
Scheduling Onboard Tasks of the NIMPH Nanosatellite

Julien Rouzot1,2, Joséphine Gobert1, Christian Artigues1, Romain Boyer1, Frédéric Camps1,
Philippe Garnier2, Emmanuel Hebrard1 and Pierre Lopez1

1LAAS-CNRS, Toulouse, France
2IRAP, Toulouse, France

{firstname.lastname}@laas.fr, {firstname.lastname}@irap.omp.eu

Keywords: Scheduling, Constraint Programming, Nanosatellite, Hypervisor.

Abstract: In the context of terrestrial space missions, thanks to the recent development of micro and nanotechnologies,
nanosatellites are becoming increasingly popular for their lower cost and ease of deployment. The NIMPH
(Nanosatellite to Investigate Microwave Photonics Hardware) mission is an ongoing academic project aimed at
developing and launching such a nanosatellite. The onboard resources on these missions are often very limited,
and in our study case, a single onboard computer is responsible for orchestrating the science and avionic tasks
of the nanosatellite. These tasks are subject to various constraints, such as frequency, minimum/maximum
delay between the execution of the same type of task and strict precedences. This makes the scheduling of
the onboard tasks a challenging problem, which is critical for the mission success. In this paper, we tackle
the problem of scheduling NIMPH onboard tasks using Constraint Programming methods. Our scheduler
demonstrates its performance by generating optimal or near-optimal schedules for the NIMPH nanosatellite.

1 INTRODUCTION

The NIMPH mission is part of the Nanolab-Academy
project proposed by the CNES (French Space
Agency) that encourages students to engage in space
exploration by developing, launching and exploiting
their nanosatellites of type CubeSat, through intern-
ships and academic projects (CNES, 2021). NIMPH
stands for Nanosatellite to Investigate Microwave
Photonics Hardware. This project is still in its de-
velopment phase (C), with a launch planned for 2025.
From a general perspective, the nanosatellite’s mis-
sion is to evaluate the influence of the space environ-
ment on optoelectronic components (Landrea et al.,
2018).

The nanosatellites developed in the context of
Nanolab-Academy use the same flight software pro-
vided by CNES. The science and avionic opera-
tions are driven by dedicated and isolated parti-
tions (Windsor and Hjortnaes, 2009), that are orches-
trated by the onboard computer (OBC) hypervisor.
ΧTratuM (Masmano et al., 2009) is used to manage
the execution of these partitions. This bare-metal hy-
pervisor is a software developed by the Spanish com-
pany FentISS and has been widely used for space mis-
sions.

The partitions represent the containers of all

the different tasks that must be performed by the
nanosatellite, such as orientation correction, scientific
measures, uplink command management, and more.
As the OBC is unable to perform any sort of multi-
processing, the partitions must be executed sequen-
tially and cannot overlap. To simplify the scheduling
of the OBC tasks for Nanolab nanosatellite missions,
the team developing the flight software chose to make
the schedule cyclic, with a finite time horizon of one
second. This means the OBC will repeat the same
partitions executions every cycle. A fixed number of
tasks (i.e., partition execution of constant duration)
for each partition must be performed within this time
horizon. In the context of the NIMPH mission, due to
the number of tasks and the various constraints on the
partitions, obtaining manually the OBC schedule is an
extremely challenging work. Finally, the best sched-
ules aim to maximize the effective use of the schedule
time, which corresponds to the sum of the task dura-
tion minus the number of context switches, that hap-
pen between the execution of two different partitions
and are time-consuming. This aspect makes the cyclic
scheduling of NIMPH tasks even harder.
ΧTratuM comes with ΧoncretE (Balbastre et al.,

2021), a dedicated scheduler that allows the genera-
tion of a cyclic execution plan of the different parti-
tions, that minimizes the number of context switches.

Rouzot, J., Gobert, J., Artigues, C., Boyer, R., Camps, F., Garnier, P., Hebrard, E. and Lopez, P.
Scheduling Onboard Tasks of the NIMPH Nanosatellite.
DOI: 10.5220/0012378500003639
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Operations Research and Enterprise Systems (ICORES 2024), pages 277-284
ISBN: 978-989-758-681-1; ISSN: 2184-4372
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

277



This tool has a major drawback: most constraints on
the NIMPH cyclic task scheduling problem cannot be
expressed within ΧoncretE. This makes the genera-
tion of valid schedules a laborious work, as the plans
must be manually refined to match the real constraints
(at least in the context of the NIMPH mission). This
also often leads to poorer solutions.

