper and Dumančić, 2022): (i) A back-
ground knowledge B, describing the FS structure.
(ii) A search space S, defining the structure of
the inducted rules. (iii) Positive E+ and nega-
tive E− examples, consisting of facts that should
be true, respectively false. For these input compo-
nents the ILP framework searches an hypothesis H
that: (i) is contained in the provided search space
H ⊆ S. (ii) respects all given examples, positive
(∀e ∈ E+ : e is true in the program H ∪B) and nega-
tive (∀e ∈ E− : e is false in the program H ∪B) (iii) is
optimal in a framework-specific metric. It is common
that ILP frameworks aim for the shortest hypothesis
(e.g. (Law et al., 2014)). Since the three components
are used together to induct a program they are not in-
dependent from each other. This especially applies to
the used symbols.

Inductive Learning from Answer Sets (ILASP):
is an ILP framework first introduced in 2014 (Law
et al., 2014; Law et al., 2020b). While most ILP
frameworks learn Prolog programs, ILASP learns an-
swer set programs (ASPs). As mentioned before, an
ASP can have multiple ASs. ILASP ensures that the
output ASP is such that (a) for every positive exam-
ple, there is at least one AS of the program that cov-
ers it and (b) no AS covers any of the negative ex-
amples. The first point coincides with brave learning,
while the second point coincides with cautious learn-
ing. ILASP incorporates both.

The notion of covering an example is subtle. Each
ILASP example consists of a set of includes (facts that
the AS covering the example must contain) and ex-
cludes (facts that the AS covering the example must
not contain). So even a positive example can prevent
certain facts from appearing in the AS that covers it.
As we will explain below, we do not use the excludes.

AppArmor: is a MAC system for the Linux kernel
(Wright et al., 2002). Next to SELinux (Smalley et al.,
2001), AppArmor is one of the two popular MAC sys-
tems for Linux (Zhu and Gehrmann, 2021). Like all
MAC systems, it provides a system-wide policy. Un-
like SELinux, an AppArmor policy works based on
file-paths and is specific to an application.

In this paper, we focus on AppArmor PDL file ac-
cess rules, they follow the pattern: <owner flag>
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<path> <access modes>. AppArmor follows a
default-deny approach, so each rule typically grants
access to a file. Rules, containing wildcards *, or
** apply to all files matching the wildcard. While
* matches only files of the current folder, ** applies
recursively to all files and folders below. AppArmor’s
abstractions allow to define and include predifined
sets of rules into the policy. Predefined abstractions
exist for common usecases, e.g., console access.

Of particular interest to this work, AppArmor pro-
vides a set of utilities to aid in policy generation. It
supports a complain mode that can be used to au-
dit if a program would violate a policy without ac-
tually enforcing it. Moreover, AppArmor provides
aa-logprof, which can be used to generate policies
from these logs. We use it in our evaluation to com-
pare our approach with more established tooling.

Threat Model. To clarify our assumption about the
abilities of the attacker, we state our threat model. We
assume that the adversary is able to compromise an
application A at some point, to the effect that she can
perform any task within the process running A (sub-
ject to the policy and other OS security features con-
straining A). In particular, we assume, that during
a first example gathering stage, the application A is
trusted and that any file access the application makes
during that stage is acceptable.

3 RELATED WORK

There has been prior research on automated pol-
icy generation for AppArmor. Lic-Sec (Zhu and
Gehrmann, 2021; Zhu et al., 2023) is a cloud
tool that automatically generates AppArmor profiles
for Docker. Lic-Sec combines LiCShield (Mattetti
et al., 2015) and Docker-sec (Loukidis-Andreou et al.,
2018) to trace applications and generate correspond-
ing AppArmor profiles. Similarly, Kub-Sec (Zhu and
Gehrmann, 2022) is a utility that generates AppAr-
mor policies for Kubernetes. Different from our work
all these tools focus on tracing activities inside a con-
tainer, and generate a policy from that input. By con-
trast we focus we focus on learning generalized poli-
cies. The negative examples we use for our learn-
ing task can not be obtained by tracing, which is only
suited to generate positive examples.

