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Abstract: The Proof-of-Work (PoW) consensus protocol is widely utilized in various blockchain implementations, in-
cluding Bitcoin. The security of this protocol relies heavily on the incentive-compatibility of participating
miner, who compete against each other to discover new blocks. However, the assumption that competition
will naturally evolve into collaboration, ensuring blockchain security, is not always valid. Certain colluding
miners, known as ”selfish miners,” attempt to unfairly obtain rewards by deviating from the prescribed proto-
col. In this paper, we propose a novel learning-based mechanism to address this challenge and enhance the
PoW protocol. Specifically, we apply Q-Learning, a prominent technique in reinforcement learning, to each
miner in order to mitigate the impact of selfish collaboration among colluding miners. To best of our knowl-
edge, this is the first defense mechanism based on Q-Learning in the literature. Our comprehensive analysis
demonstrates that the proposed modification to the PoW protocol can increase the threshold for successful
selfish mining attacks from 25% to 40%. Furthermore, simulation results comparing our defense mechanism
with tie-breaking, a well-known defense approach, validate the effectiveness of our proposed mechanism.

1 INTRODUCTION

In recent years, the emergence of blockchain
(Nakamoto, 2008) technology has garnered con-
siderable interest and has been recognized for its
transformative potential across numerous industries.
By offering a secure and decentralized platform
(Narayanan et al., 2016), (Antonopoulos, 2014) for
transactions and data storage, blockchain has paved
the way for significant advancements. Initially in-
troduced in 2009 by an enigmatic individual named
Satoshi Nakamoto, blockchain found its first imple-
mentation through Bitcoin(Nakamoto, 2008). Since
its inception, this technology has gained widespread
popularity, with the introduction of various cryptocur-
rencies, most of which are based on the proof-of-
work consensus mechanism (Bonneau et al., 2015),
(Tschorsch and Scheuermann, 2016), (Wang et al.,
2019), (Judmayer et al., 2022).

In the proof-of-work consensus mechanism
(Mingxiao et al., 2017), (Chaudhry and Yousaf,
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2018), (Panda et al., 2019), exemplified by Bitcoin’s
current operation, a group of nodes known as min-
ers engage in a competitive effort to uncover new
blocks. The process of discovering a new block
serves two important purposes. Firstly, it involves
recording transactions, ensuring their inclusion in the
blockchain. Secondly, it extends the chain of blocks
by introducing a new block, reinforcing the integrity
and continuity of the blockchain (Narayanan et al.,
2016), (Antonopoulos, 2014).

In the process of mining (Mingxiao et al., 2017),
ensuring the principle of incentive-compatibility
(Courtois and Bahack, 2014), (Eyal, 2015), (Babaioff
et al., 2012) is crucial for maintaining network secu-
rity. Miners actively compete against each other in
the quest to discover blocks, driven by the desire to
obtain two types of rewards. Firstly, they seek the
reward associated with successfully mining a block.
Secondly, they aim to collect transaction fees that are
included in the blocks they discover (Antonopoulos,
2014), (Eyal and Sirer, 2018).

The assumption that all miners in the network con-
sistently adhere to the rules is flawed (Eyal and Sirer,
2018), (Bai et al., 2019). In reality, there are in-
stances where a group of colluding miners forms a
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pool with the intention of deviating from the rules to
unfairly obtain a greater share of the rewards relative
to their computational power. These miners exhibit
selfish behavior, contrasting with the rational miners
who strictly abide by the mining rules. This form of
self-serving conduct by miners is commonly referred
to as a selfish mining attack (Eyal, 2015), (Eyal and
Sirer, 2018).

In addition to undermining incentive-
compatibility, the selfish mining attack carries
hidden consequences. One of these is the potential to
entice rational miners to align with the selfish miners,
amplifying their combined computational power
(Eyal, 2015), (Eyal and Sirer, 2018). This incre-
mental participation process further consolidates the
dominance of the selfish miners, posing a significant
threat to the decentralization of the targeted network.
Moreover, the imposition of the selfish miners’ new
mining rule renders the victim network vulnerable to
other attacks (Nayak et al., 2016), including the risk
of double-spending (Eyal, 2015).