In this context, we propose NanoSatScheduler1,
a scheduler based on Constraint Programming meth-
ods, that tackles NIMPH’s specific constraints, while
being generic enough to handle OBC partition
scheduling for other nanosatellite missions. We first
introduce the NIMPH cyclic task scheduling problem
formally and compare it to other similar scheduling
problems in the literature. We then highlight two con-
straint programming models, NanoSat and NanoSat-
Global, using the IBM CP Optimizer solver, to solve
the NIMPH cyclic task scheduling problem. We also
present NanoSatIterative, an iterative method to max-
imize the effective schedule time by adding new tasks
while minimizing the number of context switches and
keeping the optimality proof. These methods are eval-
uated on synthetic instances based on NIMPH param-
eters to demonstrate their performance. We finally
conclude on the limitations and future work for our
scheduler.

2 THE NIMPH CYCLIC TASK
SCHEDULING PROBLEM

2.1 Formal Description

To handle the scientific and avionic tasks of the
NIMPH nanosatellite, the main software is divided
into a finite set of N partitions, denoted P =
{P1,P2, . . . ,PN}. We can refer to a particular parti-
tion by its name (e.g., PIOS for IOS partition). These
partitions can be seen as containers for a piece of soft-
ware dedicated to a certain task.

In the NIMPH cyclic task scheduling problem, a
task corresponds to the execution of a partition for an
arbitrary amount of time. Each partition Pi must be
executed a fixed number of times Mi within the time
horizon h. As the schedule is cyclic, these tasks will
be repeated every cycle. Therefore, for each parti-
tion i, there is a set of tasks (i.e., partition execution)
(i, j)i=1..N, j=1..Mi to schedule. Let si

j and ei
j be the

start and end times of the j-th occurrence of partition
Pi, respectively. The tasks have a non-zero duration
(1), that is fixed for each partition occurrence and is

1https://gitlab.laas.fr/roc/josephine-
gobert/nanosatscheduler

denoted by δi. As the tasks are equivalent within the
same partition, we assume a correspondence between
their lexicographical order and their temporal order
(2). The tasks cannot overlap (3).

ei
j = si

j +δ
i i = 1..N, j = 1..Mi (1)

ei
j ≤ si

j+1 i = 1..N, j = 1..Mi-1 (2)

ei
j ≤ si′

j′ ∨ si
j ≥ ei′

j′ (i, j) ̸= (i′, j′) (3)

Some partitions need to be executed regularly. For
instance, the SCAO partition must regularly check the
alignment between the solar arrays and the sun, as an
incorrect angular shift could result in a dramatic loss
of power. The set of partitions subject to this con-
straint is denoted by C ⊂ P. Such partitions are said
to be critical and the associated tasks are called crit-
ical as well. As a consequence of this regularity re-
quirement, a maximum delay di

max must be respected
between the starting time of two tasks in a partition Pi

in C (4). As the tasks are repeated in the same man-
ner in the next cycle, the maximum delay constraint
must be respected between the last task of each criti-
cal partition and the first task of the same partition in
the next cycle (4’).

si
j+1 − si

j ≤ di
max Pi ∈C, j = 1..Mi-1 (4)

h+ si
1 − si

Mi ≤ di
max Pi ∈C (4’)

EDMON partition (ED) has a specific particular-
ity: it is the only payload with a dedicated CPU.
Therefore, it can run background tasks while other
partitions are being executed by the OBC. The nomi-
nal behavior of EDMON is to wait for an uplink com-
mand transmitted by the OBC, run an experiment,
wait for the OBC to get the results, and repeat this
process. It means that the only worthwhile interaction
with the OBC takes place when EDMON is waiting
for an uplink command or waiting to send the results
of the experiment2. The payload algorithm can be
seen as a finite-state machine, with a wait state (wait-
ing for a command), a ready state (ready to send the
results), and several experiment states triggered by
different uplink commands. As the execution times
of the experiment states are known, we can impose a
minimum delay dED

min (cf. constraints (5, 5’)) between
two executions of the partition that correspond to the
shortest experiment state. This does not ensure that
EDMON cannot be executed during an experiment
(this is impossible because the longest experiments
last more than the time horizon), but this tends to limit

2The execution of this partition during an experiment is
a waste of the schedule time as EDMON runs the experi-
ments with its own CPU.