ASPgen (Li et al., 2020) and its docker-specific
twin ASPgen-D (Huang et al., 2022) are AppArmor-
specific frameworks that generate rules using an ex-
pert system. Both are based on a role based access
control (RBAC) system, for which file accesses are
assigned to roles. This may be viewed as extending

AppArmor with an RBAC, which is rather different
from our approach, that intends to learn generaliza-
tions without applying a given access control scheme.

ILP, and especially ILASP has been used in pol-
icy learning a few times (Law et al., 2020a; Cunning-
ton et al., 2019b; Calo et al., 2019; Bertino et al.,
2019; Drozdov et al., 2021; Cunnington et al., 2019a).
However, there are general differences to our ap-
proach. First, these approaches neither target MAC
systems like AppArmor, nor they deal with a tree
representation of a file system. Instead those solu-
tions learn policies that depend on given attributes or
roles. To do so they use prelabeled data sets, where
attributes or roles are assigned to entities. Neither
AppArmor’s PDL nor the Linux FS provide an ob-
vious way to express such context information. Thus,
learning rules depending on the tree structure of the
FS makes perfectly sense, but bears rather different
challenges. Further, the other approaches learn from
different kinds of example sets, in general they are
larger, noisy, or observed over time. This different
from this work, where we use a small example set
for a single application. Finally our learned rules are
translated into the AppArmor PDL, which is rather
limited in its feature set. This brings different chal-
lenges from the other approaches, where either the
inducted program is used as PDL or a more power
full generic PDL is used.

4 LEARNING AppArmor
POLICIES

Below, we outline two strategies on how ILASP can
be applied to policy learning. But first, we introduce
some common building blocks.

In the background knowledge of the ILASP task
we provide a tree representation of the Linux FS.
We represent the tree using the predicates fso and
parent. fso(fso1) declares the existence of an file
system object (FSO) with the symbol “fso1”. The
predicate parent(fso1, fso2) declares that “fso1”
is the parent of “fso2”. Using such parent declara-
tions, the complete FS tree structure is described.
We do not distinguish between files and folders and
refer to both only as FSO. Aside the file system
we include rules for the ancestor predicate, that
is required to express wildcards of arbitrary depth,
i.e., the ** wild card. This is defined recursively
with the rules ancestor(A, B) :- parent(A,
B) and ancestor(A, B) :- ancestor(A, C),
ancestor(C, B).

Next, we briefly sketch how examples in ILASP
work and how we use them (for a detailed explana-
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Listing 1: Small Example Declaration.

#pos({read(x2Ff1),write(x2Ff1)},{})
#neg({read(x2Ff2)},{})
#neg({write(x2F)},{})

tion, see (Law et al., 2014)). listing 1 shows sev-
eral such examples. There are positive and negative
examples. Each example, whether positive or nega-
tive, consists of up to three sets, an include set, an ex-
clude set, and a context (example-specific background
knowledge) (Law et al., 2014; Law et al., 2020b). We
neither use excludes nor contexts and rely only on the
include set to express our examples.

Recall that ILASP treats positive and negative ex-
amples different. For positive examples it requires
that at least one AS of the resulting hypothesis cov-
ers it. Thus, we use a single positive example that
contains every allowed file access to ensures that at
least one AS of the learned hypothesis contains all
facts. Using multiple positive examples would theo-
retically allow solutions where, multiple AS exist but
none of them covers all positive accesses. We use a
negative example per denied file access since for neg-
ative examples ILASP ensures that no AS contains
all includes of any negative example. Thus, using an
example per access ensures that none access is con-
tained in any AS. We do not use the exclude set, nor
the context as they are not required for our approach
to model the learning task.