The covert nature of the selfish mining attack
makes it challenging to detect for rational participants
in the network. In such a dire situation, finding ef-
fective solutions becomes an arduous task. Previous
attempts to address this type of attack have proven to
offer minimal or no substantial relief. To best of our
knowledge, this problem has been remained opened
as long as the introduction of this kind of attack. Con-
sequently, in our perspective, it is imperative to ap-
proach the problem in conjunction with the proof-of-
work consensus mechanism, recognizing the need for
a comprehensive solution.

Our research endeavors to devise an effective so-
lution by going deeper into the intrinsic nature of the
proof-of-work mechanism. To achieve this objective,
we conducted a thorough examination of Nakamoto’s
proof-of-work-based blockchains, including Bitcoin,
Litecoin (CLARKE et al., 2018), and Zcash (Hop-
wood et al., 2016). Our primary emphasis lies on Bit-
coin, given its preeminence within this coin family.
Through meticulous study and analysis, we aim to un-
cover insights that contribute to addressing the chal-
lenges posed by the proof-of-work consensus mecha-
nism.

Our proposed solution involves equipping all min-
ers in the network with Q-Learning (Sutton and Barto,
2018), (Watkins and Dayan, 1992), (Clifton and
Laber, 2020) agents. Traditionally, miners adhere to
the proof-of-work protocol by selecting the longest
chain of blocks when faced with multiple compet-
ing chains. However, our novel solution, leverag-
ing the embedded reinforcement learning agent, aims
to intelligently select the optimal chain, deviating

from the conventional policy. By incorporating Q-
Learning, we enable miners to make more informed
and strategic decisions in choosing the most advan-
tageous chain. In order to assess the efficacy of the
newly proposed defense method, a series of simu-
lations have been performed. Specially, the distinct
properties of the proposed defense mechanism are
thoroughly examined. We should specify that the
code is available on Github 1.

The contributions of this paper can be summarized
as follows: we propose a novel defense algorithm
against selfish mining that incorporates Q-Learning.
The effectiveness of the proposed algorithm is evalu-
ated through a series of experiments and compared
to a well-known existing defense mechanism, tie-
breaking.

The structure of the paper is organized as follows:
in Section 2, we discuss related works. In Section
3, we provide the necessary preliminaries and back-
ground information. The details of the proposed al-
gorithm are presented in Section 4. The performance
of the defense algorithm is thoroughly evaluated in
Section 5. Section 6 would discuss the paper’s limita-
tions and problems. Finally, we conclude the paper in
Section 7, highlighting the key findings and contribu-
tions.

2 RELATED WORK

In this section, we provide a summary of existing de-
fenses against selfish mining attacks. The defenses
are categorized based on the similarity of the meth-
ods used. We focus on the most popular defenses that
have been proposed.

First and foremost, it is important to highlight
that our work draws significant inspiration from
previous research. Specifically, we have proposed
the Nik defense (Nikhalat-Jahromi et al., 2023a),
which stands as the pioneering defense against self-
ish mining attacks employing learning automaton
agents. Additionally, we have devised VDHLA (Vari-
able Depth Hybrid Learning Automaton) (Nikhalat-
Jahromi et al., 2023b), a novel family of learning au-
tomata that plays a central role in the implementation
of the Nik defense. The subsequent paragraphs will
categorize and present other defenses based on their
similarities.