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

278



B

CA

Figure 1: Simplified precedence graph for NIMPH sched-
ule.

the waste of schedule time.
sED

j+1 − sED
j ≥ dED

min j = 1..Mi-1 (5)

h+ sED
1 − sED

MED ≥ dED
min (5’)

Certain partitions are also subject to strict prece-
dence constraints. For instance, as the IOS partition
handles the I/O, it must be executed just before any
scientific payload to ensure that the last uplink com-
mand will be transmitted. We can describe these con-
straints with a directed acyclic graph G(V,E), where
the nodes (V ) are the partitions to execute and the arcs
(E) represent a direct transition between two parti-
tions in the schedule. Figure 1 states that an execution
of partition A must occur right before any execution of
partition B or C. In the remainder of this paper, A → B
will be used to indicate a strict precedence constraint
between A and B.

In an operating system, the context of a process
(or a thread) represents its current state (variables, in-
struction pointer, etc.). To ensure the good behav-
ior of the system, the context of these pieces of soft-
ware must be stored every time they are stopped and
loaded when restarted. These steps are called con-
text switches (Comer and Fossum, 1987). Obviously,
this process can become very costly if the context
switches happen too often, not only because of the
direct cost of storing and loading the partition’s con-
texts, but also because of the indirect cost of cache
interference (Li et al., 2007). In our context, we will
assume a constant time penalty p corresponding to the
direct cost of a context switch. Context switches can
be represented by a binary variable ci

j associated with
each task (i, j) that indicates whether a context switch
is needed at the end of task (i, j). The only way to
avoid a context switch is by merging two consecu-
tive tasks of the same partition (6). Note that the last
task of each partition will necessarily need a context
switch (6’)3:

ci
j = 0 ⇐⇒ ei

j = si
j+1 i = 1..N, j = 1..Mi-1 (6)

ci
Mi = 1 i = 1..N (6’)

3A context switch is also needed to start a new cycle.

Our objective is to maximize the schedule time
that will be effectively used to perform avionic or pay-
load tasks. More precisely, this objective is the sum
of the task durations, from which we subtract the sum
of time penalties introduced by the context switches:

max
N

∑
i=1

Mi

∑
j=1

δ
i − ci

j (7)

In the remainder of the paper, we will call this
value the useful schedule time. As we assume a fixed
number of tasks (i, j) and a constant time penalty p,
this objective is equivalent to minimizing the number
of context switches. Nevertheless, we will see in Sec-
tion 3.4, how we can further improve objective (7) by
adding more tasks to the NIMPH instances.

2.2 Related Work

The problem is related to many scheduling problems
in the literature. First, despite its cyclic nature, since
there is no overlap between two cycles, the problem
is equivalent to an acyclic single-machine scheduling
problem with minimum and maximum time-lag con-
straints: constraints (4) and (4’) are maximum time
lags while constraints (5) and (5’) are minimum start-
start time lags. More precisely, find a schedule of
makespan lower than h with constraints (1)–(5’) is
a particular case of the decision variant of the NP-
hard one-machine scheduling problem with gener-
alized precedence constraints considered in (Wikum
et al., 1994). In our case, all operations of a chain
(partition) have the same duration and the minimum
and maximum time lags have special values. In (Yu
et al., 2004), the problem of minimizing the makespan
on a single machine with two unit-time operations
per job with arbitrary intermediate minimum delays
is shown to be strongly NP-hard. The decision vari-
ant of this problem can be obtained by the following
relaxation of our problem: we define only two unit-
duration tasks per partition, ignore the EDMON par-
tition and consider only constraints (1)–(3) and (4’)
by setting di

max to h minus the minimum delay of the
job. The context switch between two partitions is also
a variant of the sequence-independent family setup
time in serial batching problems (Potts and Kovalyov,
2000).