The file accesses, whether positive or nega-
tive, are expressed as logical atoms of the form
mode(fsoSymbol). Where mode is one of the sup-
ported access modes and fsoSymbol is a constant
symbol of type fso that is defined in the background
knowledge. We learn rules for the three access modes
read, write, and execute. In addition, AppArmor sup-
ports the owner flag, which reflects that the process
must be the owner of the resource. To embed this
information in the learning task, owner-specific vari-
ations of the access modes are used. Thus in total, the
learning task deals with six access modes, read, write,
execute, and their owner-specific variants.

Although the two strategies described below use
different search spaces, they rely on the same search
space structure. We want to learn rules of the form
accessMode(V) :- condition that can easily be
expressed with AppArmor’s PDL.

4.1 Generating Examples

Just like AppArmor’s aa-logprof we utilize the com-
plain mode to obtain positive example accesses.
Please note that covering all features of an applica-
tion might be challenging, but this is considered to be

Listing 2: Example Rules.

execute(V1) :- ancestor(x2Fbin ,V1).
read(V1) :- parent(x2Fvar ,V2),

↪→ parent(V2,V1).

out of scope. The examples we obtain from the log
contain: a) the accessed file, b) the used access mode,
c) if the file is owned by the accessing process.

The examples are stored as a tree structure, called
example tree:, a labeled tree where the nodes repre-
sent FSOs labeled with a list of allowed access modes
and explicitly denied access modes. Of course, up to
now, no denied accesses have been recorded.

To extend the example tree with negative exam-
ples, we rely on a human supervisor. This is done
via an interactive dialog, that is rather similar to what
aa-logprof does. However, to minimize the number
of asked questions our script only suggests relevant
files, that are likely to make a difference in the result-
ing policy. A negative example for an access mode
M is considered relevant for a sub-tree T if, within T ,
M is not used as a negative example for any node, but
is listed as a positive example for at least one node.
Of course, this approach requires that the filesystem
contains the same files during learning as during de-
ployment.

4.2 Approach 1. ASP as Policy

The first strategy we present is to induct one hypoth-
esis that can be directly translated into an AppArmor
policy. We dub this the “ASP as policy”. This means,
that the ILASP task should learn an ASP program that
expresses the policy. To do so, the search space must
contain rules that allow access depending on generic
patterns and constant symbols. Recall that we define
two predicates, parent and ancestor, that can be
used in the rule body. These predicates dictate what
patterns can be discerned. Both are already used in
the background knowledge and have arity 2. The rule
head contains the access mode which is an 1-ary pred-
icate. Examples for such rules are shown in listing 2.
Remark 1. Predicates other than parent or ancestor
are conceivable, e.g. is devicefile. We choose to
omit them for now, as the resulting ILASP task will
not scale well (as explained below in section 5).

ILASP supports a short hand declaration of the
search space called mode bias, but we define the
search space explicitly. This allows to optimize the
size of the search space for performance. As further
discussed in the evaluation (c.f. section 5), for “ASP
as policy” the performance is crucial.

To create the search space, we combine all re-
quired rule heads (access modes) with all rule bod-
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Listing 3: Translated Example Policy

/bin/** x
/var/* r

ies. While there are only 6 rule heads, there infinite
thinkable combinations for the rule body. To limit the
size of the search space, we limit the length of the rule
bodies to five predicates. The rule bodies are combi-
nations of the ancestor and parent predicate. To
connect these predicates, as many variable names as
needed are introduced. Constraining the length like
this puts a limit on the length of rules like allow
/a/*/*/*/*. We believe this is a reasonable limit.

To reference a certain FSO within a policy rule
we require constant symbols. The symbols used
here are the same, already defined in the background
knowledge. Since the symbols reference FSO ob-
jects using an absolute path, we can limit the amount
of constant symbols to one per rule, as referencing
two would not make sense. E.g., consider rules like
/etc/app.conf*/var/app/** rw. This leads to a
search space, that grows linear to the amount of de-
fined FSO constant symbols.
Remark 2. The choice to use absolute paths and ref-
erence FSOs limits the rules that can be learned. We
are not able to learn rules like /etc/*.conf that use
wild cards in the middle of the rule. To be able
to learn such rules, requires additional characteristic
predicates and further increases the size of the search
space, we leave this open to future work.