Certain defenses require fundamental changes to
the blockchain structure, often necessitating signifi-
cant updates to blockchain nodes that are incompati-
ble with previous versions. One defense proposed by

1http://github.com/AliNikhalat/SelfishMining
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Bahack (Bahack, 2013) involves imposing a punish-
ment rule for all miners, including honest ones. In this
defense, miners who fork the blockchain are subject
to punishment. However, a drawback of this defense
is that it also punishes honest miners. Solat et al. (So-
lat and Potop-Butucaru, 2016) introduced Zeroblock,
which enforces the timely release of blocks by miners.
If miners withhold their blocks for selfish mining and
fail to broadcast them within the expected time, net-
work peers generate their own dummy blocks. These
defenses require changes to block validity and reward
distribution, necessitating client updates by network
nodes to comply with the new protocol. Another de-
fense proposed by (Saad et al., 2019) suggests alter-
ing the structure of transactions. This defense intro-
duces an additional parameter called ”Expected Con-
firmation Height” in transactions, which is compared
with the expected value for the published block height
to detect selfish mining attacks. The following para-
graph discusses defenses that are effective when a
new fork is observed in the network.

Defenses aimed at reducing the chances of self-
ish miners creating a fork have been developed. The
most widely accepted solution is the tie-breaking de-
fense, proposed by Eyal and Sirer (Eyal and Sirer,
2018). According to this defense, when a miner dis-
covers competing branches of the same length, they
should propagate all of them and randomly choose
one to mine on. As demonstrated in their paper, self-
ish mining can only be initiated with a minimum min-
ing power of approximately 25%. Heilman (Heil-
man, 2014) proposed another backward-compatible
defense called Freshness Preferred (FP), which pe-
nalizes miners withholding blocks by utilizing an
unforgeable timestamp parameter. The latest value
of the unforgeable timestamp is compared to detect
block withholding. Heilman claimed that the lower
bound threshold for selfish mining would increase
from 25% to 32%. However, a limitation of this solu-
tion is the reliance on a trusted party in the network,
which contradicts the decentralized nature of Bitcoin.
The following paragraph introduces defenses based
on fork-resolving policies.

Defenses operating on fork-resolving policies aim
to modify protocols so that the defense mechanisms
are triggered when the selfish chain becomes longer
than the public chain, in contrast to the tie-breaking
defense. The first solution in this category is Pub-
lish or Perish proposed by Zhang and Preneel (Zhang
and Preneel, 2017). In Publish or Perish, blocks not
published in time are disregarded, while blocks that
include links to competing blocks of their predeces-
sors are given preference. Consequently, a block re-
mains secure until a competing block is published,

contributing to neither or both branches, thereby pro-
viding no advantage in winning the block race. The
following paragraph introduces a machine learning-
based algorithm for detecting selfish mining attacks.

Research has been conducted to identify factors
that can detect selfish mining attacks (Chicarino et al.,
2020),(Peterson et al., 2022). These studies utilize ex-
isting data on selfish mining attacks to create training
and test datasets. The research investigates various
factors and explores future research directions in this
context.

3 PRELIMINARIES

In this section, we provide the necessary background
information about the proposed algorithm, encom-
passing key aspects of blockchain, selfish mining
strategies, and Q-Learning.

Bitcoin (Nakamoto, 2008) is a decentralized cryp-
tocurrency that enables users to transfer digital cur-
rency by generating new transactions and appending
them to the blockchain ledger. The blockchain serves
as an immutable ledger maintained by a network of
miners who secure it against data tampering. Miners
are incentivized (Eyal and Sirer, 2018) for their con-
tributions in safeguarding the blockchain by receiving
rewards. Each transaction within the blockchain con-
sists of one or more inputs and outputs, with the dif-
ference between the total inputs and outputs referred
to as the transaction fee. This fee is directed to the
miner responsible for incorporating the transaction
into the blockchain (Nakamoto, 2008), (Narayanan
et al., 2016), (Antonopoulos, 2014). Subsequently,
we thoroughly explore a comprehensive explanation
of the mining process, followed by an exploration of
selfish mining attacks. Lastly, we discuss Q-Learning.
Further details regarding the mining process will be
provided in the subsequent subsection.