2.3 Illustrative Example

To illustrate the NIMPH cyclic task scheduling prob-
lem, let us define a simple instance NIMPH1 with
three partitions IOS, INST and EDMON. We want
to fit four IOS and INST executions and two ED-
MON executions of 10µs each, within the time hori-

Scheduling Onboard Tasks of the NIMPH Nanosatellite

279



Figure 2: A valid schedule for instance NIMPH1.

Figure 3: An optimal schedule for instance NIMPH1.

zon h = 100µs. We assume that IOS → EDMON is
the only precedence constraint and that INST is the
only critical partition with dINST

max = 40µs. Finally, the
minimum delay between two EDMON executions is
dED

min = 30µs. Both Figures 2 and 3 represent valid
schedules (i.e., a valid assignment of all tasks start)
with respect to these constraints. Note that consecu-
tive executions of the same partition are merged in the
Gantt chart. The schedule represented in Figure 2 is
valid but suboptimal (7 context switches), while the
schedule in Figure 3 is optimal (6 context switches).

3 NanoSatScheduler

We chose to tackle the NIMPH cyclic task schedul-
ing problem using Constraint Programming meth-
ods. We implemented NanoSatScheduler using IBM
ILOG CP Optimizer commercial solver. There are
two main reasons for this choice. First, CP Opti-
mizer has shown great results on a variety of schedul-
ing problems through the years (Laborie et al., 2018).
This solver is also simple to use, with dedicated li-
braries such as docplex for Python to build CP mod-
els (IBM, 2023). CP Optimizer provides global con-
straints and variable types, that make the modeling of
complex problems an intuitive process, especially for
scheduling.

We decided to implement two different models
to compare the performance of two modeling ap-
proaches for the NIMPH cyclic task scheduling prob-
lem. The first model is called NanoSat and uses
only classical integer variables and no global con-
straints. Model NanoSatGlobal takes advantage of the
scheduling features of CP Optimizer (particular vari-
able structures and global constraints).

We finally developed an iterative method to insert
tasks of a given partition of the base instance to max-
imize the use of the schedule time, while taking the
context switches penalties into account.

3.1 NanoSat

Our first constraint model aims to tackle the NIMPH
cyclic task scheduling problem only using simple
constraints and integer variables. Hence, it is possible
to implement it in any constraint solver. For NanoSat,
we define the following variables:

si
j ∈ [0,h] i = 1..N, j = 1..Mi Start (8)

ei
j ∈ [0,h] i = 1..N, j = 1..Mi End (9)

ci
j ∈ [0,1] i = 1..N, j = 1..Mi CS (10)

Start variables (8) are the start times for the j-th
occurrence of partition i. These are the only decision
variables, and a valid assignment for all start variables
is a solution. Task end times can be calculated from
the task starts and the constant task durations. End
variables (9) are only here for the sake of model clar-
ity. The tasks must be scheduled between 0 and the
time horizon h, therefore the domain of the start and
end variables is restricted to [0,h]. Context switch
(CS) variables (10) are binary variables that indicate,
for each task, whether the end time of the current task
is not equal to the start time of the next task of the
same partition (i.e., a context switch is needed). As
we want to limit the waste of the OBC schedule time,
our objective is to minimize the number of these con-
text switches under the following constraints:

min
N

∑
i=1

Mi

∑
j=1

ci
j (11)

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

280



ei
j = si

j +δ
i i = 1..N, j = 1..Mi (12)

ei
j ≤ si′

j′ or si
j ≥ ei′

j′ (i, j) ̸= (i′, j′) (13)

ei
j ≤ si

j+1 i = 1..N, j = 1..Mi-1 (14)

si
j+1 − si

j ≤ di
max i : Pi ∈C, j = 1..Mi-1 (15)

h+ si
1 − si

Mi ≤ di
max i : Pi ∈C (16)

sED
j+1 − sED

j ≥ dED
min j = 1..Mi-1 (17)

h+ sED
1 − sED

MED ≥ dED
min (18)

ci
j = 1 or ei

j = si
j+1 i = 1..N, j = 1..Mi-1 (19)

ci
Mi = 1 i = 1..N (20)

eA
k ≤ sB

k (A,B) : A → B = E ′ (21)

ei
j ≤ sA

k or eB
k ≤ si

j i = 1..N, j = 1..Mi

k = 1..MA

(i, j) ̸= (A,k)
(i, j) ̸= (B,k)