For the “ASP as Policy” approach, a single learn-
ing task with all example file accesses is performed.
The examples are derived from the example tree, that
is already introduced in section 4.1. Each node in
this tree contains a set of positive and negative access
modes, we add a node specific negative example for
each element of the negative set and a positive exam-
ple for each element of the positive set. There will be
combinations of access mode and node, for which no
example is added.

The output of this learning task is an ASP program
that defines which FSOs can be access under which
mode. It is straightforward translated into the Ap-
pArmor PDL. For example, the program in listing 2
would translate to listing 3. The predicate parent is
translated into the “*”, while ancestor is represented
with “**”. When there are two rules dealing with the
same path but with divergent access modes they are
merged into a single AppArmor line.

An issue with this approach is, that the search
space scales with the FSOs. For large policies with
many FSOs this leads to scalability issues, since the
size of the search space is crucial for the complexity
of the learning task. Remembering that the inducted

hypothesis is a subset of the search space, points out
why, since choosing a subset of a set equals selecting
an entry of its power set, and the size of the power
set scales exponentially to the size of the set. Further,
ILASP aims for a short hypothesis and becomes less
efficient if a longer hypothesis is required (Law et al.,
2014).

4.3 Approach 2. ASP as Pattern

The “ASP as Policy” approach constructs one mono-
lithic learning task that yields one ASP describing
the entire policy. While this strategy is conceptually
simple, this approach does not scale well (cf., sec-
tion 5). We therefore introduce a second strategy that
addresses some of these problems. For the second
strategy, which we dub “ASP as Pattern”, we utilize
ILASP to learn patterns only for sub-trees of the ex-
ample tree and later combine them into one coherent
policy. In particular, we run multiple ILASP tasks of
considerably smaller size.

For the “ASP as Pattern” strategy, we construct a
search space that does not contain any constant sym-
bols that are referring to a certain file or folder. Poli-
cies that are inducted with such a space describe rela-
tional patterns only but do not refer to any base folder
(e.g. read(X) :- parent(Y,Z),parent(Z,X).).
If applied to the entire FS, they will most likely be
too permissive: We would obtain generic patterns like
/*/* which are of very limited use. Instead, we would
like to obtain rules of the form /etc/ * r. We will
explain below how to remedy this. For now, note that
the search space now does not contain any references
to filenames, thus it has constant size in the number
of filenames.

ILASP always tries to compute solutions that
cover all examples. With a given hypothesis space
that lacks constant symbols (and therefore facts), this
may be impossible. In this case, ILASP will recog-
nize the learning task as unsatisfiable. We now intro-
duce an algorithm that nevertheless learns complete
policies that cover all examples.

We use the same file access tree as before in sec-
tion 4.2. The algorithm starts at the root of the tree.
It runs an ILASP pattern learning task using all avail-
able examples. If this learning task is successful, it
prefixes the resulting patterns with / and has found a
valid policy. Otherwise, the task is unsatisfiable and
the algorithm splits up the tree. It creates a sub-tree
for each child of the root node and recursively works
on those sub-trees. Eventually, either a pattern for the
sub-tree is found or we reach a leaf node. Learning
patterns for a leaf node does not make sense. But leaf
nodes are trivial to cover with a specific rule, like “al-
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low /etc/passwd”. Moreover, we know that no pat-
tern could have subsumed this explicit rule, or ILASP
would have already found it.

The learned patterns are stored with the nodes for
which they are learned. After all patterns are learned,
they are translated to AppArmor rules. To do so the
file patterns are prefixed with the path of the corre-
sponding node. This limits the scope of the pattern
to a certain sub-tree. For now the patterns only con-
sist of the parent and ancestor relations, thus all rules
obtained using this concept start with a file path and
optionally end with wild cards. However, by extend-
ing the learning task to support further characteristics
more sophisticated pattern would be learned.

5 EVALUATION

The following evaluation aims to compare the poli-
cies that are learned by the two approaches described
above and to compare the results with policies that
can be obtained by aa-logprof. We focus on show-
ing the strengths and weaknesses of our strategies.