3.1 Mining Process

The state of the blockchain is altered through the ex-
ecution of transactions, which are then grouped into
blocks and appended to the blockchain. A typical
block in the blockchain comprises two key compo-
nents: the header and the body (Wang et al., 2021).
The block’s header contains vital information such as
the hash of the previous block, the hash of the current
block, the Merkle root representing all the transac-
tions included in the block, and a nonce value. On
the other hand, the block’s body consists of the trans-
actions that the miner has chosen to include in the
block (Nakamoto, 2008), (Narayanan et al., 2016),
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(Antonopoulos, 2014).
To validate a block, a solution to a cryptographic

puzzle must be found (Eyal and Sirer, 2018), (Sapir-
shtein et al., 2017). Miners strive to discover the cor-
rect nonce value to be placed in the block’s header,
resulting in a block hash that is smaller than the pre-
defined block difficulty target. The block difficulty
is dynamically adjusted to maintain an average block
generation rate of approximately one block every ten
minutes. Upon successfully solving the puzzle and
adding the mined block to the longest chain, the miner
is rewarded with newly created Bitcoins that did not
exist previously, as well as the transaction fees asso-
ciated with the newly included transactions.

The probability of mining a new block is directly
proportional to the computational resources utilized
in solving the puzzle (Eyal and Sirer, 2018), (Sapir-
shtein et al., 2017). However, due to the inherent na-
ture of the mining process, the time interval between
mining events exhibits significant variance from the
perspective of an individual miner. As a result, min-
ers often opt to join mining pools, where members
collaborate to collectively mine each block and share
the generated rewards whenever one of them success-
fully mines a block. While participating in a min-
ing pool does not alter a miner’s expected revenue,
it helps reduce the revenue variance and provides a
more predictable monthly income (Eyal and Sirer,
2018), (Sapirshtein et al., 2017).

3.2 Selfish Mining Attack

Bitcoin’s documentation provides a comprehensive
overview of the block release process after mining.
When a miner successfully mines a new valid block,
it is expected to promptly share it with the network.
However, Eyal and Sirer (Eyal and Sirer, 2018) intro-
duced the concept of ”selfish mining,” which involves
certain miners deviating from Bitcoin’s standard min-
ing rules to unfairly increase their revenue. This par-
ticular strategy, known as ”SM1,” is the first and most
widely recognized form of selfish mining.

In the SM1 selfish mining strategy (Eyal and Sirer,
2018), miners attempting to act selfishly conceal their
newly discovered blocks by refraining from broad-
casting them to the network. This deliberate conceal-
ment creates a fork in the blockchain. One fork is
openly known to all network participants, while the
other remains hidden and known only to the selfish
miners. In this scenario, honest miners continue to
work on the stale chain, unaware of the hidden chain
pursued by the selfish miners. Consequently, honest
chain will be discarded and the relative revenue of the
selfish miners increases, which in turn motivates other

B1

B2

B2 B3

Honest Chain

Selfish Chain

Figure 1: Development of
private chain using selfish
miners(white blocks).

B1

B2 B3

Honest Chain

Selfish Chain

B2

Figure 2: After publishing
private chain and adoption
of private chain.

miners to join their ranks.
To gain a better understanding of the SM1 strat-

egy, let’s consider a simplified scenario. In this sce-
nario, selfish miners aim to carry out their mining ac-
tivities covertly. When they are two blocks ahead of
the honest miners (white blocks in Figure 1), upon
discovering the first block mined by the honest min-
ers (blue block in Figure 1), they reveal their private
chain. As a result, the work done by the honest min-
ers is discarded (orange block in Figure 2), and the
network adopts the secret blocks mined by the selfish
miners (blue blocks in Figure 2).