(A,B) : A → B = E ′ (22)

Constraint (12) just defines the end of the tasks to
their start plus their duration. Constraint (13) forbids
the overlapping of any pair of tasks, as the OBC can
only execute one partition at the same time. The oc-
currences of the same partition are time-ordered (14)
for two reasons. First, the next constraints (15–22) are
easier to express if the tasks are ordered, which im-
proves model clarity. But more importantly, it elim-
inates a lot of symmetric solutions that could impact
the solving performance.

Constraint (15) states that the difference between
the start times of two consecutive critical tasks should
not exceed the maximum delay allowed for this par-
tition. Constraint (16) handles the side effect of the
transition between two cycles, as the schedule will be
restarted at the time horizon. In the same manner, the
minimum delay between two calls of EDMON parti-
tion is ensured with constraints (17–18).

We need to force the context switch variable ci
j to

0, if and only if task (i, j+1) starts exactly at the end
time of the current task (i, j) (i.e., we can merge tasks
(i, j) and (i, j + 1) in the schedule). Constraint (19)
ensures that either ci

j is equal to 1 or the start time
of the occurrence j + 1 of partition i is equal to the
end time of the previous occurrence. As our objective
is to minimize ∑

N
i=1 ∑

Mi

j=1 ci
j, the solver will set ci

j to
0 if the other condition is true, and ci

j will be forced
to 1 otherwise. The last task of every partition will
necessarily induces a context switch, so we set the
last context switch variable to 1 (20).

Our precedence graph G(V,E) states that for each
arc A → B in the precedence graph, only a task of

B

C

AB

AC

Figure 4: New simplified precedence graph with predeces-
sor partition split.

partition A can be the direct predecessor of a task of
partition B. In other words, no task of partition C ̸= A
can be inserted in the middle of a sequence AB. To
satisfy a precedence constraint A → B, we must have
at least as many tasks of type A as tasks of type B.
More generally, if we have n precedence constraints
for the same predecessor, e.g., A → B, A →C, ... the
number of predecessor tasks must be greater than or
equal to the number of successor tasks. As the tasks
within the same partition are interchangeable, we can
assign any task of the predecessor partition to be just
before any task of any successor partition, without im-
pacting the solution quality. Hence, for each partition
that is a predecessor of at least one other partition,
we can split the predecessor partition tasks set into n
distinct sets AB,AC, . . . for each successor, plus one
for the extra tasks of the predecessor partition. We
can now express the precedences with a bipartite di-
rected graph G(V ′,E ′) with only distinct pairs of par-
titions. We then force the k-th task occurrence of type
AP to be the direct predecessor of the k-th task occur-
rence of type P with constraints (21) and (22). The
first constraint is a classical precedence constraint:
all tasks in a predecessor node must end before the
start of the corresponding task is the successor node.
The last constraint sets all other tasks to either end
before the predecessor task or to start after the suc-
cessor task for each precedence (i.e., each pair in our
new precedence graph G(E ′,V ′)). As all partition sets
are time-ordered, we ensure strict precedences, while
maintaining the solution quality and breaking symme-
tries.

3.2 NanoSatGlobal

Model NanoSatGlobal uses the interval variables of
CP Optimizer, a structure dedicated to task modeling.
These variables have a start time, an end time and a
duration (that is fixed in our problem). The main ad-
vantage of this kinds of variables is the synergy with
the sequence global constraint that allows us to rea-
son about the tasks as an ordered sequence rather than
a set of start times. We will use the notation t i

j for the
interval variable representing the task (i, j). Our vari-

Scheduling Onboard Tasks of the NIMPH Nanosatellite

281



ables are defined as follows:

t i
j ∈ [0,h] i = 1..N, j = 1..Mi Task (23)

ci
j ∈ [0,1] i = 1..N, j = 1..Mi CS (24)

Our interval variables start and end domains are
constrained within the time window [0,h] (23). We
model the context switches exactly as in the previous
model, and the objective function is the same:

min
N

∑
i=1

Mi

∑
j=1

ci
j (25)