5.1 METHODOLOGY

To evaluate the introduced learning strategies, we
generate AppArmor policy rules for a custom target
application using both our strategies and the AppAr-
mor utility aa-logprof to compare ourselves with an
established tool. We then compare the resulting poli-
cies, and the creation process itself, using the evalua-
tion criteria described in section 5.2.

For the evaluation we introduce a benchmark ap-
plication. Compared to using an existing application
this brings two major advantages: First, this avoids
the issue of obtaining complete example sets. Second,
it allows to construct an example that allows us to ver-
ify that patterns can be learned, without consisting of
too many file accesses. Unfortunately, the “ASP as
Policy” strategy from section 4.2 scales rather poorly
and consumes enormous amounts of memory (e.g.,
attempting to learn policies for apache2 failed, be-
cause the learning task consumed more than 200 GiB
of RAM). Thus, using an application with a reduced
scope allows us to nevertheless compare with the re-
sults of this strategy.

The benchmark application accesses 10 files in to-
tal, while most of the files are accessed in the users
home directory it also reads two configuration files
at /etc/ and executes the binary /bin/true. It is
meant to be run by a regular Linux desktop user, with
a home directory that is owned by that user.

Consistent with our threat model (c.f., section 2),

all accesses the evaluation application makes are
granted and included as positive example accesses.
The negative examples require some supervisor in-
teraction. The supervisor answers them accord-
ing to the following decisions: a) Read and write
for all files in $HOME/Documents/ is allowed. b)
Read access for all files in $HOME, but not for
files in $HOME/.config is allowed. c) Read ac-
cess to $HOME/.config/testapp, and the folders
below it is allowed. d) Read and write access to
$HOME/.config/testapp/log is allowed. e) No
further access is granted apart from the files that are
used by the application. The resulting example data
set consists of 12 positive and 6 negative examples.

5.2 Evaluation Criteria

Different quality criteria for access control policies
(Beckerle and Martucci, 2013; Bertino et al., 2019)
are used. But in general they make similar claims.
In this work we group these quality criteria into three
categories that are relevant for our evaluation.
Correctness. A policy must reflect the permissions
described in section 5. It must neither allow further
access nor deny required accesses.
Understandability. A common claim is that a policy
should neither contain redundancy nor contradictions
(Beckerle and Martucci, 2013; Bertino et al., 2019).
However, neither ILASP nor aa-logprof are likely
to include this. Thus we only focus on the length of
policy, the rule set should be as concise as possible.
Adaptability. AppArmor policies, should contain
wild cards so less is not necessary to modify them,
when files are added or removed.

In addition we also consider the computational re-
sources required. We do not conduct a performance
benchmark for the learning tasks, but note significant
differences in runtime and memory consumption and
highlight scalability differences between the policy
generation methods.

5.3 Evaluation Results

aa-logprof. Different from the strategies introduced
in this work, aa-logprof does not learn a policy.
Thus, the profile generation with “aa-logprof” does
not require notable computation time or consume rel-
evant amounts of main memory.

The policy generated by aa-logprof is correct,
except for the fact that the “nameservice” abstraction
includes additional files that are not part of our defini-
tion. However, aa-logprof asks a human supervisor
before it introduces an abstraction.

The profile generated by aa-logprof is nine
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lines long. Among these lines, one is an abstrac-
tion that covers the access to /etc/passwd and
/etc/nsswitch.conf. The other lines allowing ac-
cess to a required FSO in the user’s home directory
each. For all of these rules logprof replaced the name
of the user with a * wild card. E.g., /home/*/file4.
“ASP as Policy”. As already mentioned, the
“ASP as Policy” learning strategy requires more
resources and suffers from scalability issues. The
learning task for the provided example application
took hours to compute and required more than
100 GiB of main memory. The resulting ASP
program allows FSO specific access for most ex-
amples. Further, it uses the rule ownerMread(V1)
:- parent(x2Fhomex2Ftux78, V1). to allow
owner read access to all files directly in the users
home directory and the rule ownerMread(V1)
:- ancestor(x2Fhomex2Ftux78x2FDocuments,
V1). to allow owner read access to all files below the
documents directory.