As well as SM1 strategy, new strategies for selfish
mining come to play. Sapirshtein et al.(Sapirshtein
et al., 2017) employed Markov Decision Process
(MDP) to study the profit threshold, which represents
the minimum fraction of resources necessary for a
profitable attack. They determined a bound that en-
sures system security against such attacks and modi-
fied the protocol to evaluate its susceptibility to selfish
mining by computing the optimal attack under differ-
ent scenarios. They revealed situations in which self-
ish miners could retain control of a selfish chain, even
if the public chain appears longer.

Recently, new research areas have emerged in the
field of selfish mining, particularly leveraging ma-
chine learning techniques (Wang et al., 2021), (Hou
et al., 2019). Many of these studies have utilized rein-
forcement learning methods to enhance the optimality
of the attack (Sapirshtein et al., 2017). For instance,
(Bar-Zur et al., 2022), (Bar-Zur et al., 2023) devel-
oped an improved MDP-based solution by applying
reinforcement learning algorithms to maximize rev-
enue. They introduced a novel deep reinforcement
learning framework to analyze the incentives of ratio-
nal miners under various conditions and established
an upper bound for the security threshold of proof-of-
work-based blockchains.
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3.3 Q-Learning

Q-Learning (Sutton and Barto, 2018), (Watkins and
Dayan, 1992), (Clifton and Laber, 2020) is a widely
used reinforcement learning algorithm that has gained
significant attention in the field of machine learning.
It is a model-free approach that enables an agent to
learn optimal actions in an environment through trial
and error.

At its core, Q-Learning involves the exploration
and exploitation of a state-action space. The agent
interacts with the environment by taking actions and
receiving rewards or penalties based on those actions.
The goal is to maximize the cumulative reward over
time.

Agent

Environment

reward rt

state st

rt+1

st+1

action at

Figure 3: Interaction between Q-Learning agent and envi-
ronment.

The algorithm maintains a Q-table, which is a ma-
trix that stores the expected cumulative rewards for
each state-action pair. Initially, the Q-values in the ta-
ble are arbitrary or set to zero. As the agent explores
the environment, it updates the Q-values based on the
rewards received and the new information obtained.
The following equation has shown the updating rule
of the Q-learning:

Q(s,a)← (1−αq) Q(s,a)+αq (r+γq Q(s′,a′)) (1)

Where:

• Q(s,a) represents the Q-value of state s and action
a

• αq is the learning rate, controlling the impact of
new information on the Q-values

• r is the immediate reward received after taking ac-
tion a in state s

• γq is the discount factor, determining the impor-
tance of future rewards

• s′ is the next state after taking action a in state s

• a′ is the action with the highest Q-value in state s′

This updating rule calculates the new Q-value
based on a weighted combination of the previous Q-
value and the new information obtained from the re-
ward and the maximum Q-value of the next state. The

learning rate determines the balance between the new
information and the existing knowledge.

By repeatedly applying this updating rule during
the learning process, the Q-values converge to their
optimal values, allowing the agent to make informed
decisions and maximize its cumulative reward over
time.

4 PROPOSED ALGORITHM:
Q-DEFENSE

This section goes deeper into the details of the pro-
posed method. We begin by providing the system
model and necessary definitions to establish a clear
understanding of our proposed algorithm. Subse-
quently, we present the proposed defense algorithm
in a step-by-step manner, highlighting its key compo-
nents and mechanisms.

4.1 System Model

Every algorithm proposition requires a thorough un-
derstanding of the environment in which it is intended
to operate. Therefore, it is essential to establish a clear
model of our target blockchain system. Specifically,
we need to analyze the attack scenario from the per-
spective of honest miners.

Firstly, let us consider a network consisting of two
groups of miners. The first group comprises selfish
miners who deviate from the prescribed mining rules.
We denote their mining power as α percent of the total
mining power. Conversely, the second group consists
of rational miners who diligently adhere to the mining
rules and possess 1−α percent of the total mining
power.