However, our constraints are fundamentally dif-
ferent. Rather than working with the start dates of the
tasks, we use CP Optimizer scheduling global con-
straints on the sequence:

seq = sequence
((

t i
j, i
)

i=1..N, j=1..Mi

)
(26)

no overlap(seq) (27)

start of
(
t i

j+1
)
− start of

(
t i

j
)
≤ di

max

∀ i : Pi ∈C, j = 1..Mi-1 (28)

h+ start of
(
t i
1
)
− start of

(
t i
Mi

)
≤ di

max

∀ i : Pi ∈C (29)

start of
(
tED

j+1
)
− start of

(
tED

j
)
≥ dED

min

∀ j = 1..Mi-1 (30)

h+ start of
(
tED
1

)
− start of

(
tED
MED

)
≥ dED

min (31)

ci
j = 1 or

[
end of

(
t i

j
)
= start of

(
t i

j+1
)]

∀ i = 1..N, j = 1..Mi-1 (32)

ci
Mi = 1 ∀ i = 1..N (33)

type of prev
(
tB

j ,A
)

∀ j = 1..Mi, (A,B) : A → B ∈ E ′ (34)

In CP Optimizer, the sequence variable is a struc-
ture dedicated to task scheduling. We create such
a variable with all our tasks and we assign a differ-
ent type equal to the partition index for each (26).
This allows the use of global constraints on the inter-
val variables within the sequence, such as no overlap
constraint (27), that ensures that the tasks cannot run
at the same time. Just like in the previous section,
constraints (28, 29) ensure that the delay between two
tasks of the same critical partition is below di

max and
constraints (30, 31) impose a minimum delay between
the start of two EDMON executions. The keyword
start of and end of respectively refers to the start and
the end of the interval variables. We constrain the
context switch variables (32, 33) as in the last model
(see Section 3.1). The global constraint type of prev
(34) is exactly what we need to express our strict

precedence constraints. This constraint forces the pre-
decessor of the current task to be of a specified type.
Note that we perform the same pre-processing step
described in Section 3.1 to express our precedence
graph G(V,E) as a perfect matching G(E ′,V ′). There-
fore, for each arc A → B in G(E ′,V ′), we assign a pre-
decessor of type A (i.e., from partition A) to each task
of partition B.

3.3 Lower Bound

To decrease the optimality proof computation time,
we calculate a lower bound lb on the number of con-
text switches for each instance. Indeed, our instances
have the following properties: A context switch is
needed for the last task of every partition. As the tasks
are ordered, the task starting just at the end of the last
task of a partition cannot be from the same partition;
A context switch is needed for every task of EDMON
partition as dED

min > δED; Every task subject to a strict
precedence constraint will need a context switch (for
both predecessor and successor); Tasks subject to a
max delay constraint will need a minimum number of
context switches.

This last property is trickier. It is not obvious how
to compute the minimum number of context switches
for this last constraint, as it depends on the number
of tasks, the tasks’ duration, the time horizon and the
maximum delay allowed. To get this minimum num-
ber of context switches, we solve a simplified ver-
sion of the NIMPH cyclic task scheduling problem,
with only one partition, for each of these critical par-
titions. This simpler problem is solved to optimality
very quickly, so we can compute this minimum num-
ber of context switches for each critical partition as a
preprocessing step of NanoSatScheduler. The nota-
tion lb refer to the sum of all of these mandatory con-
text switches, so we can add the following constraint
to both NanoSat and NanoSatGlobal models:

N

∑
i=1

Mi

∑
j=1

ci
j ≥ lb (35)

3.4 NanoSatIterative

Due to the various constraints on the NIMPH cyclic
task scheduling problem, it is very hard to manually
build instances that yield a valid solution that maxi-
mizes the useful schedule time. Moreover, it is not
useful to maximize the number of tasks for all kinds
of partitions. For instance, the number and duration
of the avionic partitions tasks are designed to ensure
the good behavior of the nanosatellite with respect to
a security margin, so maximizing these types of tasks

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

282



is unnecessary. On the other hand, the time allocated
to the scientific payloads should be maximized to im-
prove the scientific feedback.