The rules fulfill our correctness definition and
consists of ten rules in total. This is longer than the
profile generated by aa-logprof. The reason for this
is, that the learning task learns disjunct rules for each
access mode and it is not optimized to learn rules, that
can be merged.

Note that the learned rules do not replace the user-
name with a wild card, which makes the rules specific
to a user. This is a clear adaptability flaw. However,
aa-logprof applies a static rule to achieve this, an
future version could enhance learned rules by apply-
ing such static modifications.

A major advantage of the learned rule set is its use
of wild cards below the user’s home directory. This
is a massive adaptability advantage as it is to be ex-
pected that files under Documents will change fre-
quently. Note that the rules for write access remain
file-specific. Thus there is potential for further im-
provements.
“ASP as Pattern”. Unlike the first strategy, this strat-
egy invokes multiple learning tasks. As already ex-
plained, these learning tasks are often unsatisfiable,
however they do not require much time to compute.
For our example application the complete learning
process was done in about one to two minutes. Fur-
ther it did not show the memory issues we observed
for the “ASP as Policy” strategy.

The profile obtained with this strategy has eight
lines in total, which is shorter than the other profiles.
Further, this rule set allows read and write access to
all files in the Documents directory. This is the only
contained generalization.

Comparing the learning tasks of both strategies it
is reveals why this strategy introduces a generaliza-

tion for both access modes, while the other strategy
does not. The “ASP as Pattern” strategy uses patterns,
i.e., wild cards where possible. But the “ASP as Pol-
icy” strategy uses them only if they lead to a shorter
hypothesis. Compared with the other learning strat-
egy, the rule set of this strategy is missing the wild
card at the user’s home directory. This can be ex-
plained by how the learning task is created. A learn-
ing task must find a solution that covers a complete
tree below a certain folder. Patterns of smaller scope
can not be found. A possible approach to improve
this might be to run multiple learning tasks per node,
each of them considering only a certain depth below
the current node. We leave this for future work.

Just like the profile obtained with “ASP as Policy”,
the rules in the profile are specific to a certain user,
i.e., the user’s home directory is not replaced with a
wild card.

6 CONCLUSION

In this work, we show two novel strategies to utilize
the ILASP ILP framework to learn AppArmor poli-
cies. Doing so we have shown how to learn file access
policies with ILP and that it is possible to use ILP to
learn generic rules from very small example sets.

Our work indicates that scalability is a major chal-
lenge when we learn policies with ILASP. The “ASP
as Policy” strategy we present does not scale for more
complex applications. The “ASP as Pattern” strategy,
on the other hand, appears to scale rather well. This
strategy splits up the file tree and conducts smaller
learning tasks, which, for performance reasons, seems
to be necessary when utilizing ILASP to learn file
access policies. While the “ASP as Policy” strategy
can not be applied to real world scenarios, the pat-
tern based strategy clearly has the potential to be used
with common applications. However, still the com-
plexities inherent in ILP mean that great care must be
taken when crafting learning tasks.

Further, the evaluation indicates that learned Ap-
pArmor policies can be shorter than those created us-
ing the AppArmor board utility aa-logprof. But
more importantly, we observe that a learned policy
contains other generalizations than those that are in-
troduced by aa-logprof. Thus, to obtain a policy that
is as adaptable as possible, it seems to make sense
to combine rule-based generalizations (as used by
aa-logprof) with learned policies. We leave this to
future work.

Future work should consider combinations of
rule-based generalizations and learned policies. Ad-
dressing limitations of the introduced strategies, such
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as the inability to generalize home directories, also
seems promising. Moreover, expanding beyond Ap-
pArmor file access policies seems a natural next step.
Thus, future work should extend the scope and con-
sider further application domains, e.g., other MAC
systems like SELinux, or completely different appli-
cations like web-APIs or firewall rules.
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