The impact of network propagation delay is disre-
garded in our analysis. It is assumed that miners in
the network strive to propagate blocks swiftly to min-
imize disruptions in the subsequent mining process.

Moreover, the blocks in the network are organized
in a tree structure to construct a chain. If two blocks
share the same previous block hash, it indicates the
creation of a new fork in the chain. However, in our
analysis, we only consider one type of fork, which
arises from selfish mining. From the fork, two chains
emerge: the selfish chain and the honest chain.

If a selfish miner becomes aware that an honest
miner has discovered a new block, it will attempt to
replace its own private block. We introduce a parame-
ter γ as the advertisement factor, representing the pro-
portion of computing power required for nodes to ac-
cept the selfish miner’s block instead of the honest
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miner’s block. In terms of block height, when the Bit-
coin network is at height h, the block of the selfish
miner at height h has a probability of γ(1−α) of be-
ing accepted.

4.2 Required Definitions

This subsection is dedicated to presenting the prereq-
uisite definitions that are essential for a better under-
standing of the proposed algorithm. It is important to
note that these definitions are based on the character-
istics of each branch of the fork resulting from selfish
mining. The following definitions are provided:

• A fork branch refers to one of the competing
chains in the network that is created as a result of
selfish mining. It consists of a sequence of blocks
starting from the common ancestor block up to the
current block in that branch.

• Let L represent the length of a branch, indicating
the number of blocks it contains. The length of a
branch serves as a crucial parameter for assessing
the size and extent of competing chains resulting
from selfish mining.

• Let W denote the weight of a branch, which is de-
termined based on a comparison of blocks within
that branch and blocks of the same height in other
branches. The branch with the most recent cre-
ation time will have its weight increased by one,
encompassing all blocks from the first to the last
in that particular branch.

• Let K denote the fail-safe parameter, which assists
the miner in selecting a branch based on either its
length (L) or its weight (W ). If the length of a
branch in the fork exceeds the others by at least
K, that branch is chosen. Otherwise, the weight
parameter W is used to determine the preferred
branch.

• Let τ denote the decision-making time, which rep-
resents the time taken by a miner to check for the
presence of forks. If a fork is detected, the miner
must select one of the branches, taking into ac-
count the parameter K.

• The time parameter θ is defined to determine the
next value for K using the automaton. It is com-
posed of multiple τ values.

4.3 Algorithm

Having established the necessary definitions, we can
now proceed to define our algorithm for defending
against selfish mining attacks. The proposed algo-
rithm is outlined in the following steps:

1. Calculate the length L of each branch.

2. Calculate the weight W of each branch.

3. If the difference between the length of the longest
branch and the length of the second longest
branch is greater than K, choose the longest
branch. Otherwise, choose the heaviest branch
based on the calculated W parameter.

4. When τ reaches the end, the Q-Learning agent de-
termines the next value for K. Typically, K oscil-
lates between Kmin and Kmax. It is important to
note that the Q-Learning agent has one state and
three actions. The actions correspond to: 1-Grow,
which increases K by one; 2-Stop, which keeps K
unchanged; and 3-Shrink, which decreases K by
one.

5. When θ reaches the end, the Q-Learning agent re-
ceives feedback from the environment. We have
designed a virtual environment for the Q-Learning
agent to provide information about its decisions.
The reward is calculated by dividing the number
of weight decisions (W ) by the total number of
decisions. The total number of decisions includes
the number of height decisions (L) plus the num-
ber of weight decisions (W ). The following equa-
tion illustrates the calculation of the r parameter
(reward) of the Q-Leaning agent:

r =
Number o f Weight Decisions
Total Number o f Decisions

(2)

5 EVALUATION

To evaluate the proposed algorithm, we conducted
a series of experiments that explore its performance
from various perspectives. In these experiments, we
considered a network with two types of miners: self-
ish miner and rational miner. In our simulations, the
mining process follows a Poisson process, where a
new block is mined with a probability of α by the
selfish miner and a probability of 1−α by the rational
miner.