To address this, we decided to relax the strict num-
ber of task constraints for one partition l, selected by
the user. We thus propose NanoSatIterative, a method
to find the optimal useful schedule time, by jointly se-
lecting the number of tasks of partition l and schedul-
ing all the tasks. To maximize the useful schedule
time and keep the optimality guarantees, we perform a
dichotomic search on our objective: ∑

N
i=1 ∑

Mi

j=1 δi−ci
j.

It is possible to compute a lower and an upper bound
on the number of tasks of type l. The lower bound
is the minimum number of tasks that are necessary
to reach the current objective, assuming an optimistic
number of context switches4, while the upper bound
is the number of tasks of type l before the problem
is trivially unsatisfiable (i.e., the sum of the task du-
rations is greater than the time horizon). The lower
bound is updated at each objective step, and then
we iteratively add new tasks of partition l and try to
solve the NIMPH cyclic task scheduling problem with
a fixed number of tasks using NanoSatScheduler or
NanoSatGlobal, until we reach either the upper bound
or we find a feasible solution. According to the sat-
isfiability of the problem with the current objective,
we update either the lower bound or the upper bound
of the useful schedule time. If a solution is found, we
also update the lower bound on the number of tasks of
type l with the current number of tasks. Note that we
cannot perform a dichotomic search on the number
of tasks as well, because a solution with more tasks is
not necessarily better than another solution with fewer
tasks but fewer context switches. If, at each step, we
can find a valid solution or prove the unsatisfiability
of the objective, the solution is optimal.

4 EXPERIMENTAL RESULTS

4.1 Instances

As the NIMPH mission is still in its development
phase, some of the real constraints for the NIMPH
cyclic task scheduling problem are still unknown
(e.g., tasks’ duration, exact number of occurrences,
minimum delay for critical partitions, etc.). To per-
form realistic and relevant experiments, the NIMPH
development team helped us create a base instance
with the expected values for each partition. As this
instance is subject to uncertainties and to deeply an-

4We assume we can reach the lower bound presented in
Section 3.3.

alyze the performances of our approach, we gener-
ated 100 random instances based on the NIMPH nom-
inal instance (71 tasks from 10 distinct partitions, for
a time horizon h = 1s). We created these synthetic
instances by disturbing the original instance with a
Gaussian law (µ = 1, σ2 = 0.3) for each uncertain
parameter. After deleting trivially unsatisfiable in-
stances

(
∑

N
1=1 δi ×Mi > h

)
, we have a total of 98 in-

stances.

4.2 Results

We compare the two implementations NanoSat and
NanoSatGlobal of our model in CP Optimizer, and
the iterative method NanoSatIterative using both
NanoSat and NanoSatGlobal to solve the sub-
problems (with a fixed number of partitions). We use
the following setup:

• Hardware: 13th Gen Intel® Core™ i7-1365U ×
12, 32 GB RAM.

• Solver: CP Optimizer 12.7.0 with docplex library
for Python.

• Time limit: 100 seconds (NanoSat, NanoSat-
Global), 1000 seconds (NanoSatIterative).

We can see in Table 1 that both NanoSat and
NanoSatGlobal are efficient to solve NIMPH in-
stances, as feasible solutions are found very often and
a majority of instances can be solved to optimality
before 100 seconds. However, the use of CP Op-
timizer interval variables and sequence global con-
straints within NanoSatGlobal increases the resolu-
tion time and decreases the number of optimal so-
lutions on our instances, but this model is able to
prove the infeasibility of the few instances that are
not solved by NanoSat.

There is a higher contrast between these two ap-
proaches when they are integrated into NanoSatItera-
tive. Table 2 highlights the differences in terms of res-
olution time and proportion of optimal solutions be-
tween NanoSat and NanoSatGlobal within NanoSatIt-
erative. We can see that both methods improve the
useful schedule time, with a mean increase of 6% for
NanoSatIterative + NanoSat.

If the performances of both NanoSat and
NanoSatGlobal are globally satisfactory for the
NIMPH instances, such a performance gap between
those two models is hard to explain. A deeper analy-
sis of the models performance on bigger and more di-
verse instances is our main focus for the future work.

Scheduling Onboard Tasks of the NIMPH Nanosatellite

283



Table 1: Comparison of methods NanoSat and NanoSatGlobal: Mean resolution time; Number of instances solved; Number
of instances solved to optimality; Number of instances proved infeasible.