Moreover, we modified the behavior of the selfish
miner to operate within a learning-based mining envi-
ronment. This allowed us to observe the dynamics of
the proposed algorithm in a realistic setting.

In order to fulfill our objectives, we conducted ex-
periments involving a total of 10,000 blocks. The fail-
safe parameter, denoted by K, was allowed to vary
within the range Kmin = 1 and Kmax = 3. This range
of K was chosen to allow Q-Learning agents to reach
consensus in a short amount of time since choosing K
is a time-consuming process. The Q-Learning agents
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Figure 4: Comparing Q-defense with tie-breaking using various values of α and γ.

were configured with specific values: a learning rate
of 0.1 and a discount factor of 0.75. These settings
were chosen to optimize the learning and decision-
making process of the agents within the proposed al-
gorithm.

To demonstrate the effectiveness of the proposed
defense, we compared it with the tie-breaking defense
mechanism. In these experiments, τ was set to the
mining time of five blocks, and θ consisted of ten τ.
These values are set for θ and τ to give Q-Learning
agents enough time to explore and exploit accurately.
The results are shown in Figure 4.

The results of the experiments highlight several
interesting findings. Firstly, they demonstrate the su-
periority of the proposed defense over tie-breaking
in terms of the relative revenue of selfish miners.
This indicates that the proposed defense effectively
reduces the revenue gained by selfish miners. Par-
ticularly, at γ = 1, where selfish miners have max-
imum power, the proposed defense performs ex-
ceptionally well in decreasing the relative revenue.

These results provide strong evidence of the effective-
ness of Q-Learning in complex environments like the
blockchain.

In addition to relative revenue, another impor-
tant metric, the lower bound threshold, was exam-
ined. The results reveal another significant observa-
tion. The proposed defense, leveraging the power of
Q-Learning, significantly increases the lower bound
threshold for initiating the attack. Specifically, the
lower bound threshold is raised from 0.25 to approx-
imately 0.4. This indicates that the proposed defense
enhances the security and stability of the blockchain
network by making it more difficult for selfish miners
to launch successful attacks.

Furthermore, the detailed results of these experi-
ments, including the relative revenue for various val-
ues of α and γ, are provided in Appendix 7.
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6 DISCUSSION

Our work, while promising, acknowledges some in-
herent limitations that warrant discussion. One po-
tential concern is the computational complexity intro-
duced by machine learning methods, which can lead
to overheads. To address this, we deliberately opted
for Q-learning due to its favorable characteristics. Q-
learning’s off-policy nature allows it to efficiently ex-
plore and learn from suboptimal actions, preventing
entrapment in local optima. Being model-free, it can
handle diverse problems without requiring knowledge
of the environment’s dynamics. Moreover, its im-
plementation simplicity and efficient memory usage
make it well-suited for our specific application, effec-
tively mitigating computational concerns and facili-
tating practical adoption.

Another aspect deserving attention is the potential
non-deterministic nature of our approach. The value
of parameter K heavily relies on the learning agent
at each node, which could introduce variability. To
address this, we limited the range of K, as demon-
strated in the experiment section, opting for a con-
trolled range, such as [1, 3]. This limitation helps to
reduce inconsistency and ensures a more stable per-
formance across different scenarios.

Considering scalability in large-scale networks is
crucial. As all nodes must reach consensus on one
chain in forks, the uniform convergence to the same
K value becomes vital. With a larger number of nodes
in the network, there is a higher likelihood of K reach-
ing a consistent value across more nodes. This solu-
tion addresses both scalability issues and potential in-
consistencies related to K, making our approach more
robust and applicable in real-world, complex network
environments.

Lastly, our system effectively prevents block with-
holding attempts through the τ and θ parameters. All
miners actively participate in chain selection and eval-
uating their K value, making block withholding an
ineffective strategy. This ensures the security and
fairness of the consensus process and strengthens the
overall integrity of our approach. By incorporating τ

and θ, we have established a robust defense against
block withholding and enhanced the reliability of the
system.