Method Mean time Nb. feasible Nb. optimal Nb. Infeasible
NanoSat 6.4s 94 94 0
NanoSatGlobal 33.1s 75 74 4

Table 2: Comparison of methods NanoSat and NanoSatGlobal within NanoSatIterative: Mean resolution time; Mean instances
solved to optimality; Mean useful schedule time; Mean upper bound on the useful time for the original instances (without
adding tasks).

Method Mean time Mean optimal Mean sched. use Mean original sched. use
NanoSatIterative+
NanoSat

58.1s 89.8% 88.5% 82.5%

NanoSatIterative+
NanoSatGlobal

786.5s 11.2% 83.1% 82.5%

5 CONCLUSION

We presented NanoSatScheduler, a tool suited for on-
board task scheduling in the context of nanosatellite
missions. Two versions of our software are compared,
and we highlighted that the use of CP Optimizer
global constraints is less effective than a classical
model for the NIMPH cyclic task scheduling problem,
while demonstrating the efficiency of both methods
to find optimal schedules for NIMPH instances. We
also presented NanoSatIterative, a method to enhance
solution quality by iteratively inserting new tasks into
the instance and maximizing the useful schedule time.

Apart from improving experimental analysis,
there are still some interesting research directions re-
lated to the OBC task scheduling, in synergy with
NIMPH team needs. First, the iterative method could
be improved to handle multiple partitions, solving
a multi-objective problem of maximizing the use-
ful schedule time of each partition. NanoSatSched-
uler could benefit from a Graphical User Interface,
with the possibility of dynamically modifying the in-
stances, to allow manual refining from the NIMPH
team, while ensuring the feasibility or the optimality
of each new solution. A variant of the NIMPH cyclic
task scheduling problem with a variable time horizon
would be very interesting to investigate, as the useful
schedule time could be improved by reducing the time
horizon instead of adding new tasks.

REFERENCES

Balbastre, P., Masmano, M., and Morales, V. (June, 2021).
User manual. Technical Report fnts-xe-um-17b, Fent
Innovative Software Solutions.

CNES (2021). CNES project libraries – Nanolab Academy.
https://nanolab-academy.cnes.fr/en/janus.

Comer, D. and Fossum, T. V. (1987). Operating System
Design: Internetworking with Xinu. Prentice Hall.

IBM (2023). IBM Docplex documentation.
https://ibmdecisionoptimization.github.io/docplex-
doc/cp/index.html. Accessed on October 9th 2023.

Laborie, P., Rogerie, J., Shaw, P., and Vilı́m, P. (2018).
IBM ILOG CP Optimizer for scheduling: 20+ years
of scheduling with constraints at IBM/ILOG. Con-
straints, 23:210–250.

Landrea, T., Maignan, M., Risson, A., and Roux, G. (2018).
Spécification mission NIMPH. ISAE-SUPAERO and
CSUT.

Li, C., Ding, C., and Shen, K. (2007). Quantifying the cost
of context switch. In Proceedings of the 2007 Work-
shop on Experimental Computer Science, pages 2–es,
San Diego, CA (USA).

Masmano, M., Ripoll, I., Crespo, A., and Metge, J. (2009).
XtratuM: A hypervisor for safety critical embedded
systems. In 11th Real-Time Linux Workshop, vol-
ume 9, Dresden (Germany).

Potts, C. N. and Kovalyov, M. Y. (2000). Scheduling with
batching: A review. European Journal of Operational
Research, 120(2):228–249.

Wikum, E. D., Llewellyn, D. C., and Nemhauser, G. L.
(1994). One-machine generalized precedence con-
strained scheduling problems. Operations Research
Letters, 16(2):87–99.

Windsor, J. and Hjortnaes, K. (2009). Time and space parti-
tioning in spacecraft avionics. In 2009 Third IEEE In-
ternational Conference on Space Mission Challenges
for Information Technology, pages 13–20. IEEE.

Yu, W., Hoogeveen, H., and Lenstra, J. K. (2004). Min-
imizing makespan in a two-machine flow shop with
delays and unit-time operations is NP-hard. Journal
of Scheduling, 7:333–348.

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

284