Consequently, our work demonstrates significant
promise despite the acknowledged limitations. By
deliberately selecting Q-learning for its advantages,
controlling parameter variability, addressing scalabil-
ity concerns, and recognizing challenges like block
withholding, our approach provides valuable insights
and sets the foundation for future advancements in
consensus algorithms for large-scale networks. As

with any research, acknowledging and discussing lim-
itations contribute to the scientific discourse and pave
the way for even more robust solutions in the field.

7 CONCLUSION

One of the most significant challenges to the proof-
of-work consensus mechanism is posed by colluding
miners who aim to deviate from the prescribed min-
ing rules. These colluding miners, commonly known
as selfish miners, have remained a persistent threat
since the early days of Bitcoin. In order to address
this problem, we were inspired to leverage the power
of Q-Learning, a well-established method in the field
of reinforcement learning.

Our proposed model has undergone comprehen-
sive evaluation from various perspectives. In terms
of relative revenue, our method has successfully re-
duced the revenue obtained by selfish miners com-
pared to conventional proof-of-work approaches that
lack learning mechanisms. Furthermore, our evalua-
tions reveal a significant increase in the initial thresh-
old of the selfish attack, rising from 25% of the to-
tal mining power to 40% approximately. The results
show the superiority of the proposed approach over
tie-breaking.

The suggested mechanism opens up new av-
enues at the intersection of artificial intelligence and
blockchain technology. As a future work, we will
consider more implementation details and model-
ings to define comprehensive defense mechanism for
proof-of-work consensus algorithms.
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APPENDIX

In this appendix, we present detailed results of the
evaluation conducted in the Evaluation section (Sec-
tion 5), focusing on the impact of varying the α

and γ parameters. The analysis provides valuable in-
sights into the performance and effectiveness of our
proposed approach under different configurations of
these parameters.

Table 1: Q-Defense results for different values of α and γ.
Selfish Miner Computational Power α Rational Miner Revenue Expected Rational Miner Revenue Selfish Miner Revenue Expected Selfish Miner Revenue

γ = 0.

0.0 100 100.0 0.0 0.0
0.05 99.67 95.00 0.33 5.00
0.10 98.62 90.00 1.38 10.00
0.15 99.10 85.00 0.90 15.00
0.20 93.60 80.00 6.4 20.00
0.25 95.08 75.00 4.92 25.00
0.30 93.14 70.00 6.85 30.00
0.35 87.04 65.00 12.96 35.00
0.40 77.51 60.00 22.49 40.00
0.45 56.73 55.00 43.26 45.00
0.50 24.33 50.00 75.66 50.00

γ = 0.5

0.0 100.0 100.0 0.0 0.0.00
0.05 99.41 95.00 0.59 5.00
0.10 97.73 90.00 2.27 10.00
0.15 95.15 85.00 4.85 15.00
0.20 93.44 80.00 6.56 20.00
0.25 86.06 75.00 13.94 25.00
0.30 83.31 70.00 16.69 30.00
0.35 70.55 65.00 29.45 35.00
0.40 65.73 60.00 34.27 40.00
0.45 49.58 55.00 50.49 45.00
0.50 12.07 50.00 87.93 50.00

γ = 1.0

0.0 100.0 100.0 0 0.00
0.05 98.89 95.00 1.11 5.00
0.10 96.30 90.00 3.70 10.00
0.15 93.04 85.00 6.96 15.00
0.20 86.31 80.00 13.69 20.00
0.25 82.17 75.00 17.83 25.00
0.30 74.72 70.00 25.28 30.00
0.35 64.95 65.00 35.05 35.00
0.40 56.91 60.00 43.09 40.00
0.45 45.05 55.00 54.95 45.00
0.50 12.68 50.00 87.32 50.00
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